Properties

Label 975.2.i.f.451.1
Level $975$
Weight $2$
Character 975.451
Analytic conductor $7.785$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [975,2,Mod(451,975)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(975, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("975.451");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 39)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 451.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 975.451
Dual form 975.2.i.f.601.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{3} +(0.500000 + 0.866025i) q^{4} +(0.500000 + 0.866025i) q^{6} +(1.00000 + 1.73205i) q^{7} +3.00000 q^{8} +(-0.500000 - 0.866025i) q^{9} +(1.00000 - 1.73205i) q^{11} -1.00000 q^{12} +(3.50000 + 0.866025i) q^{13} +2.00000 q^{14} +(0.500000 - 0.866025i) q^{16} +(-3.50000 - 6.06218i) q^{17} -1.00000 q^{18} +(3.00000 + 5.19615i) q^{19} -2.00000 q^{21} +(-1.00000 - 1.73205i) q^{22} +(-3.00000 + 5.19615i) q^{23} +(-1.50000 + 2.59808i) q^{24} +(2.50000 - 2.59808i) q^{26} +1.00000 q^{27} +(-1.00000 + 1.73205i) q^{28} +(0.500000 - 0.866025i) q^{29} +4.00000 q^{31} +(2.50000 + 4.33013i) q^{32} +(1.00000 + 1.73205i) q^{33} -7.00000 q^{34} +(0.500000 - 0.866025i) q^{36} +(0.500000 - 0.866025i) q^{37} +6.00000 q^{38} +(-2.50000 + 2.59808i) q^{39} +(-4.50000 + 7.79423i) q^{41} +(-1.00000 + 1.73205i) q^{42} +(3.00000 + 5.19615i) q^{43} +2.00000 q^{44} +(3.00000 + 5.19615i) q^{46} -6.00000 q^{47} +(0.500000 + 0.866025i) q^{48} +(1.50000 - 2.59808i) q^{49} +7.00000 q^{51} +(1.00000 + 3.46410i) q^{52} +9.00000 q^{53} +(0.500000 - 0.866025i) q^{54} +(3.00000 + 5.19615i) q^{56} -6.00000 q^{57} +(-0.500000 - 0.866025i) q^{58} +(-0.500000 - 0.866025i) q^{61} +(2.00000 - 3.46410i) q^{62} +(1.00000 - 1.73205i) q^{63} +7.00000 q^{64} +2.00000 q^{66} +(-1.00000 + 1.73205i) q^{67} +(3.50000 - 6.06218i) q^{68} +(-3.00000 - 5.19615i) q^{69} +(-3.00000 - 5.19615i) q^{71} +(-1.50000 - 2.59808i) q^{72} -11.0000 q^{73} +(-0.500000 - 0.866025i) q^{74} +(-3.00000 + 5.19615i) q^{76} +4.00000 q^{77} +(1.00000 + 3.46410i) q^{78} -4.00000 q^{79} +(-0.500000 + 0.866025i) q^{81} +(4.50000 + 7.79423i) q^{82} +14.0000 q^{83} +(-1.00000 - 1.73205i) q^{84} +6.00000 q^{86} +(0.500000 + 0.866025i) q^{87} +(3.00000 - 5.19615i) q^{88} +(7.00000 - 12.1244i) q^{89} +(2.00000 + 6.92820i) q^{91} -6.00000 q^{92} +(-2.00000 + 3.46410i) q^{93} +(-3.00000 + 5.19615i) q^{94} -5.00000 q^{96} +(-1.00000 - 1.73205i) q^{97} +(-1.50000 - 2.59808i) q^{98} -2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - q^{3} + q^{4} + q^{6} + 2 q^{7} + 6 q^{8} - q^{9} + 2 q^{11} - 2 q^{12} + 7 q^{13} + 4 q^{14} + q^{16} - 7 q^{17} - 2 q^{18} + 6 q^{19} - 4 q^{21} - 2 q^{22} - 6 q^{23} - 3 q^{24} + 5 q^{26}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i −0.633316 0.773893i \(-0.718307\pi\)
0.986869 + 0.161521i \(0.0516399\pi\)
\(3\) −0.500000 + 0.866025i −0.288675 + 0.500000i
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 0 0
\(6\) 0.500000 + 0.866025i 0.204124 + 0.353553i
\(7\) 1.00000 + 1.73205i 0.377964 + 0.654654i 0.990766 0.135583i \(-0.0432908\pi\)
−0.612801 + 0.790237i \(0.709957\pi\)
\(8\) 3.00000 1.06066
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0 0
\(11\) 1.00000 1.73205i 0.301511 0.522233i −0.674967 0.737848i \(-0.735842\pi\)
0.976478 + 0.215615i \(0.0691756\pi\)
\(12\) −1.00000 −0.288675
\(13\) 3.50000 + 0.866025i 0.970725 + 0.240192i
\(14\) 2.00000 0.534522
\(15\) 0 0
\(16\) 0.500000 0.866025i 0.125000 0.216506i
\(17\) −3.50000 6.06218i −0.848875 1.47029i −0.882213 0.470850i \(-0.843947\pi\)
0.0333386 0.999444i \(-0.489386\pi\)
\(18\) −1.00000 −0.235702
\(19\) 3.00000 + 5.19615i 0.688247 + 1.19208i 0.972404 + 0.233301i \(0.0749529\pi\)
−0.284157 + 0.958778i \(0.591714\pi\)
\(20\) 0 0
\(21\) −2.00000 −0.436436
\(22\) −1.00000 1.73205i −0.213201 0.369274i
\(23\) −3.00000 + 5.19615i −0.625543 + 1.08347i 0.362892 + 0.931831i \(0.381789\pi\)
−0.988436 + 0.151642i \(0.951544\pi\)
\(24\) −1.50000 + 2.59808i −0.306186 + 0.530330i
\(25\) 0 0
\(26\) 2.50000 2.59808i 0.490290 0.509525i
\(27\) 1.00000 0.192450
\(28\) −1.00000 + 1.73205i −0.188982 + 0.327327i
\(29\) 0.500000 0.866025i 0.0928477 0.160817i −0.815861 0.578249i \(-0.803736\pi\)
0.908708 + 0.417432i \(0.137070\pi\)
\(30\) 0 0
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 2.50000 + 4.33013i 0.441942 + 0.765466i
\(33\) 1.00000 + 1.73205i 0.174078 + 0.301511i
\(34\) −7.00000 −1.20049
\(35\) 0 0
\(36\) 0.500000 0.866025i 0.0833333 0.144338i
\(37\) 0.500000 0.866025i 0.0821995 0.142374i −0.821995 0.569495i \(-0.807139\pi\)
0.904194 + 0.427121i \(0.140472\pi\)
\(38\) 6.00000 0.973329
\(39\) −2.50000 + 2.59808i −0.400320 + 0.416025i
\(40\) 0 0
\(41\) −4.50000 + 7.79423i −0.702782 + 1.21725i 0.264704 + 0.964330i \(0.414726\pi\)
−0.967486 + 0.252924i \(0.918608\pi\)
\(42\) −1.00000 + 1.73205i −0.154303 + 0.267261i
\(43\) 3.00000 + 5.19615i 0.457496 + 0.792406i 0.998828 0.0484030i \(-0.0154132\pi\)
−0.541332 + 0.840809i \(0.682080\pi\)
\(44\) 2.00000 0.301511
\(45\) 0 0
\(46\) 3.00000 + 5.19615i 0.442326 + 0.766131i
\(47\) −6.00000 −0.875190 −0.437595 0.899172i \(-0.644170\pi\)
−0.437595 + 0.899172i \(0.644170\pi\)
\(48\) 0.500000 + 0.866025i 0.0721688 + 0.125000i
\(49\) 1.50000 2.59808i 0.214286 0.371154i
\(50\) 0 0
\(51\) 7.00000 0.980196
\(52\) 1.00000 + 3.46410i 0.138675 + 0.480384i
\(53\) 9.00000 1.23625 0.618123 0.786082i \(-0.287894\pi\)
0.618123 + 0.786082i \(0.287894\pi\)
\(54\) 0.500000 0.866025i 0.0680414 0.117851i
\(55\) 0 0
\(56\) 3.00000 + 5.19615i 0.400892 + 0.694365i
\(57\) −6.00000 −0.794719
\(58\) −0.500000 0.866025i −0.0656532 0.113715i
\(59\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(60\) 0 0
\(61\) −0.500000 0.866025i −0.0640184 0.110883i 0.832240 0.554416i \(-0.187058\pi\)
−0.896258 + 0.443533i \(0.853725\pi\)
\(62\) 2.00000 3.46410i 0.254000 0.439941i
\(63\) 1.00000 1.73205i 0.125988 0.218218i
\(64\) 7.00000 0.875000
\(65\) 0 0
\(66\) 2.00000 0.246183
\(67\) −1.00000 + 1.73205i −0.122169 + 0.211604i −0.920623 0.390453i \(-0.872318\pi\)
0.798454 + 0.602056i \(0.205652\pi\)
\(68\) 3.50000 6.06218i 0.424437 0.735147i
\(69\) −3.00000 5.19615i −0.361158 0.625543i
\(70\) 0 0
\(71\) −3.00000 5.19615i −0.356034 0.616670i 0.631260 0.775571i \(-0.282538\pi\)
−0.987294 + 0.158901i \(0.949205\pi\)
\(72\) −1.50000 2.59808i −0.176777 0.306186i
\(73\) −11.0000 −1.28745 −0.643726 0.765256i \(-0.722612\pi\)
−0.643726 + 0.765256i \(0.722612\pi\)
\(74\) −0.500000 0.866025i −0.0581238 0.100673i
\(75\) 0 0
\(76\) −3.00000 + 5.19615i −0.344124 + 0.596040i
\(77\) 4.00000 0.455842
\(78\) 1.00000 + 3.46410i 0.113228 + 0.392232i
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 4.50000 + 7.79423i 0.496942 + 0.860729i
\(83\) 14.0000 1.53670 0.768350 0.640030i \(-0.221078\pi\)
0.768350 + 0.640030i \(0.221078\pi\)
\(84\) −1.00000 1.73205i −0.109109 0.188982i
\(85\) 0 0
\(86\) 6.00000 0.646997
\(87\) 0.500000 + 0.866025i 0.0536056 + 0.0928477i
\(88\) 3.00000 5.19615i 0.319801 0.553912i
\(89\) 7.00000 12.1244i 0.741999 1.28518i −0.209585 0.977790i \(-0.567211\pi\)
0.951584 0.307389i \(-0.0994552\pi\)
\(90\) 0 0
\(91\) 2.00000 + 6.92820i 0.209657 + 0.726273i
\(92\) −6.00000 −0.625543
\(93\) −2.00000 + 3.46410i −0.207390 + 0.359211i
\(94\) −3.00000 + 5.19615i −0.309426 + 0.535942i
\(95\) 0 0
\(96\) −5.00000 −0.510310
\(97\) −1.00000 1.73205i −0.101535 0.175863i 0.810782 0.585348i \(-0.199042\pi\)
−0.912317 + 0.409484i \(0.865709\pi\)
\(98\) −1.50000 2.59808i −0.151523 0.262445i
\(99\) −2.00000 −0.201008
\(100\) 0 0
\(101\) −1.50000 + 2.59808i −0.149256 + 0.258518i −0.930953 0.365140i \(-0.881021\pi\)
0.781697 + 0.623658i \(0.214354\pi\)
\(102\) 3.50000 6.06218i 0.346552 0.600245i
\(103\) −6.00000 −0.591198 −0.295599 0.955312i \(-0.595519\pi\)
−0.295599 + 0.955312i \(0.595519\pi\)
\(104\) 10.5000 + 2.59808i 1.02961 + 0.254762i
\(105\) 0 0
\(106\) 4.50000 7.79423i 0.437079 0.757042i
\(107\) −3.00000 + 5.19615i −0.290021 + 0.502331i −0.973814 0.227345i \(-0.926996\pi\)
0.683793 + 0.729676i \(0.260329\pi\)
\(108\) 0.500000 + 0.866025i 0.0481125 + 0.0833333i
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) 0 0
\(111\) 0.500000 + 0.866025i 0.0474579 + 0.0821995i
\(112\) 2.00000 0.188982
\(113\) −7.50000 12.9904i −0.705541 1.22203i −0.966496 0.256681i \(-0.917371\pi\)
0.260955 0.965351i \(-0.415962\pi\)
\(114\) −3.00000 + 5.19615i −0.280976 + 0.486664i
\(115\) 0 0
\(116\) 1.00000 0.0928477
\(117\) −1.00000 3.46410i −0.0924500 0.320256i
\(118\) 0 0
\(119\) 7.00000 12.1244i 0.641689 1.11144i
\(120\) 0 0
\(121\) 3.50000 + 6.06218i 0.318182 + 0.551107i
\(122\) −1.00000 −0.0905357
\(123\) −4.50000 7.79423i −0.405751 0.702782i
\(124\) 2.00000 + 3.46410i 0.179605 + 0.311086i
\(125\) 0 0
\(126\) −1.00000 1.73205i −0.0890871 0.154303i
\(127\) 10.0000 17.3205i 0.887357 1.53695i 0.0443678 0.999015i \(-0.485873\pi\)
0.842989 0.537931i \(-0.180794\pi\)
\(128\) −1.50000 + 2.59808i −0.132583 + 0.229640i
\(129\) −6.00000 −0.528271
\(130\) 0 0
\(131\) −8.00000 −0.698963 −0.349482 0.936943i \(-0.613642\pi\)
−0.349482 + 0.936943i \(0.613642\pi\)
\(132\) −1.00000 + 1.73205i −0.0870388 + 0.150756i
\(133\) −6.00000 + 10.3923i −0.520266 + 0.901127i
\(134\) 1.00000 + 1.73205i 0.0863868 + 0.149626i
\(135\) 0 0
\(136\) −10.5000 18.1865i −0.900368 1.55948i
\(137\) −1.50000 2.59808i −0.128154 0.221969i 0.794808 0.606861i \(-0.207572\pi\)
−0.922961 + 0.384893i \(0.874238\pi\)
\(138\) −6.00000 −0.510754
\(139\) −6.00000 10.3923i −0.508913 0.881464i −0.999947 0.0103230i \(-0.996714\pi\)
0.491033 0.871141i \(-0.336619\pi\)
\(140\) 0 0
\(141\) 3.00000 5.19615i 0.252646 0.437595i
\(142\) −6.00000 −0.503509
\(143\) 5.00000 5.19615i 0.418121 0.434524i
\(144\) −1.00000 −0.0833333
\(145\) 0 0
\(146\) −5.50000 + 9.52628i −0.455183 + 0.788400i
\(147\) 1.50000 + 2.59808i 0.123718 + 0.214286i
\(148\) 1.00000 0.0821995
\(149\) −1.50000 2.59808i −0.122885 0.212843i 0.798019 0.602632i \(-0.205881\pi\)
−0.920904 + 0.389789i \(0.872548\pi\)
\(150\) 0 0
\(151\) −2.00000 −0.162758 −0.0813788 0.996683i \(-0.525932\pi\)
−0.0813788 + 0.996683i \(0.525932\pi\)
\(152\) 9.00000 + 15.5885i 0.729996 + 1.26439i
\(153\) −3.50000 + 6.06218i −0.282958 + 0.490098i
\(154\) 2.00000 3.46410i 0.161165 0.279145i
\(155\) 0 0
\(156\) −3.50000 0.866025i −0.280224 0.0693375i
\(157\) 3.00000 0.239426 0.119713 0.992809i \(-0.461803\pi\)
0.119713 + 0.992809i \(0.461803\pi\)
\(158\) −2.00000 + 3.46410i −0.159111 + 0.275589i
\(159\) −4.50000 + 7.79423i −0.356873 + 0.618123i
\(160\) 0 0
\(161\) −12.0000 −0.945732
\(162\) 0.500000 + 0.866025i 0.0392837 + 0.0680414i
\(163\) −2.00000 3.46410i −0.156652 0.271329i 0.777007 0.629492i \(-0.216737\pi\)
−0.933659 + 0.358162i \(0.883403\pi\)
\(164\) −9.00000 −0.702782
\(165\) 0 0
\(166\) 7.00000 12.1244i 0.543305 0.941033i
\(167\) 8.00000 13.8564i 0.619059 1.07224i −0.370599 0.928793i \(-0.620848\pi\)
0.989658 0.143448i \(-0.0458190\pi\)
\(168\) −6.00000 −0.462910
\(169\) 11.5000 + 6.06218i 0.884615 + 0.466321i
\(170\) 0 0
\(171\) 3.00000 5.19615i 0.229416 0.397360i
\(172\) −3.00000 + 5.19615i −0.228748 + 0.396203i
\(173\) −3.00000 5.19615i −0.228086 0.395056i 0.729155 0.684349i \(-0.239913\pi\)
−0.957241 + 0.289292i \(0.906580\pi\)
\(174\) 1.00000 0.0758098
\(175\) 0 0
\(176\) −1.00000 1.73205i −0.0753778 0.130558i
\(177\) 0 0
\(178\) −7.00000 12.1244i −0.524672 0.908759i
\(179\) 1.00000 1.73205i 0.0747435 0.129460i −0.826231 0.563331i \(-0.809520\pi\)
0.900975 + 0.433872i \(0.142853\pi\)
\(180\) 0 0
\(181\) −7.00000 −0.520306 −0.260153 0.965567i \(-0.583773\pi\)
−0.260153 + 0.965567i \(0.583773\pi\)
\(182\) 7.00000 + 1.73205i 0.518875 + 0.128388i
\(183\) 1.00000 0.0739221
\(184\) −9.00000 + 15.5885i −0.663489 + 1.14920i
\(185\) 0 0
\(186\) 2.00000 + 3.46410i 0.146647 + 0.254000i
\(187\) −14.0000 −1.02378
\(188\) −3.00000 5.19615i −0.218797 0.378968i
\(189\) 1.00000 + 1.73205i 0.0727393 + 0.125988i
\(190\) 0 0
\(191\) 2.00000 + 3.46410i 0.144715 + 0.250654i 0.929267 0.369410i \(-0.120440\pi\)
−0.784552 + 0.620063i \(0.787107\pi\)
\(192\) −3.50000 + 6.06218i −0.252591 + 0.437500i
\(193\) −4.50000 + 7.79423i −0.323917 + 0.561041i −0.981293 0.192522i \(-0.938333\pi\)
0.657376 + 0.753563i \(0.271667\pi\)
\(194\) −2.00000 −0.143592
\(195\) 0 0
\(196\) 3.00000 0.214286
\(197\) 3.00000 5.19615i 0.213741 0.370211i −0.739141 0.673550i \(-0.764768\pi\)
0.952882 + 0.303340i \(0.0981018\pi\)
\(198\) −1.00000 + 1.73205i −0.0710669 + 0.123091i
\(199\) −7.00000 12.1244i −0.496217 0.859473i 0.503774 0.863836i \(-0.331945\pi\)
−0.999990 + 0.00436292i \(0.998611\pi\)
\(200\) 0 0
\(201\) −1.00000 1.73205i −0.0705346 0.122169i
\(202\) 1.50000 + 2.59808i 0.105540 + 0.182800i
\(203\) 2.00000 0.140372
\(204\) 3.50000 + 6.06218i 0.245049 + 0.424437i
\(205\) 0 0
\(206\) −3.00000 + 5.19615i −0.209020 + 0.362033i
\(207\) 6.00000 0.417029
\(208\) 2.50000 2.59808i 0.173344 0.180144i
\(209\) 12.0000 0.830057
\(210\) 0 0
\(211\) 4.00000 6.92820i 0.275371 0.476957i −0.694857 0.719148i \(-0.744533\pi\)
0.970229 + 0.242190i \(0.0778659\pi\)
\(212\) 4.50000 + 7.79423i 0.309061 + 0.535310i
\(213\) 6.00000 0.411113
\(214\) 3.00000 + 5.19615i 0.205076 + 0.355202i
\(215\) 0 0
\(216\) 3.00000 0.204124
\(217\) 4.00000 + 6.92820i 0.271538 + 0.470317i
\(218\) −1.00000 + 1.73205i −0.0677285 + 0.117309i
\(219\) 5.50000 9.52628i 0.371656 0.643726i
\(220\) 0 0
\(221\) −7.00000 24.2487i −0.470871 1.63114i
\(222\) 1.00000 0.0671156
\(223\) 8.00000 13.8564i 0.535720 0.927894i −0.463409 0.886145i \(-0.653374\pi\)
0.999128 0.0417488i \(-0.0132929\pi\)
\(224\) −5.00000 + 8.66025i −0.334077 + 0.578638i
\(225\) 0 0
\(226\) −15.0000 −0.997785
\(227\) −7.00000 12.1244i −0.464606 0.804722i 0.534577 0.845120i \(-0.320471\pi\)
−0.999184 + 0.0403978i \(0.987137\pi\)
\(228\) −3.00000 5.19615i −0.198680 0.344124i
\(229\) −22.0000 −1.45380 −0.726900 0.686743i \(-0.759040\pi\)
−0.726900 + 0.686743i \(0.759040\pi\)
\(230\) 0 0
\(231\) −2.00000 + 3.46410i −0.131590 + 0.227921i
\(232\) 1.50000 2.59808i 0.0984798 0.170572i
\(233\) −10.0000 −0.655122 −0.327561 0.944830i \(-0.606227\pi\)
−0.327561 + 0.944830i \(0.606227\pi\)
\(234\) −3.50000 0.866025i −0.228802 0.0566139i
\(235\) 0 0
\(236\) 0 0
\(237\) 2.00000 3.46410i 0.129914 0.225018i
\(238\) −7.00000 12.1244i −0.453743 0.785905i
\(239\) 30.0000 1.94054 0.970269 0.242028i \(-0.0778125\pi\)
0.970269 + 0.242028i \(0.0778125\pi\)
\(240\) 0 0
\(241\) −3.50000 6.06218i −0.225455 0.390499i 0.731001 0.682376i \(-0.239053\pi\)
−0.956456 + 0.291877i \(0.905720\pi\)
\(242\) 7.00000 0.449977
\(243\) −0.500000 0.866025i −0.0320750 0.0555556i
\(244\) 0.500000 0.866025i 0.0320092 0.0554416i
\(245\) 0 0
\(246\) −9.00000 −0.573819
\(247\) 6.00000 + 20.7846i 0.381771 + 1.32249i
\(248\) 12.0000 0.762001
\(249\) −7.00000 + 12.1244i −0.443607 + 0.768350i
\(250\) 0 0
\(251\) −6.00000 10.3923i −0.378717 0.655956i 0.612159 0.790735i \(-0.290301\pi\)
−0.990876 + 0.134778i \(0.956968\pi\)
\(252\) 2.00000 0.125988
\(253\) 6.00000 + 10.3923i 0.377217 + 0.653359i
\(254\) −10.0000 17.3205i −0.627456 1.08679i
\(255\) 0 0
\(256\) 8.50000 + 14.7224i 0.531250 + 0.920152i
\(257\) −3.50000 + 6.06218i −0.218324 + 0.378148i −0.954296 0.298864i \(-0.903392\pi\)
0.735972 + 0.677012i \(0.236726\pi\)
\(258\) −3.00000 + 5.19615i −0.186772 + 0.323498i
\(259\) 2.00000 0.124274
\(260\) 0 0
\(261\) −1.00000 −0.0618984
\(262\) −4.00000 + 6.92820i −0.247121 + 0.428026i
\(263\) −15.0000 + 25.9808i −0.924940 + 1.60204i −0.133281 + 0.991078i \(0.542551\pi\)
−0.791658 + 0.610964i \(0.790782\pi\)
\(264\) 3.00000 + 5.19615i 0.184637 + 0.319801i
\(265\) 0 0
\(266\) 6.00000 + 10.3923i 0.367884 + 0.637193i
\(267\) 7.00000 + 12.1244i 0.428393 + 0.741999i
\(268\) −2.00000 −0.122169
\(269\) 7.00000 + 12.1244i 0.426798 + 0.739235i 0.996586 0.0825561i \(-0.0263084\pi\)
−0.569789 + 0.821791i \(0.692975\pi\)
\(270\) 0 0
\(271\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(272\) −7.00000 −0.424437
\(273\) −7.00000 1.73205i −0.423659 0.104828i
\(274\) −3.00000 −0.181237
\(275\) 0 0
\(276\) 3.00000 5.19615i 0.180579 0.312772i
\(277\) −15.5000 26.8468i −0.931305 1.61307i −0.781094 0.624413i \(-0.785338\pi\)
−0.150210 0.988654i \(-0.547995\pi\)
\(278\) −12.0000 −0.719712
\(279\) −2.00000 3.46410i −0.119737 0.207390i
\(280\) 0 0
\(281\) −19.0000 −1.13344 −0.566722 0.823909i \(-0.691789\pi\)
−0.566722 + 0.823909i \(0.691789\pi\)
\(282\) −3.00000 5.19615i −0.178647 0.309426i
\(283\) −9.00000 + 15.5885i −0.534994 + 0.926638i 0.464169 + 0.885747i \(0.346353\pi\)
−0.999164 + 0.0408910i \(0.986980\pi\)
\(284\) 3.00000 5.19615i 0.178017 0.308335i
\(285\) 0 0
\(286\) −2.00000 6.92820i −0.118262 0.409673i
\(287\) −18.0000 −1.06251
\(288\) 2.50000 4.33013i 0.147314 0.255155i
\(289\) −16.0000 + 27.7128i −0.941176 + 1.63017i
\(290\) 0 0
\(291\) 2.00000 0.117242
\(292\) −5.50000 9.52628i −0.321863 0.557483i
\(293\) −4.50000 7.79423i −0.262893 0.455344i 0.704117 0.710084i \(-0.251343\pi\)
−0.967009 + 0.254741i \(0.918010\pi\)
\(294\) 3.00000 0.174964
\(295\) 0 0
\(296\) 1.50000 2.59808i 0.0871857 0.151010i
\(297\) 1.00000 1.73205i 0.0580259 0.100504i
\(298\) −3.00000 −0.173785
\(299\) −15.0000 + 15.5885i −0.867472 + 0.901504i
\(300\) 0 0
\(301\) −6.00000 + 10.3923i −0.345834 + 0.599002i
\(302\) −1.00000 + 1.73205i −0.0575435 + 0.0996683i
\(303\) −1.50000 2.59808i −0.0861727 0.149256i
\(304\) 6.00000 0.344124
\(305\) 0 0
\(306\) 3.50000 + 6.06218i 0.200082 + 0.346552i
\(307\) −14.0000 −0.799022 −0.399511 0.916728i \(-0.630820\pi\)
−0.399511 + 0.916728i \(0.630820\pi\)
\(308\) 2.00000 + 3.46410i 0.113961 + 0.197386i
\(309\) 3.00000 5.19615i 0.170664 0.295599i
\(310\) 0 0
\(311\) 18.0000 1.02069 0.510343 0.859971i \(-0.329518\pi\)
0.510343 + 0.859971i \(0.329518\pi\)
\(312\) −7.50000 + 7.79423i −0.424604 + 0.441261i
\(313\) −6.00000 −0.339140 −0.169570 0.985518i \(-0.554238\pi\)
−0.169570 + 0.985518i \(0.554238\pi\)
\(314\) 1.50000 2.59808i 0.0846499 0.146618i
\(315\) 0 0
\(316\) −2.00000 3.46410i −0.112509 0.194871i
\(317\) 25.0000 1.40414 0.702070 0.712108i \(-0.252259\pi\)
0.702070 + 0.712108i \(0.252259\pi\)
\(318\) 4.50000 + 7.79423i 0.252347 + 0.437079i
\(319\) −1.00000 1.73205i −0.0559893 0.0969762i
\(320\) 0 0
\(321\) −3.00000 5.19615i −0.167444 0.290021i
\(322\) −6.00000 + 10.3923i −0.334367 + 0.579141i
\(323\) 21.0000 36.3731i 1.16847 2.02385i
\(324\) −1.00000 −0.0555556
\(325\) 0 0
\(326\) −4.00000 −0.221540
\(327\) 1.00000 1.73205i 0.0553001 0.0957826i
\(328\) −13.5000 + 23.3827i −0.745413 + 1.29109i
\(329\) −6.00000 10.3923i −0.330791 0.572946i
\(330\) 0 0
\(331\) 2.00000 + 3.46410i 0.109930 + 0.190404i 0.915742 0.401768i \(-0.131604\pi\)
−0.805812 + 0.592172i \(0.798271\pi\)
\(332\) 7.00000 + 12.1244i 0.384175 + 0.665410i
\(333\) −1.00000 −0.0547997
\(334\) −8.00000 13.8564i −0.437741 0.758189i
\(335\) 0 0
\(336\) −1.00000 + 1.73205i −0.0545545 + 0.0944911i
\(337\) 33.0000 1.79762 0.898812 0.438334i \(-0.144431\pi\)
0.898812 + 0.438334i \(0.144431\pi\)
\(338\) 11.0000 6.92820i 0.598321 0.376845i
\(339\) 15.0000 0.814688
\(340\) 0 0
\(341\) 4.00000 6.92820i 0.216612 0.375183i
\(342\) −3.00000 5.19615i −0.162221 0.280976i
\(343\) 20.0000 1.07990
\(344\) 9.00000 + 15.5885i 0.485247 + 0.840473i
\(345\) 0 0
\(346\) −6.00000 −0.322562
\(347\) 9.00000 + 15.5885i 0.483145 + 0.836832i 0.999813 0.0193540i \(-0.00616095\pi\)
−0.516667 + 0.856186i \(0.672828\pi\)
\(348\) −0.500000 + 0.866025i −0.0268028 + 0.0464238i
\(349\) 13.0000 22.5167i 0.695874 1.20529i −0.274011 0.961727i \(-0.588351\pi\)
0.969885 0.243563i \(-0.0783162\pi\)
\(350\) 0 0
\(351\) 3.50000 + 0.866025i 0.186816 + 0.0462250i
\(352\) 10.0000 0.533002
\(353\) −5.50000 + 9.52628i −0.292735 + 0.507033i −0.974456 0.224580i \(-0.927899\pi\)
0.681720 + 0.731613i \(0.261232\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 14.0000 0.741999
\(357\) 7.00000 + 12.1244i 0.370479 + 0.641689i
\(358\) −1.00000 1.73205i −0.0528516 0.0915417i
\(359\) −18.0000 −0.950004 −0.475002 0.879985i \(-0.657553\pi\)
−0.475002 + 0.879985i \(0.657553\pi\)
\(360\) 0 0
\(361\) −8.50000 + 14.7224i −0.447368 + 0.774865i
\(362\) −3.50000 + 6.06218i −0.183956 + 0.318621i
\(363\) −7.00000 −0.367405
\(364\) −5.00000 + 5.19615i −0.262071 + 0.272352i
\(365\) 0 0
\(366\) 0.500000 0.866025i 0.0261354 0.0452679i
\(367\) 5.00000 8.66025i 0.260998 0.452062i −0.705509 0.708700i \(-0.749282\pi\)
0.966507 + 0.256639i \(0.0826151\pi\)
\(368\) 3.00000 + 5.19615i 0.156386 + 0.270868i
\(369\) 9.00000 0.468521
\(370\) 0 0
\(371\) 9.00000 + 15.5885i 0.467257 + 0.809312i
\(372\) −4.00000 −0.207390
\(373\) −5.50000 9.52628i −0.284779 0.493252i 0.687776 0.725923i \(-0.258587\pi\)
−0.972556 + 0.232671i \(0.925254\pi\)
\(374\) −7.00000 + 12.1244i −0.361961 + 0.626936i
\(375\) 0 0
\(376\) −18.0000 −0.928279
\(377\) 2.50000 2.59808i 0.128757 0.133808i
\(378\) 2.00000 0.102869
\(379\) 18.0000 31.1769i 0.924598 1.60145i 0.132391 0.991198i \(-0.457734\pi\)
0.792207 0.610253i \(-0.208932\pi\)
\(380\) 0 0
\(381\) 10.0000 + 17.3205i 0.512316 + 0.887357i
\(382\) 4.00000 0.204658
\(383\) 4.00000 + 6.92820i 0.204390 + 0.354015i 0.949938 0.312437i \(-0.101145\pi\)
−0.745548 + 0.666452i \(0.767812\pi\)
\(384\) −1.50000 2.59808i −0.0765466 0.132583i
\(385\) 0 0
\(386\) 4.50000 + 7.79423i 0.229044 + 0.396716i
\(387\) 3.00000 5.19615i 0.152499 0.264135i
\(388\) 1.00000 1.73205i 0.0507673 0.0879316i
\(389\) 19.0000 0.963338 0.481669 0.876353i \(-0.340031\pi\)
0.481669 + 0.876353i \(0.340031\pi\)
\(390\) 0 0
\(391\) 42.0000 2.12403
\(392\) 4.50000 7.79423i 0.227284 0.393668i
\(393\) 4.00000 6.92820i 0.201773 0.349482i
\(394\) −3.00000 5.19615i −0.151138 0.261778i
\(395\) 0 0
\(396\) −1.00000 1.73205i −0.0502519 0.0870388i
\(397\) −17.0000 29.4449i −0.853206 1.47780i −0.878300 0.478110i \(-0.841322\pi\)
0.0250943 0.999685i \(-0.492011\pi\)
\(398\) −14.0000 −0.701757
\(399\) −6.00000 10.3923i −0.300376 0.520266i
\(400\) 0 0
\(401\) −0.500000 + 0.866025i −0.0249688 + 0.0432472i −0.878240 0.478220i \(-0.841282\pi\)
0.853271 + 0.521468i \(0.174615\pi\)
\(402\) −2.00000 −0.0997509
\(403\) 14.0000 + 3.46410i 0.697390 + 0.172559i
\(404\) −3.00000 −0.149256
\(405\) 0 0
\(406\) 1.00000 1.73205i 0.0496292 0.0859602i
\(407\) −1.00000 1.73205i −0.0495682 0.0858546i
\(408\) 21.0000 1.03965
\(409\) −3.50000 6.06218i −0.173064 0.299755i 0.766426 0.642333i \(-0.222033\pi\)
−0.939490 + 0.342578i \(0.888700\pi\)
\(410\) 0 0
\(411\) 3.00000 0.147979
\(412\) −3.00000 5.19615i −0.147799 0.255996i
\(413\) 0 0
\(414\) 3.00000 5.19615i 0.147442 0.255377i
\(415\) 0 0
\(416\) 5.00000 + 17.3205i 0.245145 + 0.849208i
\(417\) 12.0000 0.587643
\(418\) 6.00000 10.3923i 0.293470 0.508304i
\(419\) −8.00000 + 13.8564i −0.390826 + 0.676930i −0.992559 0.121768i \(-0.961144\pi\)
0.601733 + 0.798697i \(0.294477\pi\)
\(420\) 0 0
\(421\) −19.0000 −0.926003 −0.463002 0.886357i \(-0.653228\pi\)
−0.463002 + 0.886357i \(0.653228\pi\)
\(422\) −4.00000 6.92820i −0.194717 0.337260i
\(423\) 3.00000 + 5.19615i 0.145865 + 0.252646i
\(424\) 27.0000 1.31124
\(425\) 0 0
\(426\) 3.00000 5.19615i 0.145350 0.251754i
\(427\) 1.00000 1.73205i 0.0483934 0.0838198i
\(428\) −6.00000 −0.290021
\(429\) 2.00000 + 6.92820i 0.0965609 + 0.334497i
\(430\) 0 0
\(431\) 15.0000 25.9808i 0.722525 1.25145i −0.237460 0.971397i \(-0.576315\pi\)
0.959985 0.280052i \(-0.0903517\pi\)
\(432\) 0.500000 0.866025i 0.0240563 0.0416667i
\(433\) 9.50000 + 16.4545i 0.456541 + 0.790752i 0.998775 0.0494752i \(-0.0157549\pi\)
−0.542234 + 0.840227i \(0.682422\pi\)
\(434\) 8.00000 0.384012
\(435\) 0 0
\(436\) −1.00000 1.73205i −0.0478913 0.0829502i
\(437\) −36.0000 −1.72211
\(438\) −5.50000 9.52628i −0.262800 0.455183i
\(439\) −7.00000 + 12.1244i −0.334092 + 0.578664i −0.983310 0.181938i \(-0.941763\pi\)
0.649218 + 0.760602i \(0.275096\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) −24.5000 6.06218i −1.16535 0.288348i
\(443\) 4.00000 0.190046 0.0950229 0.995475i \(-0.469708\pi\)
0.0950229 + 0.995475i \(0.469708\pi\)
\(444\) −0.500000 + 0.866025i −0.0237289 + 0.0410997i
\(445\) 0 0
\(446\) −8.00000 13.8564i −0.378811 0.656120i
\(447\) 3.00000 0.141895
\(448\) 7.00000 + 12.1244i 0.330719 + 0.572822i
\(449\) −17.0000 29.4449i −0.802280 1.38959i −0.918112 0.396320i \(-0.870287\pi\)
0.115833 0.993269i \(-0.463046\pi\)
\(450\) 0 0
\(451\) 9.00000 + 15.5885i 0.423793 + 0.734032i
\(452\) 7.50000 12.9904i 0.352770 0.611016i
\(453\) 1.00000 1.73205i 0.0469841 0.0813788i
\(454\) −14.0000 −0.657053
\(455\) 0 0
\(456\) −18.0000 −0.842927
\(457\) −6.50000 + 11.2583i −0.304057 + 0.526642i −0.977051 0.213006i \(-0.931675\pi\)
0.672994 + 0.739648i \(0.265008\pi\)
\(458\) −11.0000 + 19.0526i −0.513996 + 0.890268i
\(459\) −3.50000 6.06218i −0.163366 0.282958i
\(460\) 0 0
\(461\) −9.50000 16.4545i −0.442459 0.766362i 0.555412 0.831575i \(-0.312560\pi\)
−0.997871 + 0.0652135i \(0.979227\pi\)
\(462\) 2.00000 + 3.46410i 0.0930484 + 0.161165i
\(463\) 26.0000 1.20832 0.604161 0.796862i \(-0.293508\pi\)
0.604161 + 0.796862i \(0.293508\pi\)
\(464\) −0.500000 0.866025i −0.0232119 0.0402042i
\(465\) 0 0
\(466\) −5.00000 + 8.66025i −0.231621 + 0.401179i
\(467\) −6.00000 −0.277647 −0.138823 0.990317i \(-0.544332\pi\)
−0.138823 + 0.990317i \(0.544332\pi\)
\(468\) 2.50000 2.59808i 0.115563 0.120096i
\(469\) −4.00000 −0.184703
\(470\) 0 0
\(471\) −1.50000 + 2.59808i −0.0691164 + 0.119713i
\(472\) 0 0
\(473\) 12.0000 0.551761
\(474\) −2.00000 3.46410i −0.0918630 0.159111i
\(475\) 0 0
\(476\) 14.0000 0.641689
\(477\) −4.50000 7.79423i −0.206041 0.356873i
\(478\) 15.0000 25.9808i 0.686084 1.18833i
\(479\) −12.0000 + 20.7846i −0.548294 + 0.949673i 0.450098 + 0.892979i \(0.351389\pi\)
−0.998392 + 0.0566937i \(0.981944\pi\)
\(480\) 0 0
\(481\) 2.50000 2.59808i 0.113990 0.118462i
\(482\) −7.00000 −0.318841
\(483\) 6.00000 10.3923i 0.273009 0.472866i
\(484\) −3.50000 + 6.06218i −0.159091 + 0.275554i
\(485\) 0 0
\(486\) −1.00000 −0.0453609
\(487\) 9.00000 + 15.5885i 0.407829 + 0.706380i 0.994646 0.103339i \(-0.0329526\pi\)
−0.586817 + 0.809719i \(0.699619\pi\)
\(488\) −1.50000 2.59808i −0.0679018 0.117609i
\(489\) 4.00000 0.180886
\(490\) 0 0
\(491\) −3.00000 + 5.19615i −0.135388 + 0.234499i −0.925746 0.378147i \(-0.876561\pi\)
0.790358 + 0.612646i \(0.209895\pi\)
\(492\) 4.50000 7.79423i 0.202876 0.351391i
\(493\) −7.00000 −0.315264
\(494\) 21.0000 + 5.19615i 0.944835 + 0.233786i
\(495\) 0 0
\(496\) 2.00000 3.46410i 0.0898027 0.155543i
\(497\) 6.00000 10.3923i 0.269137 0.466159i
\(498\) 7.00000 + 12.1244i 0.313678 + 0.543305i
\(499\) 24.0000 1.07439 0.537194 0.843459i \(-0.319484\pi\)
0.537194 + 0.843459i \(0.319484\pi\)
\(500\) 0 0
\(501\) 8.00000 + 13.8564i 0.357414 + 0.619059i
\(502\) −12.0000 −0.535586
\(503\) −1.00000 1.73205i −0.0445878 0.0772283i 0.842870 0.538117i \(-0.180864\pi\)
−0.887458 + 0.460889i \(0.847531\pi\)
\(504\) 3.00000 5.19615i 0.133631 0.231455i
\(505\) 0 0
\(506\) 12.0000 0.533465
\(507\) −11.0000 + 6.92820i −0.488527 + 0.307692i
\(508\) 20.0000 0.887357
\(509\) −3.50000 + 6.06218i −0.155135 + 0.268701i −0.933108 0.359596i \(-0.882915\pi\)
0.777973 + 0.628297i \(0.216248\pi\)
\(510\) 0 0
\(511\) −11.0000 19.0526i −0.486611 0.842836i
\(512\) 11.0000 0.486136
\(513\) 3.00000 + 5.19615i 0.132453 + 0.229416i
\(514\) 3.50000 + 6.06218i 0.154378 + 0.267391i
\(515\) 0 0
\(516\) −3.00000 5.19615i −0.132068 0.228748i
\(517\) −6.00000 + 10.3923i −0.263880 + 0.457053i
\(518\) 1.00000 1.73205i 0.0439375 0.0761019i
\(519\) 6.00000 0.263371
\(520\) 0 0
\(521\) −3.00000 −0.131432 −0.0657162 0.997838i \(-0.520933\pi\)
−0.0657162 + 0.997838i \(0.520933\pi\)
\(522\) −0.500000 + 0.866025i −0.0218844 + 0.0379049i
\(523\) 7.00000 12.1244i 0.306089 0.530161i −0.671414 0.741082i \(-0.734313\pi\)
0.977503 + 0.210921i \(0.0676463\pi\)
\(524\) −4.00000 6.92820i −0.174741 0.302660i
\(525\) 0 0
\(526\) 15.0000 + 25.9808i 0.654031 + 1.13282i
\(527\) −14.0000 24.2487i −0.609850 1.05629i
\(528\) 2.00000 0.0870388
\(529\) −6.50000 11.2583i −0.282609 0.489493i
\(530\) 0 0
\(531\) 0 0
\(532\) −12.0000 −0.520266
\(533\) −22.5000 + 23.3827i −0.974583 + 1.01282i
\(534\) 14.0000 0.605839
\(535\) 0 0
\(536\) −3.00000 + 5.19615i −0.129580 + 0.224440i
\(537\) 1.00000 + 1.73205i 0.0431532 + 0.0747435i
\(538\) 14.0000 0.603583
\(539\) −3.00000 5.19615i −0.129219 0.223814i
\(540\) 0 0
\(541\) 45.0000 1.93470 0.967351 0.253442i \(-0.0815627\pi\)
0.967351 + 0.253442i \(0.0815627\pi\)
\(542\) 0 0
\(543\) 3.50000 6.06218i 0.150199 0.260153i
\(544\) 17.5000 30.3109i 0.750306 1.29957i
\(545\) 0 0
\(546\) −5.00000 + 5.19615i −0.213980 + 0.222375i
\(547\) 26.0000 1.11168 0.555840 0.831289i \(-0.312397\pi\)
0.555840 + 0.831289i \(0.312397\pi\)
\(548\) 1.50000 2.59808i 0.0640768 0.110984i
\(549\) −0.500000 + 0.866025i −0.0213395 + 0.0369611i
\(550\) 0 0
\(551\) 6.00000 0.255609
\(552\) −9.00000 15.5885i −0.383065 0.663489i
\(553\) −4.00000 6.92820i −0.170097 0.294617i
\(554\) −31.0000 −1.31706
\(555\) 0 0
\(556\) 6.00000 10.3923i 0.254457 0.440732i
\(557\) −4.50000 + 7.79423i −0.190671 + 0.330252i −0.945473 0.325701i \(-0.894400\pi\)
0.754802 + 0.655953i \(0.227733\pi\)
\(558\) −4.00000 −0.169334
\(559\) 6.00000 + 20.7846i 0.253773 + 0.879095i
\(560\) 0 0
\(561\) 7.00000 12.1244i 0.295540 0.511891i
\(562\) −9.50000 + 16.4545i −0.400733 + 0.694090i
\(563\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(564\) 6.00000 0.252646
\(565\) 0 0
\(566\) 9.00000 + 15.5885i 0.378298 + 0.655232i
\(567\) −2.00000 −0.0839921
\(568\) −9.00000 15.5885i −0.377632 0.654077i
\(569\) −11.0000 + 19.0526i −0.461144 + 0.798725i −0.999018 0.0443003i \(-0.985894\pi\)
0.537874 + 0.843025i \(0.319228\pi\)
\(570\) 0 0
\(571\) 26.0000 1.08807 0.544033 0.839064i \(-0.316897\pi\)
0.544033 + 0.839064i \(0.316897\pi\)
\(572\) 7.00000 + 1.73205i 0.292685 + 0.0724207i
\(573\) −4.00000 −0.167102
\(574\) −9.00000 + 15.5885i −0.375653 + 0.650650i
\(575\) 0 0
\(576\) −3.50000 6.06218i −0.145833 0.252591i
\(577\) −11.0000 −0.457936 −0.228968 0.973434i \(-0.573535\pi\)
−0.228968 + 0.973434i \(0.573535\pi\)
\(578\) 16.0000 + 27.7128i 0.665512 + 1.15270i
\(579\) −4.50000 7.79423i −0.187014 0.323917i
\(580\) 0 0
\(581\) 14.0000 + 24.2487i 0.580818 + 1.00601i
\(582\) 1.00000 1.73205i 0.0414513 0.0717958i
\(583\) 9.00000 15.5885i 0.372742 0.645608i
\(584\) −33.0000 −1.36555
\(585\) 0 0
\(586\) −9.00000 −0.371787
\(587\) 8.00000 13.8564i 0.330195 0.571915i −0.652355 0.757914i \(-0.726219\pi\)
0.982550 + 0.185999i \(0.0595520\pi\)
\(588\) −1.50000 + 2.59808i −0.0618590 + 0.107143i
\(589\) 12.0000 + 20.7846i 0.494451 + 0.856415i
\(590\) 0 0
\(591\) 3.00000 + 5.19615i 0.123404 + 0.213741i
\(592\) −0.500000 0.866025i −0.0205499 0.0355934i
\(593\) −13.0000 −0.533846 −0.266923 0.963718i \(-0.586007\pi\)
−0.266923 + 0.963718i \(0.586007\pi\)
\(594\) −1.00000 1.73205i −0.0410305 0.0710669i
\(595\) 0 0
\(596\) 1.50000 2.59808i 0.0614424 0.106421i
\(597\) 14.0000 0.572982
\(598\) 6.00000 + 20.7846i 0.245358 + 0.849946i
\(599\) −16.0000 −0.653742 −0.326871 0.945069i \(-0.605994\pi\)
−0.326871 + 0.945069i \(0.605994\pi\)
\(600\) 0 0
\(601\) 2.50000 4.33013i 0.101977 0.176630i −0.810522 0.585708i \(-0.800816\pi\)
0.912499 + 0.409079i \(0.134150\pi\)
\(602\) 6.00000 + 10.3923i 0.244542 + 0.423559i
\(603\) 2.00000 0.0814463
\(604\) −1.00000 1.73205i −0.0406894 0.0704761i
\(605\) 0 0
\(606\) −3.00000 −0.121867
\(607\) 4.00000 + 6.92820i 0.162355 + 0.281207i 0.935713 0.352763i \(-0.114758\pi\)
−0.773358 + 0.633970i \(0.781424\pi\)
\(608\) −15.0000 + 25.9808i −0.608330 + 1.05366i
\(609\) −1.00000 + 1.73205i −0.0405220 + 0.0701862i
\(610\) 0 0
\(611\) −21.0000 5.19615i −0.849569 0.210214i
\(612\) −7.00000 −0.282958
\(613\) −11.5000 + 19.9186i −0.464481 + 0.804504i −0.999178 0.0405396i \(-0.987092\pi\)
0.534697 + 0.845044i \(0.320426\pi\)
\(614\) −7.00000 + 12.1244i −0.282497 + 0.489299i
\(615\) 0 0
\(616\) 12.0000 0.483494
\(617\) 6.50000 + 11.2583i 0.261680 + 0.453243i 0.966689 0.255956i \(-0.0823901\pi\)
−0.705008 + 0.709199i \(0.749057\pi\)
\(618\) −3.00000 5.19615i −0.120678 0.209020i
\(619\) −24.0000 −0.964641 −0.482321 0.875995i \(-0.660206\pi\)
−0.482321 + 0.875995i \(0.660206\pi\)
\(620\) 0 0
\(621\) −3.00000 + 5.19615i −0.120386 + 0.208514i
\(622\) 9.00000 15.5885i 0.360867 0.625040i
\(623\) 28.0000 1.12180
\(624\) 1.00000 + 3.46410i 0.0400320 + 0.138675i
\(625\) 0 0
\(626\) −3.00000 + 5.19615i −0.119904 + 0.207680i
\(627\) −6.00000 + 10.3923i −0.239617 + 0.415029i
\(628\) 1.50000 + 2.59808i 0.0598565 + 0.103675i
\(629\) −7.00000 −0.279108
\(630\) 0 0
\(631\) −10.0000 17.3205i −0.398094 0.689519i 0.595397 0.803432i \(-0.296995\pi\)
−0.993491 + 0.113913i \(0.963661\pi\)
\(632\) −12.0000 −0.477334
\(633\) 4.00000 + 6.92820i 0.158986 + 0.275371i
\(634\) 12.5000 21.6506i 0.496438 0.859857i
\(635\) 0 0
\(636\) −9.00000 −0.356873
\(637\) 7.50000 7.79423i 0.297161 0.308819i
\(638\) −2.00000 −0.0791808
\(639\) −3.00000 + 5.19615i −0.118678 + 0.205557i
\(640\) 0 0
\(641\) 15.5000 + 26.8468i 0.612213 + 1.06038i 0.990867 + 0.134846i \(0.0430539\pi\)
−0.378653 + 0.925539i \(0.623613\pi\)
\(642\) −6.00000 −0.236801
\(643\) −8.00000 13.8564i −0.315489 0.546443i 0.664052 0.747686i \(-0.268835\pi\)
−0.979541 + 0.201243i \(0.935502\pi\)
\(644\) −6.00000 10.3923i −0.236433 0.409514i
\(645\) 0 0
\(646\) −21.0000 36.3731i −0.826234 1.43108i
\(647\) −16.0000 + 27.7128i −0.629025 + 1.08950i 0.358723 + 0.933444i \(0.383212\pi\)
−0.987748 + 0.156059i \(0.950121\pi\)
\(648\) −1.50000 + 2.59808i −0.0589256 + 0.102062i
\(649\) 0 0
\(650\) 0 0
\(651\) −8.00000 −0.313545
\(652\) 2.00000 3.46410i 0.0783260 0.135665i
\(653\) −3.00000 + 5.19615i −0.117399 + 0.203341i −0.918736 0.394872i \(-0.870789\pi\)
0.801337 + 0.598213i \(0.204122\pi\)
\(654\) −1.00000 1.73205i −0.0391031 0.0677285i
\(655\) 0 0
\(656\) 4.50000 + 7.79423i 0.175695 + 0.304314i
\(657\) 5.50000 + 9.52628i 0.214575 + 0.371656i
\(658\) −12.0000 −0.467809
\(659\) 4.00000 + 6.92820i 0.155818 + 0.269884i 0.933357 0.358951i \(-0.116865\pi\)
−0.777539 + 0.628835i \(0.783532\pi\)
\(660\) 0 0
\(661\) −22.5000 + 38.9711i −0.875149 + 1.51580i −0.0185442 + 0.999828i \(0.505903\pi\)
−0.856604 + 0.515974i \(0.827430\pi\)
\(662\) 4.00000 0.155464
\(663\) 24.5000 + 6.06218i 0.951501 + 0.235435i
\(664\) 42.0000 1.62992
\(665\) 0 0
\(666\) −0.500000 + 0.866025i −0.0193746 + 0.0335578i
\(667\) 3.00000 + 5.19615i 0.116160 + 0.201196i
\(668\) 16.0000 0.619059
\(669\) 8.00000 + 13.8564i 0.309298 + 0.535720i
\(670\) 0 0
\(671\) −2.00000 −0.0772091
\(672\) −5.00000 8.66025i −0.192879 0.334077i
\(673\) −14.5000 + 25.1147i −0.558934 + 0.968102i 0.438652 + 0.898657i \(0.355456\pi\)
−0.997586 + 0.0694449i \(0.977877\pi\)
\(674\) 16.5000 28.5788i 0.635556 1.10082i
\(675\) 0 0
\(676\) 0.500000 + 12.9904i 0.0192308 + 0.499630i
\(677\) −34.0000 −1.30673 −0.653363 0.757045i \(-0.726642\pi\)
−0.653363 + 0.757045i \(0.726642\pi\)
\(678\) 7.50000 12.9904i 0.288036 0.498893i
\(679\) 2.00000 3.46410i 0.0767530 0.132940i
\(680\) 0 0
\(681\) 14.0000 0.536481
\(682\) −4.00000 6.92820i −0.153168 0.265295i
\(683\) −12.0000 20.7846i −0.459167 0.795301i 0.539750 0.841825i \(-0.318519\pi\)
−0.998917 + 0.0465244i \(0.985185\pi\)
\(684\) 6.00000 0.229416
\(685\) 0 0
\(686\) 10.0000 17.3205i 0.381802 0.661300i
\(687\) 11.0000 19.0526i 0.419676 0.726900i
\(688\) 6.00000 0.228748
\(689\) 31.5000 + 7.79423i 1.20005 + 0.296936i
\(690\) 0 0
\(691\) −21.0000 + 36.3731i −0.798878 + 1.38370i 0.121470 + 0.992595i \(0.461239\pi\)
−0.920348 + 0.391102i \(0.872094\pi\)
\(692\) 3.00000 5.19615i 0.114043 0.197528i
\(693\) −2.00000 3.46410i −0.0759737 0.131590i
\(694\) 18.0000 0.683271
\(695\) 0 0
\(696\) 1.50000 + 2.59808i 0.0568574 + 0.0984798i
\(697\) 63.0000 2.38630
\(698\) −13.0000 22.5167i −0.492057 0.852268i
\(699\) 5.00000 8.66025i 0.189117 0.327561i
\(700\) 0 0
\(701\) 2.00000 0.0755390 0.0377695 0.999286i \(-0.487975\pi\)
0.0377695 + 0.999286i \(0.487975\pi\)
\(702\) 2.50000 2.59808i 0.0943564 0.0980581i
\(703\) 6.00000 0.226294
\(704\) 7.00000 12.1244i 0.263822 0.456954i
\(705\) 0 0
\(706\) 5.50000 + 9.52628i 0.206995 + 0.358526i
\(707\) −6.00000 −0.225653
\(708\) 0 0
\(709\) 5.50000 + 9.52628i 0.206557 + 0.357767i 0.950628 0.310334i \(-0.100441\pi\)
−0.744071 + 0.668101i \(0.767108\pi\)
\(710\) 0 0
\(711\) 2.00000 + 3.46410i 0.0750059 + 0.129914i
\(712\) 21.0000 36.3731i 0.787008 1.36314i
\(713\) −12.0000 + 20.7846i −0.449404 + 0.778390i
\(714\) 14.0000 0.523937
\(715\) 0 0
\(716\) 2.00000 0.0747435
\(717\) −15.0000 + 25.9808i −0.560185 + 0.970269i
\(718\) −9.00000 + 15.5885i −0.335877 + 0.581756i
\(719\) 24.0000 + 41.5692i 0.895049 + 1.55027i 0.833744 + 0.552151i \(0.186193\pi\)
0.0613050 + 0.998119i \(0.480474\pi\)
\(720\) 0 0
\(721\) −6.00000 10.3923i −0.223452 0.387030i
\(722\) 8.50000 + 14.7224i 0.316337 + 0.547912i
\(723\) 7.00000 0.260333
\(724\) −3.50000 6.06218i −0.130076 0.225299i
\(725\) 0 0
\(726\) −3.50000 + 6.06218i −0.129897 + 0.224989i
\(727\) −14.0000 −0.519231 −0.259616 0.965712i \(-0.583596\pi\)
−0.259616 + 0.965712i \(0.583596\pi\)
\(728\) 6.00000 + 20.7846i 0.222375 + 0.770329i
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 21.0000 36.3731i 0.776713 1.34531i
\(732\) 0.500000 + 0.866025i 0.0184805 + 0.0320092i
\(733\) 15.0000 0.554038 0.277019 0.960864i \(-0.410654\pi\)
0.277019 + 0.960864i \(0.410654\pi\)
\(734\) −5.00000 8.66025i −0.184553 0.319656i
\(735\) 0 0
\(736\) −30.0000 −1.10581
\(737\) 2.00000 + 3.46410i 0.0736709 + 0.127602i
\(738\) 4.50000 7.79423i 0.165647 0.286910i
\(739\) 8.00000 13.8564i 0.294285 0.509716i −0.680534 0.732717i \(-0.738252\pi\)
0.974818 + 0.223001i \(0.0715853\pi\)
\(740\) 0 0
\(741\) −21.0000 5.19615i −0.771454 0.190885i
\(742\) 18.0000 0.660801
\(743\) −18.0000 + 31.1769i −0.660356 + 1.14377i 0.320166 + 0.947361i \(0.396261\pi\)
−0.980522 + 0.196409i \(0.937072\pi\)
\(744\) −6.00000 + 10.3923i −0.219971 + 0.381000i
\(745\) 0 0
\(746\) −11.0000 −0.402739
\(747\) −7.00000 12.1244i −0.256117 0.443607i
\(748\) −7.00000 12.1244i −0.255945 0.443310i
\(749\) −12.0000 −0.438470
\(750\) 0 0
\(751\) 17.0000 29.4449i 0.620339 1.07446i −0.369084 0.929396i \(-0.620328\pi\)
0.989423 0.145062i \(-0.0463382\pi\)
\(752\) −3.00000 + 5.19615i −0.109399 + 0.189484i
\(753\) 12.0000 0.437304
\(754\) −1.00000 3.46410i −0.0364179 0.126155i
\(755\) 0 0
\(756\) −1.00000 + 1.73205i −0.0363696 + 0.0629941i
\(757\) −25.0000 + 43.3013i −0.908640 + 1.57381i −0.0926859 + 0.995695i \(0.529545\pi\)
−0.815955 + 0.578116i \(0.803788\pi\)
\(758\) −18.0000 31.1769i −0.653789 1.13240i
\(759\) −12.0000 −0.435572
\(760\) 0 0
\(761\) −25.0000 43.3013i −0.906249 1.56967i −0.819231 0.573463i \(-0.805600\pi\)
−0.0870179 0.996207i \(-0.527734\pi\)
\(762\) 20.0000 0.724524
\(763\) −2.00000 3.46410i −0.0724049 0.125409i
\(764\) −2.00000 + 3.46410i −0.0723575 + 0.125327i
\(765\) 0 0
\(766\) 8.00000 0.289052
\(767\) 0 0
\(768\) −17.0000 −0.613435
\(769\) −15.0000 + 25.9808i −0.540914 + 0.936890i 0.457938 + 0.888984i \(0.348588\pi\)
−0.998852 + 0.0479061i \(0.984745\pi\)
\(770\) 0 0
\(771\) −3.50000 6.06218i −0.126049 0.218324i
\(772\) −9.00000 −0.323917
\(773\) −7.00000 12.1244i −0.251773 0.436083i 0.712241 0.701935i \(-0.247680\pi\)
−0.964014 + 0.265852i \(0.914347\pi\)
\(774\) −3.00000 5.19615i −0.107833 0.186772i
\(775\) 0 0
\(776\) −3.00000 5.19615i −0.107694 0.186531i
\(777\) −1.00000 + 1.73205i −0.0358748 + 0.0621370i
\(778\) 9.50000 16.4545i 0.340592 0.589922i
\(779\) −54.0000 −1.93475
\(780\) 0 0
\(781\) −12.0000 −0.429394
\(782\) 21.0000 36.3731i 0.750958 1.30070i
\(783\) 0.500000 0.866025i 0.0178685 0.0309492i
\(784\) −1.50000 2.59808i −0.0535714 0.0927884i
\(785\) 0 0
\(786\) −4.00000 6.92820i −0.142675 0.247121i
\(787\) 14.0000 + 24.2487i 0.499046 + 0.864373i 0.999999 0.00110111i \(-0.000350496\pi\)
−0.500953 + 0.865474i \(0.667017\pi\)
\(788\) 6.00000 0.213741
\(789\) −15.0000 25.9808i −0.534014 0.924940i
\(790\) 0 0
\(791\) 15.0000 25.9808i 0.533339 0.923770i
\(792\) −6.00000 −0.213201
\(793\) −1.00000 3.46410i −0.0355110 0.123014i
\(794\) −34.0000 −1.20661
\(795\) 0 0
\(796\) 7.00000 12.1244i 0.248108 0.429736i
\(797\) −1.00000 1.73205i −0.0354218 0.0613524i 0.847771 0.530362i \(-0.177944\pi\)
−0.883193 + 0.469010i \(0.844611\pi\)
\(798\) −12.0000 −0.424795
\(799\) 21.0000 + 36.3731i 0.742927 + 1.28679i
\(800\) 0 0
\(801\) −14.0000 −0.494666
\(802\) 0.500000 + 0.866025i 0.0176556 + 0.0305804i
\(803\) −11.0000 + 19.0526i −0.388182 + 0.672350i
\(804\) 1.00000 1.73205i 0.0352673 0.0610847i
\(805\) 0 0
\(806\) 10.0000 10.3923i 0.352235 0.366053i
\(807\) −14.0000 −0.492823
\(808\) −4.50000 + 7.79423i −0.158309 + 0.274200i
\(809\) −16.5000 + 28.5788i −0.580109 + 1.00478i 0.415357 + 0.909659i \(0.363657\pi\)
−0.995466 + 0.0951198i \(0.969677\pi\)
\(810\) 0 0
\(811\) −28.0000 −0.983213 −0.491606 0.870817i \(-0.663590\pi\)
−0.491606 + 0.870817i \(0.663590\pi\)
\(812\) 1.00000 + 1.73205i 0.0350931 + 0.0607831i
\(813\) 0 0
\(814\) −2.00000 −0.0701000
\(815\) 0 0
\(816\) 3.50000 6.06218i 0.122525 0.212219i
\(817\) −18.0000 + 31.1769i −0.629740 + 1.09074i
\(818\) −7.00000 −0.244749
\(819\) 5.00000 5.19615i 0.174714 0.181568i
\(820\) 0 0
\(821\) −25.0000 + 43.3013i −0.872506 + 1.51122i −0.0131101 + 0.999914i \(0.504173\pi\)
−0.859396 + 0.511311i \(0.829160\pi\)
\(822\) 1.50000 2.59808i 0.0523185 0.0906183i
\(823\) −12.0000 20.7846i −0.418294 0.724506i 0.577474 0.816409i \(-0.304038\pi\)
−0.995768 + 0.0919029i \(0.970705\pi\)
\(824\) −18.0000 −0.627060
\(825\) 0 0
\(826\) 0 0
\(827\) −16.0000 −0.556375 −0.278187 0.960527i \(-0.589734\pi\)
−0.278187 + 0.960527i \(0.589734\pi\)
\(828\) 3.00000 + 5.19615i 0.104257 + 0.180579i
\(829\) −8.50000 + 14.7224i −0.295217 + 0.511331i −0.975035 0.222049i \(-0.928725\pi\)
0.679818 + 0.733381i \(0.262059\pi\)
\(830\) 0 0
\(831\) 31.0000 1.07538
\(832\) 24.5000 + 6.06218i 0.849385 + 0.210168i
\(833\) −21.0000 −0.727607
\(834\) 6.00000 10.3923i 0.207763 0.359856i
\(835\) 0 0
\(836\) 6.00000 + 10.3923i 0.207514 + 0.359425i
\(837\) 4.00000 0.138260
\(838\) 8.00000 + 13.8564i 0.276355 + 0.478662i
\(839\) −6.00000 10.3923i −0.207143 0.358782i 0.743670 0.668546i \(-0.233083\pi\)
−0.950813 + 0.309764i \(0.899750\pi\)
\(840\) 0 0
\(841\) 14.0000 + 24.2487i 0.482759 + 0.836162i
\(842\) −9.50000 + 16.4545i −0.327392 + 0.567059i
\(843\) 9.50000 16.4545i 0.327197 0.566722i
\(844\) 8.00000 0.275371
\(845\) 0 0
\(846\) 6.00000 0.206284
\(847\) −7.00000 + 12.1244i −0.240523 + 0.416598i
\(848\) 4.50000 7.79423i 0.154531 0.267655i
\(849\) −9.00000 15.5885i −0.308879 0.534994i
\(850\) 0 0
\(851\) 3.00000 + 5.19615i 0.102839 + 0.178122i
\(852\) 3.00000 + 5.19615i 0.102778 + 0.178017i
\(853\) −21.0000 −0.719026 −0.359513 0.933140i \(-0.617057\pi\)
−0.359513 + 0.933140i \(0.617057\pi\)
\(854\) −1.00000 1.73205i −0.0342193 0.0592696i
\(855\) 0 0
\(856\) −9.00000 + 15.5885i −0.307614 + 0.532803i
\(857\) 31.0000 1.05894 0.529470 0.848329i \(-0.322391\pi\)
0.529470 + 0.848329i \(0.322391\pi\)
\(858\) 7.00000 + 1.73205i 0.238976 + 0.0591312i
\(859\) 34.0000 1.16007 0.580033 0.814593i \(-0.303040\pi\)
0.580033 + 0.814593i \(0.303040\pi\)
\(860\) 0 0
\(861\) 9.00000 15.5885i 0.306719 0.531253i
\(862\) −15.0000 25.9808i −0.510902 0.884908i
\(863\) −10.0000 −0.340404 −0.170202 0.985409i \(-0.554442\pi\)
−0.170202 + 0.985409i \(0.554442\pi\)
\(864\) 2.50000 + 4.33013i 0.0850517 + 0.147314i
\(865\) 0 0
\(866\) 19.0000 0.645646
\(867\) −16.0000 27.7128i −0.543388 0.941176i
\(868\) −4.00000 + 6.92820i −0.135769 + 0.235159i
\(869\) −4.00000 + 6.92820i −0.135691 + 0.235023i
\(870\) 0 0
\(871\) −5.00000 + 5.19615i −0.169419 + 0.176065i
\(872\) −6.00000 −0.203186
\(873\) −1.00000 + 1.73205i −0.0338449 + 0.0586210i
\(874\) −18.0000 + 31.1769i −0.608859 + 1.05457i
\(875\) 0 0
\(876\) 11.0000 0.371656
\(877\) 8.50000 + 14.7224i 0.287025 + 0.497141i 0.973098 0.230391i \(-0.0740005\pi\)
−0.686074 + 0.727532i \(0.740667\pi\)
\(878\) 7.00000 + 12.1244i 0.236239 + 0.409177i
\(879\) 9.00000 0.303562
\(880\) 0 0
\(881\) −18.5000 + 32.0429i −0.623281 + 1.07955i 0.365590 + 0.930776i \(0.380867\pi\)
−0.988871 + 0.148778i \(0.952466\pi\)
\(882\) −1.50000 + 2.59808i −0.0505076 + 0.0874818i
\(883\) −16.0000 −0.538443 −0.269221 0.963078i \(-0.586766\pi\)
−0.269221 + 0.963078i \(0.586766\pi\)
\(884\) 17.5000 18.1865i 0.588589 0.611679i
\(885\) 0 0
\(886\) 2.00000 3.46410i 0.0671913 0.116379i
\(887\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(888\) 1.50000 + 2.59808i 0.0503367 + 0.0871857i
\(889\) 40.0000 1.34156
\(890\) 0 0
\(891\) 1.00000 + 1.73205i 0.0335013 + 0.0580259i
\(892\) 16.0000 0.535720
\(893\) −18.0000 31.1769i −0.602347 1.04330i
\(894\) 1.50000 2.59808i 0.0501675 0.0868927i
\(895\) 0 0
\(896\) −6.00000 −0.200446
\(897\) −6.00000 20.7846i −0.200334 0.693978i
\(898\) −34.0000 −1.13459
\(899\) 2.00000 3.46410i 0.0667037 0.115534i
\(900\) 0 0
\(901\) −31.5000 54.5596i −1.04942 1.81764i
\(902\) 18.0000 0.599334
\(903\) −6.00000 10.3923i −0.199667 0.345834i
\(904\) −22.5000 38.9711i −0.748339 1.29616i
\(905\) 0 0
\(906\) −1.00000 1.73205i −0.0332228 0.0575435i
\(907\) 6.00000 10.3923i 0.199227 0.345071i −0.749051 0.662512i \(-0.769490\pi\)
0.948278 + 0.317441i \(0.102824\pi\)
\(908\) 7.00000 12.1244i 0.232303 0.402361i
\(909\) 3.00000 0.0995037
\(910\) 0 0
\(911\) −40.0000 −1.32526 −0.662630 0.748947i \(-0.730560\pi\)
−0.662630 + 0.748947i \(0.730560\pi\)
\(912\) −3.00000 + 5.19615i −0.0993399 + 0.172062i
\(913\) 14.0000 24.2487i 0.463332 0.802515i
\(914\) 6.50000 + 11.2583i 0.215001 + 0.372392i
\(915\) 0 0
\(916\) −11.0000 19.0526i −0.363450 0.629514i
\(917\) −8.00000 13.8564i −0.264183 0.457579i
\(918\) −7.00000 −0.231034
\(919\) −12.0000 20.7846i −0.395843 0.685621i 0.597365 0.801970i \(-0.296214\pi\)
−0.993208 + 0.116348i \(0.962881\pi\)
\(920\) 0 0
\(921\) 7.00000 12.1244i 0.230658 0.399511i
\(922\) −19.0000 −0.625732
\(923\) −6.00000 20.7846i −0.197492 0.684134i
\(924\) −4.00000 −0.131590
\(925\) 0 0
\(926\) 13.0000 22.5167i 0.427207 0.739943i
\(927\) 3.00000 + 5.19615i 0.0985329 + 0.170664i
\(928\) 5.00000 0.164133
\(929\) 13.5000 + 23.3827i 0.442921 + 0.767161i 0.997905 0.0646999i \(-0.0206090\pi\)
−0.554984 + 0.831861i \(0.687276\pi\)
\(930\) 0 0
\(931\) 18.0000 0.589926
\(932\) −5.00000 8.66025i −0.163780 0.283676i
\(933\) −9.00000 + 15.5885i −0.294647 + 0.510343i
\(934\) −3.00000 + 5.19615i −0.0981630 + 0.170023i
\(935\) 0 0
\(936\) −3.00000 10.3923i −0.0980581 0.339683i
\(937\) 49.0000 1.60076 0.800380 0.599493i \(-0.204631\pi\)
0.800380 + 0.599493i \(0.204631\pi\)
\(938\) −2.00000 + 3.46410i −0.0653023 + 0.113107i
\(939\) 3.00000 5.19615i 0.0979013 0.169570i
\(940\) 0 0
\(941\) −38.0000 −1.23876 −0.619382 0.785090i \(-0.712617\pi\)
−0.619382 + 0.785090i \(0.712617\pi\)
\(942\) 1.50000 + 2.59808i 0.0488726 + 0.0846499i
\(943\) −27.0000 46.7654i −0.879241 1.52289i
\(944\) 0 0
\(945\) 0 0
\(946\) 6.00000 10.3923i 0.195077 0.337883i
\(947\) −24.0000 + 41.5692i −0.779895 + 1.35082i 0.152106 + 0.988364i \(0.451394\pi\)
−0.932002 + 0.362454i \(0.881939\pi\)
\(948\) 4.00000 0.129914
\(949\) −38.5000 9.52628i −1.24976 0.309236i
\(950\) 0 0
\(951\) −12.5000 + 21.6506i −0.405340 + 0.702070i
\(952\) 21.0000 36.3731i 0.680614 1.17886i
\(953\) 3.00000 + 5.19615i 0.0971795 + 0.168320i 0.910516 0.413473i \(-0.135685\pi\)
−0.813337 + 0.581793i \(0.802351\pi\)
\(954\) −9.00000 −0.291386
\(955\) 0 0
\(956\) 15.0000 + 25.9808i 0.485135 + 0.840278i
\(957\) 2.00000 0.0646508
\(958\) 12.0000 + 20.7846i 0.387702 + 0.671520i
\(959\) 3.00000 5.19615i 0.0968751 0.167793i
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) −1.00000 3.46410i −0.0322413 0.111687i
\(963\) 6.00000 0.193347
\(964\) 3.50000 6.06218i 0.112727 0.195250i
\(965\) 0 0
\(966\) −6.00000 10.3923i −0.193047 0.334367i
\(967\) −2.00000 −0.0643157 −0.0321578 0.999483i \(-0.510238\pi\)
−0.0321578 + 0.999483i \(0.510238\pi\)
\(968\) 10.5000 + 18.1865i 0.337483 + 0.584537i
\(969\) 21.0000 + 36.3731i 0.674617 + 1.16847i
\(970\) 0 0
\(971\) −18.0000 31.1769i −0.577647 1.00051i −0.995748 0.0921142i \(-0.970638\pi\)
0.418101 0.908401i \(-0.362696\pi\)
\(972\) 0.500000 0.866025i 0.0160375 0.0277778i
\(973\) 12.0000 20.7846i 0.384702 0.666324i
\(974\) 18.0000 0.576757
\(975\) 0 0
\(976\) −1.00000 −0.0320092
\(977\) 16.5000 28.5788i 0.527882 0.914318i −0.471590 0.881818i \(-0.656320\pi\)
0.999472 0.0325001i \(-0.0103469\pi\)
\(978\) 2.00000 3.46410i 0.0639529 0.110770i
\(979\) −14.0000 24.2487i −0.447442 0.774992i
\(980\) 0 0
\(981\) 1.00000 + 1.73205i 0.0319275 + 0.0553001i
\(982\) 3.00000 + 5.19615i 0.0957338 + 0.165816i
\(983\) −4.00000 −0.127580 −0.0637901 0.997963i \(-0.520319\pi\)
−0.0637901 + 0.997963i \(0.520319\pi\)
\(984\) −13.5000 23.3827i −0.430364 0.745413i
\(985\) 0 0
\(986\) −3.50000 + 6.06218i −0.111463 + 0.193059i
\(987\) 12.0000 0.381964
\(988\) −15.0000 + 15.5885i −0.477214 + 0.495935i
\(989\) −36.0000 −1.14473
\(990\) 0 0
\(991\) 1.00000 1.73205i 0.0317660 0.0550204i −0.849705 0.527258i \(-0.823220\pi\)
0.881471 + 0.472237i \(0.156554\pi\)
\(992\) 10.0000 + 17.3205i 0.317500 + 0.549927i
\(993\) −4.00000 −0.126936
\(994\) −6.00000 10.3923i −0.190308 0.329624i
\(995\) 0 0
\(996\) −14.0000 −0.443607
\(997\) −17.5000 30.3109i −0.554231 0.959955i −0.997963 0.0637961i \(-0.979679\pi\)
0.443732 0.896159i \(-0.353654\pi\)
\(998\) 12.0000 20.7846i 0.379853 0.657925i
\(999\) 0.500000 0.866025i 0.0158193 0.0273998i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.i.f.451.1 2
5.2 odd 4 975.2.bb.d.724.2 4
5.3 odd 4 975.2.bb.d.724.1 4
5.4 even 2 39.2.e.a.22.1 yes 2
13.3 even 3 inner 975.2.i.f.601.1 2
15.14 odd 2 117.2.g.b.100.1 2
20.19 odd 2 624.2.q.c.529.1 2
60.59 even 2 1872.2.t.j.1153.1 2
65.3 odd 12 975.2.bb.d.874.2 4
65.4 even 6 507.2.a.b.1.1 1
65.9 even 6 507.2.a.c.1.1 1
65.19 odd 12 507.2.b.b.337.1 2
65.24 odd 12 507.2.j.d.361.2 4
65.29 even 6 39.2.e.a.16.1 2
65.34 odd 4 507.2.j.d.316.1 4
65.42 odd 12 975.2.bb.d.874.1 4
65.44 odd 4 507.2.j.d.316.2 4
65.49 even 6 507.2.e.c.484.1 2
65.54 odd 12 507.2.j.d.361.1 4
65.59 odd 12 507.2.b.b.337.2 2
65.64 even 2 507.2.e.c.22.1 2
195.29 odd 6 117.2.g.b.55.1 2
195.59 even 12 1521.2.b.c.1351.1 2
195.74 odd 6 1521.2.a.a.1.1 1
195.134 odd 6 1521.2.a.d.1.1 1
195.149 even 12 1521.2.b.c.1351.2 2
260.139 odd 6 8112.2.a.w.1.1 1
260.159 odd 6 624.2.q.c.289.1 2
260.199 odd 6 8112.2.a.bc.1.1 1
780.419 even 6 1872.2.t.j.289.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
39.2.e.a.16.1 2 65.29 even 6
39.2.e.a.22.1 yes 2 5.4 even 2
117.2.g.b.55.1 2 195.29 odd 6
117.2.g.b.100.1 2 15.14 odd 2
507.2.a.b.1.1 1 65.4 even 6
507.2.a.c.1.1 1 65.9 even 6
507.2.b.b.337.1 2 65.19 odd 12
507.2.b.b.337.2 2 65.59 odd 12
507.2.e.c.22.1 2 65.64 even 2
507.2.e.c.484.1 2 65.49 even 6
507.2.j.d.316.1 4 65.34 odd 4
507.2.j.d.316.2 4 65.44 odd 4
507.2.j.d.361.1 4 65.54 odd 12
507.2.j.d.361.2 4 65.24 odd 12
624.2.q.c.289.1 2 260.159 odd 6
624.2.q.c.529.1 2 20.19 odd 2
975.2.i.f.451.1 2 1.1 even 1 trivial
975.2.i.f.601.1 2 13.3 even 3 inner
975.2.bb.d.724.1 4 5.3 odd 4
975.2.bb.d.724.2 4 5.2 odd 4
975.2.bb.d.874.1 4 65.42 odd 12
975.2.bb.d.874.2 4 65.3 odd 12
1521.2.a.a.1.1 1 195.74 odd 6
1521.2.a.d.1.1 1 195.134 odd 6
1521.2.b.c.1351.1 2 195.59 even 12
1521.2.b.c.1351.2 2 195.149 even 12
1872.2.t.j.289.1 2 780.419 even 6
1872.2.t.j.1153.1 2 60.59 even 2
8112.2.a.w.1.1 1 260.139 odd 6
8112.2.a.bc.1.1 1 260.199 odd 6