L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.5 + 0.866i)3-s + (0.500 + 0.866i)4-s + (0.499 + 0.866i)6-s + (1 + 1.73i)7-s + 3·8-s + (−0.499 − 0.866i)9-s + (1 − 1.73i)11-s − 12-s + (3.5 + 0.866i)13-s + 1.99·14-s + (0.500 − 0.866i)16-s + (−3.5 − 6.06i)17-s − 0.999·18-s + (3 + 5.19i)19-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (−0.288 + 0.499i)3-s + (0.250 + 0.433i)4-s + (0.204 + 0.353i)6-s + (0.377 + 0.654i)7-s + 1.06·8-s + (−0.166 − 0.288i)9-s + (0.301 − 0.522i)11-s − 0.288·12-s + (0.970 + 0.240i)13-s + 0.534·14-s + (0.125 − 0.216i)16-s + (−0.848 − 1.47i)17-s − 0.235·18-s + (0.688 + 1.19i)19-s + ⋯ |
Λ(s)=(=(975s/2ΓC(s)L(s)(0.859−0.511i)Λ(2−s)
Λ(s)=(=(975s/2ΓC(s+1/2)L(s)(0.859−0.511i)Λ(1−s)
Degree: |
2 |
Conductor: |
975
= 3⋅52⋅13
|
Sign: |
0.859−0.511i
|
Analytic conductor: |
7.78541 |
Root analytic conductor: |
2.79023 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ975(451,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 975, ( :1/2), 0.859−0.511i)
|
Particular Values
L(1) |
≈ |
2.06286+0.566944i |
L(21) |
≈ |
2.06286+0.566944i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.5−0.866i)T |
| 5 | 1 |
| 13 | 1+(−3.5−0.866i)T |
good | 2 | 1+(−0.5+0.866i)T+(−1−1.73i)T2 |
| 7 | 1+(−1−1.73i)T+(−3.5+6.06i)T2 |
| 11 | 1+(−1+1.73i)T+(−5.5−9.52i)T2 |
| 17 | 1+(3.5+6.06i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−3−5.19i)T+(−9.5+16.4i)T2 |
| 23 | 1+(3−5.19i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−0.5+0.866i)T+(−14.5−25.1i)T2 |
| 31 | 1−4T+31T2 |
| 37 | 1+(−0.5+0.866i)T+(−18.5−32.0i)T2 |
| 41 | 1+(4.5−7.79i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−3−5.19i)T+(−21.5+37.2i)T2 |
| 47 | 1+6T+47T2 |
| 53 | 1−9T+53T2 |
| 59 | 1+(−29.5+51.0i)T2 |
| 61 | 1+(0.5+0.866i)T+(−30.5+52.8i)T2 |
| 67 | 1+(1−1.73i)T+(−33.5−58.0i)T2 |
| 71 | 1+(3+5.19i)T+(−35.5+61.4i)T2 |
| 73 | 1+11T+73T2 |
| 79 | 1+4T+79T2 |
| 83 | 1−14T+83T2 |
| 89 | 1+(−7+12.1i)T+(−44.5−77.0i)T2 |
| 97 | 1+(1+1.73i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.21818677558584196905902620188, −9.353207798472219718059114735473, −8.471658067851327598948094056383, −7.68070126782303781015585045849, −6.53331360353935987321803524227, −5.61977205413655949854890441339, −4.63377611233615817552777812590, −3.70705435397126112206404499671, −2.84936832497497622174317357224, −1.52046856734953241814898679373,
1.04866736705705732431020383137, 2.16939868031340990616177510771, 3.97849771921763688101968870004, 4.76306152758463431978843986820, 5.81267216774949321709633951043, 6.57136884557580550893840586768, 7.11476239730583052951184189369, 8.073787969366282799835236718343, 8.878815298447009765257447612629, 10.28747122814160851206407319985