Properties

Label 2-975-13.12-c1-0-27
Degree 22
Conductor 975975
Sign 0.7120.701i0.712 - 0.701i
Analytic cond. 7.785417.78541
Root an. cond. 2.790232.79023
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.490i·2-s + 3-s + 1.75·4-s + 0.490i·6-s + 3.59i·7-s + 1.84i·8-s + 9-s − 4.35i·11-s + 1.75·12-s + (2.56 − 2.53i)13-s − 1.75·14-s + 2.61·16-s + 4.13·17-s + 0.490i·18-s − 1.74i·19-s + ⋯
L(s)  = 1  + 0.346i·2-s + 0.577·3-s + 0.879·4-s + 0.200i·6-s + 1.35i·7-s + 0.651i·8-s + 0.333·9-s − 1.31i·11-s + 0.508·12-s + (0.712 − 0.701i)13-s − 0.470·14-s + 0.654·16-s + 1.00·17-s + 0.115i·18-s − 0.401i·19-s + ⋯

Functional equation

Λ(s)=(975s/2ΓC(s)L(s)=((0.7120.701i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.712 - 0.701i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(975s/2ΓC(s+1/2)L(s)=((0.7120.701i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.712 - 0.701i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 975975    =    352133 \cdot 5^{2} \cdot 13
Sign: 0.7120.701i0.712 - 0.701i
Analytic conductor: 7.785417.78541
Root analytic conductor: 2.790232.79023
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ975(376,)\chi_{975} (376, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 975, ( :1/2), 0.7120.701i)(2,\ 975,\ (\ :1/2),\ 0.712 - 0.701i)

Particular Values

L(1)L(1) \approx 2.35513+0.965376i2.35513 + 0.965376i
L(12)L(\frac12) \approx 2.35513+0.965376i2.35513 + 0.965376i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1T 1 - T
5 1 1
13 1+(2.56+2.53i)T 1 + (-2.56 + 2.53i)T
good2 10.490iT2T2 1 - 0.490iT - 2T^{2}
7 13.59iT7T2 1 - 3.59iT - 7T^{2}
11 1+4.35iT11T2 1 + 4.35iT - 11T^{2}
17 14.13T+17T2 1 - 4.13T + 17T^{2}
19 1+1.74iT19T2 1 + 1.74iT - 19T^{2}
23 1+0.376T+23T2 1 + 0.376T + 23T^{2}
29 1+7.65T+29T2 1 + 7.65T + 29T^{2}
31 16.90iT31T2 1 - 6.90iT - 31T^{2}
37 14.84iT37T2 1 - 4.84iT - 37T^{2}
41 14.84iT41T2 1 - 4.84iT - 41T^{2}
43 1+3.24T+43T2 1 + 3.24T + 43T^{2}
47 16.13iT47T2 1 - 6.13iT - 47T^{2}
53 1+3.75T+53T2 1 + 3.75T + 53T^{2}
59 1+13.8iT59T2 1 + 13.8iT - 59T^{2}
61 18.51T+61T2 1 - 8.51T + 61T^{2}
67 1+1.25iT67T2 1 + 1.25iT - 67T^{2}
71 1+11.4iT71T2 1 + 11.4iT - 71T^{2}
73 113.5iT73T2 1 - 13.5iT - 73T^{2}
79 1+9.41T+79T2 1 + 9.41T + 79T^{2}
83 1+16.8iT83T2 1 + 16.8iT - 83T^{2}
89 1+2.94iT89T2 1 + 2.94iT - 89T^{2}
97 1+10.2iT97T2 1 + 10.2iT - 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.06719352700627594497283171481, −9.026728205487613830573878401337, −8.333444715988221221367529590122, −7.82904568684072569157790267318, −6.61246891754751410681127130749, −5.83756319945862398372874894721, −5.25706363320167939628122922787, −3.34814669084853667083681840853, −2.90359217461147875519540478929, −1.55559296063227462788223600377, 1.32274828871299781872996439143, 2.25280619890136800859266393044, 3.71794194310207854824879810940, 4.08203230302237966033542224585, 5.64588291446288888320048038868, 6.85714684729863027113627167539, 7.32733779685773957088343601979, 7.991449125733700015823269466319, 9.347554166000611289473096622580, 10.00239102394222759187275905225

Graph of the ZZ-function along the critical line