Properties

Label 975.2.b.e
Level $975$
Weight $2$
Character orbit 975.b
Analytic conductor $7.785$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [975,2,Mod(376,975)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(975, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("975.376");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 3i\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{3} + 2 q^{4} - \beta q^{7} + q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + q^{3} + 2 q^{4} - \beta q^{7} + q^{9} - \beta q^{11} + 2 q^{12} + ( - \beta - 2) q^{13} + 4 q^{16} - 3 q^{17} - \beta q^{21} + 3 q^{23} + q^{27} - 2 \beta q^{28} - 6 q^{29} - 2 \beta q^{31} - \beta q^{33} + 2 q^{36} + 3 \beta q^{37} + ( - \beta - 2) q^{39} + \beta q^{41} + 10 q^{43} - 2 \beta q^{44} + 4 \beta q^{47} + 4 q^{48} - 2 q^{49} - 3 q^{51} + ( - 2 \beta - 4) q^{52} + 3 q^{53} + 4 \beta q^{59} + q^{61} - \beta q^{63} + 8 q^{64} - 6 q^{68} + 3 q^{69} - 3 \beta q^{71} - 2 \beta q^{73} - 9 q^{77} + q^{79} + q^{81} + 2 \beta q^{83} - 2 \beta q^{84} - 6 q^{87} + 5 \beta q^{89} + (2 \beta - 9) q^{91} + 6 q^{92} - 2 \beta q^{93} + 3 \beta q^{97} - \beta q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} + 4 q^{4} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{3} + 4 q^{4} + 2 q^{9} + 4 q^{12} - 4 q^{13} + 8 q^{16} - 6 q^{17} + 6 q^{23} + 2 q^{27} - 12 q^{29} + 4 q^{36} - 4 q^{39} + 20 q^{43} + 8 q^{48} - 4 q^{49} - 6 q^{51} - 8 q^{52} + 6 q^{53} + 2 q^{61} + 16 q^{64} - 12 q^{68} + 6 q^{69} - 18 q^{77} + 2 q^{79} + 2 q^{81} - 12 q^{87} - 18 q^{91} + 12 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
376.1
1.00000i
1.00000i
0 1.00000 2.00000 0 0 3.00000i 0 1.00000 0
376.2 0 1.00000 2.00000 0 0 3.00000i 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 975.2.b.e 2
5.b even 2 1 195.2.b.a 2
5.c odd 4 1 975.2.h.b 2
5.c odd 4 1 975.2.h.c 2
13.b even 2 1 inner 975.2.b.e 2
15.d odd 2 1 585.2.b.d 2
20.d odd 2 1 3120.2.g.j 2
65.d even 2 1 195.2.b.a 2
65.g odd 4 1 2535.2.a.f 1
65.g odd 4 1 2535.2.a.g 1
65.h odd 4 1 975.2.h.b 2
65.h odd 4 1 975.2.h.c 2
195.e odd 2 1 585.2.b.d 2
195.n even 4 1 7605.2.a.i 1
195.n even 4 1 7605.2.a.n 1
260.g odd 2 1 3120.2.g.j 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
195.2.b.a 2 5.b even 2 1
195.2.b.a 2 65.d even 2 1
585.2.b.d 2 15.d odd 2 1
585.2.b.d 2 195.e odd 2 1
975.2.b.e 2 1.a even 1 1 trivial
975.2.b.e 2 13.b even 2 1 inner
975.2.h.b 2 5.c odd 4 1
975.2.h.b 2 65.h odd 4 1
975.2.h.c 2 5.c odd 4 1
975.2.h.c 2 65.h odd 4 1
2535.2.a.f 1 65.g odd 4 1
2535.2.a.g 1 65.g odd 4 1
3120.2.g.j 2 20.d odd 2 1
3120.2.g.j 2 260.g odd 2 1
7605.2.a.i 1 195.n even 4 1
7605.2.a.n 1 195.n even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(975, [\chi])\):

\( T_{2} \) Copy content Toggle raw display
\( T_{17} + 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T - 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 9 \) Copy content Toggle raw display
$11$ \( T^{2} + 9 \) Copy content Toggle raw display
$13$ \( T^{2} + 4T + 13 \) Copy content Toggle raw display
$17$ \( (T + 3)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( (T - 3)^{2} \) Copy content Toggle raw display
$29$ \( (T + 6)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 36 \) Copy content Toggle raw display
$37$ \( T^{2} + 81 \) Copy content Toggle raw display
$41$ \( T^{2} + 9 \) Copy content Toggle raw display
$43$ \( (T - 10)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 144 \) Copy content Toggle raw display
$53$ \( (T - 3)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 144 \) Copy content Toggle raw display
$61$ \( (T - 1)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( T^{2} + 81 \) Copy content Toggle raw display
$73$ \( T^{2} + 36 \) Copy content Toggle raw display
$79$ \( (T - 1)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 36 \) Copy content Toggle raw display
$89$ \( T^{2} + 225 \) Copy content Toggle raw display
$97$ \( T^{2} + 81 \) Copy content Toggle raw display
show more
show less