Properties

Label 2-975-13.12-c1-0-42
Degree $2$
Conductor $975$
Sign $0.554 + 0.832i$
Analytic cond. $7.78541$
Root an. cond. $2.79023$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2·4-s − 3i·7-s + 9-s − 3i·11-s + 2·12-s + (−2 − 3i)13-s + 4·16-s − 3·17-s − 3i·21-s + 3·23-s + 27-s − 6i·28-s − 6·29-s − 6i·31-s + ⋯
L(s)  = 1  + 0.577·3-s + 4-s − 1.13i·7-s + 0.333·9-s − 0.904i·11-s + 0.577·12-s + (−0.554 − 0.832i)13-s + 16-s − 0.727·17-s − 0.654i·21-s + 0.625·23-s + 0.192·27-s − 1.13i·28-s − 1.11·29-s − 1.07i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.554 + 0.832i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.554 + 0.832i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(975\)    =    \(3 \cdot 5^{2} \cdot 13\)
Sign: $0.554 + 0.832i$
Analytic conductor: \(7.78541\)
Root analytic conductor: \(2.79023\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{975} (376, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 975,\ (\ :1/2),\ 0.554 + 0.832i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.07286 - 1.10936i\)
\(L(\frac12)\) \(\approx\) \(2.07286 - 1.10936i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
5 \( 1 \)
13 \( 1 + (2 + 3i)T \)
good2 \( 1 - 2T^{2} \)
7 \( 1 + 3iT - 7T^{2} \)
11 \( 1 + 3iT - 11T^{2} \)
17 \( 1 + 3T + 17T^{2} \)
19 \( 1 - 19T^{2} \)
23 \( 1 - 3T + 23T^{2} \)
29 \( 1 + 6T + 29T^{2} \)
31 \( 1 + 6iT - 31T^{2} \)
37 \( 1 - 9iT - 37T^{2} \)
41 \( 1 - 3iT - 41T^{2} \)
43 \( 1 - 10T + 43T^{2} \)
47 \( 1 - 12iT - 47T^{2} \)
53 \( 1 - 3T + 53T^{2} \)
59 \( 1 - 12iT - 59T^{2} \)
61 \( 1 - T + 61T^{2} \)
67 \( 1 - 67T^{2} \)
71 \( 1 + 9iT - 71T^{2} \)
73 \( 1 + 6iT - 73T^{2} \)
79 \( 1 - T + 79T^{2} \)
83 \( 1 - 6iT - 83T^{2} \)
89 \( 1 - 15iT - 89T^{2} \)
97 \( 1 - 9iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.983133119649501121485329400809, −9.062140486490919815802981401847, −7.892480404282757024996330305589, −7.53542134176631198358354871038, −6.60410925044539942272181830883, −5.71115413057068205718745805993, −4.38935995798510647778251278164, −3.34249178551493308952259467660, −2.50463904316358377716741903455, −1.02031043262301699410085471867, 1.98986558693205345866975887997, 2.37996971644120842624565130602, 3.69193104071670533041584123181, 4.93994687541428352581621825825, 5.90701223857490585696535836757, 7.03093684242178944687350142204, 7.34594096643427722638850360868, 8.651257462237378221770982044723, 9.181199570012231025496148979138, 10.06065802446174501461455096350

Graph of the $Z$-function along the critical line