Properties

Label 2-975-13.12-c1-0-42
Degree 22
Conductor 975975
Sign 0.554+0.832i0.554 + 0.832i
Analytic cond. 7.785417.78541
Root an. cond. 2.790232.79023
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2·4-s − 3i·7-s + 9-s − 3i·11-s + 2·12-s + (−2 − 3i)13-s + 4·16-s − 3·17-s − 3i·21-s + 3·23-s + 27-s − 6i·28-s − 6·29-s − 6i·31-s + ⋯
L(s)  = 1  + 0.577·3-s + 4-s − 1.13i·7-s + 0.333·9-s − 0.904i·11-s + 0.577·12-s + (−0.554 − 0.832i)13-s + 16-s − 0.727·17-s − 0.654i·21-s + 0.625·23-s + 0.192·27-s − 1.13i·28-s − 1.11·29-s − 1.07i·31-s + ⋯

Functional equation

Λ(s)=(975s/2ΓC(s)L(s)=((0.554+0.832i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.554 + 0.832i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(975s/2ΓC(s+1/2)L(s)=((0.554+0.832i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.554 + 0.832i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 975975    =    352133 \cdot 5^{2} \cdot 13
Sign: 0.554+0.832i0.554 + 0.832i
Analytic conductor: 7.785417.78541
Root analytic conductor: 2.790232.79023
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ975(376,)\chi_{975} (376, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 975, ( :1/2), 0.554+0.832i)(2,\ 975,\ (\ :1/2),\ 0.554 + 0.832i)

Particular Values

L(1)L(1) \approx 2.072861.10936i2.07286 - 1.10936i
L(12)L(\frac12) \approx 2.072861.10936i2.07286 - 1.10936i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1T 1 - T
5 1 1
13 1+(2+3i)T 1 + (2 + 3i)T
good2 12T2 1 - 2T^{2}
7 1+3iT7T2 1 + 3iT - 7T^{2}
11 1+3iT11T2 1 + 3iT - 11T^{2}
17 1+3T+17T2 1 + 3T + 17T^{2}
19 119T2 1 - 19T^{2}
23 13T+23T2 1 - 3T + 23T^{2}
29 1+6T+29T2 1 + 6T + 29T^{2}
31 1+6iT31T2 1 + 6iT - 31T^{2}
37 19iT37T2 1 - 9iT - 37T^{2}
41 13iT41T2 1 - 3iT - 41T^{2}
43 110T+43T2 1 - 10T + 43T^{2}
47 112iT47T2 1 - 12iT - 47T^{2}
53 13T+53T2 1 - 3T + 53T^{2}
59 112iT59T2 1 - 12iT - 59T^{2}
61 1T+61T2 1 - T + 61T^{2}
67 167T2 1 - 67T^{2}
71 1+9iT71T2 1 + 9iT - 71T^{2}
73 1+6iT73T2 1 + 6iT - 73T^{2}
79 1T+79T2 1 - T + 79T^{2}
83 16iT83T2 1 - 6iT - 83T^{2}
89 115iT89T2 1 - 15iT - 89T^{2}
97 19iT97T2 1 - 9iT - 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.983133119649501121485329400809, −9.062140486490919815802981401847, −7.892480404282757024996330305589, −7.53542134176631198358354871038, −6.60410925044539942272181830883, −5.71115413057068205718745805993, −4.38935995798510647778251278164, −3.34249178551493308952259467660, −2.50463904316358377716741903455, −1.02031043262301699410085471867, 1.98986558693205345866975887997, 2.37996971644120842624565130602, 3.69193104071670533041584123181, 4.93994687541428352581621825825, 5.90701223857490585696535836757, 7.03093684242178944687350142204, 7.34594096643427722638850360868, 8.651257462237378221770982044723, 9.181199570012231025496148979138, 10.06065802446174501461455096350

Graph of the ZZ-function along the critical line