L(s) = 1 | + 0.490i·2-s + 3-s + 1.75·4-s + 0.490i·6-s + 3.59i·7-s + 1.84i·8-s + 9-s − 4.35i·11-s + 1.75·12-s + (2.56 − 2.53i)13-s − 1.75·14-s + 2.61·16-s + 4.13·17-s + 0.490i·18-s − 1.74i·19-s + ⋯ |
L(s) = 1 | + 0.346i·2-s + 0.577·3-s + 0.879·4-s + 0.200i·6-s + 1.35i·7-s + 0.651i·8-s + 0.333·9-s − 1.31i·11-s + 0.508·12-s + (0.712 − 0.701i)13-s − 0.470·14-s + 0.654·16-s + 1.00·17-s + 0.115i·18-s − 0.401i·19-s + ⋯ |
Λ(s)=(=(975s/2ΓC(s)L(s)(0.712−0.701i)Λ(2−s)
Λ(s)=(=(975s/2ΓC(s+1/2)L(s)(0.712−0.701i)Λ(1−s)
Degree: |
2 |
Conductor: |
975
= 3⋅52⋅13
|
Sign: |
0.712−0.701i
|
Analytic conductor: |
7.78541 |
Root analytic conductor: |
2.79023 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ975(376,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 975, ( :1/2), 0.712−0.701i)
|
Particular Values
L(1) |
≈ |
2.35513+0.965376i |
L(21) |
≈ |
2.35513+0.965376i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−T |
| 5 | 1 |
| 13 | 1+(−2.56+2.53i)T |
good | 2 | 1−0.490iT−2T2 |
| 7 | 1−3.59iT−7T2 |
| 11 | 1+4.35iT−11T2 |
| 17 | 1−4.13T+17T2 |
| 19 | 1+1.74iT−19T2 |
| 23 | 1+0.376T+23T2 |
| 29 | 1+7.65T+29T2 |
| 31 | 1−6.90iT−31T2 |
| 37 | 1−4.84iT−37T2 |
| 41 | 1−4.84iT−41T2 |
| 43 | 1+3.24T+43T2 |
| 47 | 1−6.13iT−47T2 |
| 53 | 1+3.75T+53T2 |
| 59 | 1+13.8iT−59T2 |
| 61 | 1−8.51T+61T2 |
| 67 | 1+1.25iT−67T2 |
| 71 | 1+11.4iT−71T2 |
| 73 | 1−13.5iT−73T2 |
| 79 | 1+9.41T+79T2 |
| 83 | 1+16.8iT−83T2 |
| 89 | 1+2.94iT−89T2 |
| 97 | 1+10.2iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.06719352700627594497283171481, −9.026728205487613830573878401337, −8.333444715988221221367529590122, −7.82904568684072569157790267318, −6.61246891754751410681127130749, −5.83756319945862398372874894721, −5.25706363320167939628122922787, −3.34814669084853667083681840853, −2.90359217461147875519540478929, −1.55559296063227462788223600377,
1.32274828871299781872996439143, 2.25280619890136800859266393044, 3.71794194310207854824879810940, 4.08203230302237966033542224585, 5.64588291446288888320048038868, 6.85714684729863027113627167539, 7.32733779685773957088343601979, 7.991449125733700015823269466319, 9.347554166000611289473096622580, 10.00239102394222759187275905225