Properties

Label 975.2.b.k
Level $975$
Weight $2$
Character orbit 975.b
Analytic conductor $7.785$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [975,2,Mod(376,975)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(975, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("975.376");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.559227904.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 10x^{4} + 19x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + q^{3} + (\beta_{2} - 1) q^{4} + \beta_1 q^{6} - \beta_{5} q^{7} + ( - \beta_{5} + \beta_{3} - 2 \beta_1) q^{8} + q^{9} + (\beta_{5} + \beta_{3}) q^{11} + (\beta_{2} - 1) q^{12} + (\beta_{5} + \beta_{4} - 2 \beta_1 + 1) q^{13}+ \cdots + (\beta_{5} + \beta_{3}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{3} - 8 q^{4} + 6 q^{9} - 8 q^{12} + 3 q^{13} + 8 q^{14} + 28 q^{16} - 12 q^{22} + 4 q^{23} + 26 q^{26} + 6 q^{27} + 16 q^{29} - 8 q^{36} + 36 q^{38} + 3 q^{39} + 8 q^{42} - 38 q^{43} + 28 q^{48}+ \cdots - 12 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} + 10x^{4} + 19x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{5} - 8\nu^{3} - 5\nu ) / 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{5} + 2\nu^{4} + 10\nu^{3} + 16\nu^{2} + 19\nu + 10 ) / 4 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{5} - 10\nu^{3} - 17\nu ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{5} + \beta_{3} - 6\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{5} + 2\beta_{4} - 8\beta_{2} - \beta _1 + 19 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 8\beta_{5} - 10\beta_{3} + 43\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
376.1
2.74869i
1.48478i
0.490052i
0.490052i
1.48478i
2.74869i
2.74869i 1.00000 −5.55528 0 2.74869i 2.02107i 9.77234i 1.00000 0
376.2 1.48478i 1.00000 −0.204573 0 1.48478i 0.137780i 2.66581i 1.00000 0
376.3 0.490052i 1.00000 1.75985 0 0.490052i 3.59114i 1.84252i 1.00000 0
376.4 0.490052i 1.00000 1.75985 0 0.490052i 3.59114i 1.84252i 1.00000 0
376.5 1.48478i 1.00000 −0.204573 0 1.48478i 0.137780i 2.66581i 1.00000 0
376.6 2.74869i 1.00000 −5.55528 0 2.74869i 2.02107i 9.77234i 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 376.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 975.2.b.k yes 6
5.b even 2 1 975.2.b.i 6
5.c odd 4 2 975.2.h.i 12
13.b even 2 1 inner 975.2.b.k yes 6
65.d even 2 1 975.2.b.i 6
65.h odd 4 2 975.2.h.i 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
975.2.b.i 6 5.b even 2 1
975.2.b.i 6 65.d even 2 1
975.2.b.k yes 6 1.a even 1 1 trivial
975.2.b.k yes 6 13.b even 2 1 inner
975.2.h.i 12 5.c odd 4 2
975.2.h.i 12 65.h odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(975, [\chi])\):

\( T_{2}^{6} + 10T_{2}^{4} + 19T_{2}^{2} + 4 \) Copy content Toggle raw display
\( T_{17}^{3} - 35T_{17} + 74 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + 10 T^{4} + \cdots + 4 \) Copy content Toggle raw display
$3$ \( (T - 1)^{6} \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( T^{6} + 17 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{6} + 54 T^{4} + \cdots + 36 \) Copy content Toggle raw display
$13$ \( T^{6} - 3 T^{5} + \cdots + 2197 \) Copy content Toggle raw display
$17$ \( (T^{3} - 35 T + 74)^{2} \) Copy content Toggle raw display
$19$ \( T^{6} + 71 T^{4} + \cdots + 1444 \) Copy content Toggle raw display
$23$ \( (T^{3} - 2 T^{2} - 54 T - 20)^{2} \) Copy content Toggle raw display
$29$ \( (T^{3} - 8 T^{2} + \cdots + 466)^{2} \) Copy content Toggle raw display
$31$ \( T^{6} + 109 T^{4} + \cdots + 29241 \) Copy content Toggle raw display
$37$ \( T^{6} + 52 T^{4} + \cdots + 4096 \) Copy content Toggle raw display
$41$ \( T^{6} + 52 T^{4} + \cdots + 4096 \) Copy content Toggle raw display
$43$ \( (T^{3} + 19 T^{2} + \cdots + 178)^{2} \) Copy content Toggle raw display
$47$ \( T^{6} + 234 T^{4} + \cdots + 206116 \) Copy content Toggle raw display
$53$ \( (T^{3} + 2 T^{2} - 13 T - 24)^{2} \) Copy content Toggle raw display
$59$ \( T^{6} + 314 T^{4} + \cdots + 93636 \) Copy content Toggle raw display
$61$ \( (T^{3} - 7 T^{2} + \cdots + 239)^{2} \) Copy content Toggle raw display
$67$ \( T^{6} + 45 T^{4} + \cdots + 729 \) Copy content Toggle raw display
$71$ \( T^{6} + 228 T^{4} + \cdots + 64 \) Copy content Toggle raw display
$73$ \( T^{6} + 460 T^{4} + \cdots + 577600 \) Copy content Toggle raw display
$79$ \( (T^{3} - 12 T^{2} + \cdots + 976)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + 362 T^{4} + \cdots + 427716 \) Copy content Toggle raw display
$89$ \( T^{6} + 360 T^{4} + \cdots + 186624 \) Copy content Toggle raw display
$97$ \( T^{6} + 187 T^{4} + \cdots + 29584 \) Copy content Toggle raw display
show more
show less