L(s) = 1 | + 0.490i·2-s + 3-s + 1.75·4-s + 0.490i·6-s + 3.59i·7-s + 1.84i·8-s + 9-s − 4.35i·11-s + 1.75·12-s + (2.56 − 2.53i)13-s − 1.75·14-s + 2.61·16-s + 4.13·17-s + 0.490i·18-s − 1.74i·19-s + ⋯ |
L(s) = 1 | + 0.346i·2-s + 0.577·3-s + 0.879·4-s + 0.200i·6-s + 1.35i·7-s + 0.651i·8-s + 0.333·9-s − 1.31i·11-s + 0.508·12-s + (0.712 − 0.701i)13-s − 0.470·14-s + 0.654·16-s + 1.00·17-s + 0.115i·18-s − 0.401i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.712 - 0.701i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.712 - 0.701i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.35513 + 0.965376i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.35513 + 0.965376i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (-2.56 + 2.53i)T \) |
good | 2 | \( 1 - 0.490iT - 2T^{2} \) |
| 7 | \( 1 - 3.59iT - 7T^{2} \) |
| 11 | \( 1 + 4.35iT - 11T^{2} \) |
| 17 | \( 1 - 4.13T + 17T^{2} \) |
| 19 | \( 1 + 1.74iT - 19T^{2} \) |
| 23 | \( 1 + 0.376T + 23T^{2} \) |
| 29 | \( 1 + 7.65T + 29T^{2} \) |
| 31 | \( 1 - 6.90iT - 31T^{2} \) |
| 37 | \( 1 - 4.84iT - 37T^{2} \) |
| 41 | \( 1 - 4.84iT - 41T^{2} \) |
| 43 | \( 1 + 3.24T + 43T^{2} \) |
| 47 | \( 1 - 6.13iT - 47T^{2} \) |
| 53 | \( 1 + 3.75T + 53T^{2} \) |
| 59 | \( 1 + 13.8iT - 59T^{2} \) |
| 61 | \( 1 - 8.51T + 61T^{2} \) |
| 67 | \( 1 + 1.25iT - 67T^{2} \) |
| 71 | \( 1 + 11.4iT - 71T^{2} \) |
| 73 | \( 1 - 13.5iT - 73T^{2} \) |
| 79 | \( 1 + 9.41T + 79T^{2} \) |
| 83 | \( 1 + 16.8iT - 83T^{2} \) |
| 89 | \( 1 + 2.94iT - 89T^{2} \) |
| 97 | \( 1 + 10.2iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.06719352700627594497283171481, −9.026728205487613830573878401337, −8.333444715988221221367529590122, −7.82904568684072569157790267318, −6.61246891754751410681127130749, −5.83756319945862398372874894721, −5.25706363320167939628122922787, −3.34814669084853667083681840853, −2.90359217461147875519540478929, −1.55559296063227462788223600377,
1.32274828871299781872996439143, 2.25280619890136800859266393044, 3.71794194310207854824879810940, 4.08203230302237966033542224585, 5.64588291446288888320048038868, 6.85714684729863027113627167539, 7.32733779685773957088343601979, 7.991449125733700015823269466319, 9.347554166000611289473096622580, 10.00239102394222759187275905225