Properties

Label 975.1.j.a
Level $975$
Weight $1$
Character orbit 975.j
Analytic conductor $0.487$
Analytic rank $0$
Dimension $4$
Projective image $D_{4}$
CM discriminant -3
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [975,1,Mod(593,975)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(975, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("975.593");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 975.j (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.486588387317\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{4}\)
Projective field: Galois closure of 4.2.164775.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{8} q^{3} + q^{4} + (\zeta_{8}^{3} + \zeta_{8}) q^{7} + \zeta_{8}^{2} q^{9} - \zeta_{8} q^{12} + \zeta_{8} q^{13} + q^{16} + (\zeta_{8}^{2} - 1) q^{19} + ( - \zeta_{8}^{2} + 1) q^{21} - \zeta_{8}^{3} q^{27} + \cdots + (\zeta_{8}^{3} - \zeta_{8}) q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{4} + 4 q^{16} - 4 q^{19} + 4 q^{21} - 4 q^{31} - 4 q^{49} + 4 q^{64} - 4 q^{76} - 4 q^{81} + 4 q^{84} - 4 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(\zeta_{8}^{2}\) \(-1\) \(-\zeta_{8}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
593.1
0.707107 + 0.707107i
−0.707107 0.707107i
0.707107 0.707107i
−0.707107 + 0.707107i
0 −0.707107 0.707107i 1.00000 0 0 1.41421i 0 1.00000i 0
593.2 0 0.707107 + 0.707107i 1.00000 0 0 1.41421i 0 1.00000i 0
707.1 0 −0.707107 + 0.707107i 1.00000 0 0 1.41421i 0 1.00000i 0
707.2 0 0.707107 0.707107i 1.00000 0 0 1.41421i 0 1.00000i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
5.b even 2 1 inner
15.d odd 2 1 inner
65.f even 4 1 inner
65.k even 4 1 inner
195.j odd 4 1 inner
195.u odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 975.1.j.a 4
3.b odd 2 1 CM 975.1.j.a 4
5.b even 2 1 inner 975.1.j.a 4
5.c odd 4 2 975.1.u.a yes 4
13.d odd 4 1 975.1.u.a yes 4
15.d odd 2 1 inner 975.1.j.a 4
15.e even 4 2 975.1.u.a yes 4
39.f even 4 1 975.1.u.a yes 4
65.f even 4 1 inner 975.1.j.a 4
65.g odd 4 1 975.1.u.a yes 4
65.k even 4 1 inner 975.1.j.a 4
195.j odd 4 1 inner 975.1.j.a 4
195.n even 4 1 975.1.u.a yes 4
195.u odd 4 1 inner 975.1.j.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
975.1.j.a 4 1.a even 1 1 trivial
975.1.j.a 4 3.b odd 2 1 CM
975.1.j.a 4 5.b even 2 1 inner
975.1.j.a 4 15.d odd 2 1 inner
975.1.j.a 4 65.f even 4 1 inner
975.1.j.a 4 65.k even 4 1 inner
975.1.j.a 4 195.j odd 4 1 inner
975.1.j.a 4 195.u odd 4 1 inner
975.1.u.a yes 4 5.c odd 4 2
975.1.u.a yes 4 13.d odd 4 1
975.1.u.a yes 4 15.e even 4 2
975.1.u.a yes 4 39.f even 4 1
975.1.u.a yes 4 65.g odd 4 1
975.1.u.a yes 4 195.n even 4 1

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(975, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 1 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} + 1 \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( (T^{2} + 2 T + 2)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( (T^{2} + 2 T + 2)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( T^{4} + 16 \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( T^{4} \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
show more
show less