L(s) = 1 | + 3-s + 2·4-s − 3i·7-s + 9-s − 3i·11-s + 2·12-s + (−2 − 3i)13-s + 4·16-s − 3·17-s − 3i·21-s + 3·23-s + 27-s − 6i·28-s − 6·29-s − 6i·31-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 4-s − 1.13i·7-s + 0.333·9-s − 0.904i·11-s + 0.577·12-s + (−0.554 − 0.832i)13-s + 16-s − 0.727·17-s − 0.654i·21-s + 0.625·23-s + 0.192·27-s − 1.13i·28-s − 1.11·29-s − 1.07i·31-s + ⋯ |
Λ(s)=(=(975s/2ΓC(s)L(s)(0.554+0.832i)Λ(2−s)
Λ(s)=(=(975s/2ΓC(s+1/2)L(s)(0.554+0.832i)Λ(1−s)
Degree: |
2 |
Conductor: |
975
= 3⋅52⋅13
|
Sign: |
0.554+0.832i
|
Analytic conductor: |
7.78541 |
Root analytic conductor: |
2.79023 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ975(376,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 975, ( :1/2), 0.554+0.832i)
|
Particular Values
L(1) |
≈ |
2.07286−1.10936i |
L(21) |
≈ |
2.07286−1.10936i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−T |
| 5 | 1 |
| 13 | 1+(2+3i)T |
good | 2 | 1−2T2 |
| 7 | 1+3iT−7T2 |
| 11 | 1+3iT−11T2 |
| 17 | 1+3T+17T2 |
| 19 | 1−19T2 |
| 23 | 1−3T+23T2 |
| 29 | 1+6T+29T2 |
| 31 | 1+6iT−31T2 |
| 37 | 1−9iT−37T2 |
| 41 | 1−3iT−41T2 |
| 43 | 1−10T+43T2 |
| 47 | 1−12iT−47T2 |
| 53 | 1−3T+53T2 |
| 59 | 1−12iT−59T2 |
| 61 | 1−T+61T2 |
| 67 | 1−67T2 |
| 71 | 1+9iT−71T2 |
| 73 | 1+6iT−73T2 |
| 79 | 1−T+79T2 |
| 83 | 1−6iT−83T2 |
| 89 | 1−15iT−89T2 |
| 97 | 1−9iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.983133119649501121485329400809, −9.062140486490919815802981401847, −7.892480404282757024996330305589, −7.53542134176631198358354871038, −6.60410925044539942272181830883, −5.71115413057068205718745805993, −4.38935995798510647778251278164, −3.34249178551493308952259467660, −2.50463904316358377716741903455, −1.02031043262301699410085471867,
1.98986558693205345866975887997, 2.37996971644120842624565130602, 3.69193104071670533041584123181, 4.93994687541428352581621825825, 5.90701223857490585696535836757, 7.03093684242178944687350142204, 7.34594096643427722638850360868, 8.651257462237378221770982044723, 9.181199570012231025496148979138, 10.06065802446174501461455096350