Properties

Label 1521.2.b.c.1351.1
Level $1521$
Weight $2$
Character 1521.1351
Analytic conductor $12.145$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1521,2,Mod(1351,1521)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1521, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1521.1351");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1521 = 3^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1521.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.1452461474\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 39)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1351.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1521.1351
Dual form 1521.2.b.c.1351.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} +1.00000 q^{4} +1.00000i q^{5} -2.00000i q^{7} -3.00000i q^{8} +1.00000 q^{10} -2.00000i q^{11} -2.00000 q^{14} -1.00000 q^{16} -7.00000 q^{17} -6.00000i q^{19} +1.00000i q^{20} -2.00000 q^{22} -6.00000 q^{23} +4.00000 q^{25} -2.00000i q^{28} +1.00000 q^{29} +4.00000i q^{31} -5.00000i q^{32} +7.00000i q^{34} +2.00000 q^{35} -1.00000i q^{37} -6.00000 q^{38} +3.00000 q^{40} -9.00000i q^{41} -6.00000 q^{43} -2.00000i q^{44} +6.00000i q^{46} +6.00000i q^{47} +3.00000 q^{49} -4.00000i q^{50} +9.00000 q^{53} +2.00000 q^{55} -6.00000 q^{56} -1.00000i q^{58} +1.00000 q^{61} +4.00000 q^{62} -7.00000 q^{64} -2.00000i q^{67} -7.00000 q^{68} -2.00000i q^{70} -6.00000i q^{71} -11.0000i q^{73} -1.00000 q^{74} -6.00000i q^{76} -4.00000 q^{77} -4.00000 q^{79} -1.00000i q^{80} -9.00000 q^{82} +14.0000i q^{83} -7.00000i q^{85} +6.00000i q^{86} -6.00000 q^{88} -14.0000i q^{89} -6.00000 q^{92} +6.00000 q^{94} +6.00000 q^{95} -2.00000i q^{97} -3.00000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{4} + 2 q^{10} - 4 q^{14} - 2 q^{16} - 14 q^{17} - 4 q^{22} - 12 q^{23} + 8 q^{25} + 2 q^{29} + 4 q^{35} - 12 q^{38} + 6 q^{40} - 12 q^{43} + 6 q^{49} + 18 q^{53} + 4 q^{55} - 12 q^{56} + 2 q^{61}+ \cdots + 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1521\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(847\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.00000i − 0.707107i −0.935414 0.353553i \(-0.884973\pi\)
0.935414 0.353553i \(-0.115027\pi\)
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 1.00000i 0.447214i 0.974679 + 0.223607i \(0.0717831\pi\)
−0.974679 + 0.223607i \(0.928217\pi\)
\(6\) 0 0
\(7\) − 2.00000i − 0.755929i −0.925820 0.377964i \(-0.876624\pi\)
0.925820 0.377964i \(-0.123376\pi\)
\(8\) − 3.00000i − 1.06066i
\(9\) 0 0
\(10\) 1.00000 0.316228
\(11\) − 2.00000i − 0.603023i −0.953463 0.301511i \(-0.902509\pi\)
0.953463 0.301511i \(-0.0974911\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) −2.00000 −0.534522
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −7.00000 −1.69775 −0.848875 0.528594i \(-0.822719\pi\)
−0.848875 + 0.528594i \(0.822719\pi\)
\(18\) 0 0
\(19\) − 6.00000i − 1.37649i −0.725476 0.688247i \(-0.758380\pi\)
0.725476 0.688247i \(-0.241620\pi\)
\(20\) 1.00000i 0.223607i
\(21\) 0 0
\(22\) −2.00000 −0.426401
\(23\) −6.00000 −1.25109 −0.625543 0.780189i \(-0.715123\pi\)
−0.625543 + 0.780189i \(0.715123\pi\)
\(24\) 0 0
\(25\) 4.00000 0.800000
\(26\) 0 0
\(27\) 0 0
\(28\) − 2.00000i − 0.377964i
\(29\) 1.00000 0.185695 0.0928477 0.995680i \(-0.470403\pi\)
0.0928477 + 0.995680i \(0.470403\pi\)
\(30\) 0 0
\(31\) 4.00000i 0.718421i 0.933257 + 0.359211i \(0.116954\pi\)
−0.933257 + 0.359211i \(0.883046\pi\)
\(32\) − 5.00000i − 0.883883i
\(33\) 0 0
\(34\) 7.00000i 1.20049i
\(35\) 2.00000 0.338062
\(36\) 0 0
\(37\) − 1.00000i − 0.164399i −0.996616 0.0821995i \(-0.973806\pi\)
0.996616 0.0821995i \(-0.0261945\pi\)
\(38\) −6.00000 −0.973329
\(39\) 0 0
\(40\) 3.00000 0.474342
\(41\) − 9.00000i − 1.40556i −0.711405 0.702782i \(-0.751941\pi\)
0.711405 0.702782i \(-0.248059\pi\)
\(42\) 0 0
\(43\) −6.00000 −0.914991 −0.457496 0.889212i \(-0.651253\pi\)
−0.457496 + 0.889212i \(0.651253\pi\)
\(44\) − 2.00000i − 0.301511i
\(45\) 0 0
\(46\) 6.00000i 0.884652i
\(47\) 6.00000i 0.875190i 0.899172 + 0.437595i \(0.144170\pi\)
−0.899172 + 0.437595i \(0.855830\pi\)
\(48\) 0 0
\(49\) 3.00000 0.428571
\(50\) − 4.00000i − 0.565685i
\(51\) 0 0
\(52\) 0 0
\(53\) 9.00000 1.23625 0.618123 0.786082i \(-0.287894\pi\)
0.618123 + 0.786082i \(0.287894\pi\)
\(54\) 0 0
\(55\) 2.00000 0.269680
\(56\) −6.00000 −0.801784
\(57\) 0 0
\(58\) − 1.00000i − 0.131306i
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) 1.00000 0.128037 0.0640184 0.997949i \(-0.479608\pi\)
0.0640184 + 0.997949i \(0.479608\pi\)
\(62\) 4.00000 0.508001
\(63\) 0 0
\(64\) −7.00000 −0.875000
\(65\) 0 0
\(66\) 0 0
\(67\) − 2.00000i − 0.244339i −0.992509 0.122169i \(-0.961015\pi\)
0.992509 0.122169i \(-0.0389851\pi\)
\(68\) −7.00000 −0.848875
\(69\) 0 0
\(70\) − 2.00000i − 0.239046i
\(71\) − 6.00000i − 0.712069i −0.934473 0.356034i \(-0.884129\pi\)
0.934473 0.356034i \(-0.115871\pi\)
\(72\) 0 0
\(73\) − 11.0000i − 1.28745i −0.765256 0.643726i \(-0.777388\pi\)
0.765256 0.643726i \(-0.222612\pi\)
\(74\) −1.00000 −0.116248
\(75\) 0 0
\(76\) − 6.00000i − 0.688247i
\(77\) −4.00000 −0.455842
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) − 1.00000i − 0.111803i
\(81\) 0 0
\(82\) −9.00000 −0.993884
\(83\) 14.0000i 1.53670i 0.640030 + 0.768350i \(0.278922\pi\)
−0.640030 + 0.768350i \(0.721078\pi\)
\(84\) 0 0
\(85\) − 7.00000i − 0.759257i
\(86\) 6.00000i 0.646997i
\(87\) 0 0
\(88\) −6.00000 −0.639602
\(89\) − 14.0000i − 1.48400i −0.670402 0.741999i \(-0.733878\pi\)
0.670402 0.741999i \(-0.266122\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −6.00000 −0.625543
\(93\) 0 0
\(94\) 6.00000 0.618853
\(95\) 6.00000 0.615587
\(96\) 0 0
\(97\) − 2.00000i − 0.203069i −0.994832 0.101535i \(-0.967625\pi\)
0.994832 0.101535i \(-0.0323753\pi\)
\(98\) − 3.00000i − 0.303046i
\(99\) 0 0
\(100\) 4.00000 0.400000
\(101\) 3.00000 0.298511 0.149256 0.988799i \(-0.452312\pi\)
0.149256 + 0.988799i \(0.452312\pi\)
\(102\) 0 0
\(103\) −6.00000 −0.591198 −0.295599 0.955312i \(-0.595519\pi\)
−0.295599 + 0.955312i \(0.595519\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) − 9.00000i − 0.874157i
\(107\) 6.00000 0.580042 0.290021 0.957020i \(-0.406338\pi\)
0.290021 + 0.957020i \(0.406338\pi\)
\(108\) 0 0
\(109\) − 2.00000i − 0.191565i −0.995402 0.0957826i \(-0.969465\pi\)
0.995402 0.0957826i \(-0.0305354\pi\)
\(110\) − 2.00000i − 0.190693i
\(111\) 0 0
\(112\) 2.00000i 0.188982i
\(113\) 15.0000 1.41108 0.705541 0.708669i \(-0.250704\pi\)
0.705541 + 0.708669i \(0.250704\pi\)
\(114\) 0 0
\(115\) − 6.00000i − 0.559503i
\(116\) 1.00000 0.0928477
\(117\) 0 0
\(118\) 0 0
\(119\) 14.0000i 1.28338i
\(120\) 0 0
\(121\) 7.00000 0.636364
\(122\) − 1.00000i − 0.0905357i
\(123\) 0 0
\(124\) 4.00000i 0.359211i
\(125\) 9.00000i 0.804984i
\(126\) 0 0
\(127\) −20.0000 −1.77471 −0.887357 0.461084i \(-0.847461\pi\)
−0.887357 + 0.461084i \(0.847461\pi\)
\(128\) − 3.00000i − 0.265165i
\(129\) 0 0
\(130\) 0 0
\(131\) 8.00000 0.698963 0.349482 0.936943i \(-0.386358\pi\)
0.349482 + 0.936943i \(0.386358\pi\)
\(132\) 0 0
\(133\) −12.0000 −1.04053
\(134\) −2.00000 −0.172774
\(135\) 0 0
\(136\) 21.0000i 1.80074i
\(137\) − 3.00000i − 0.256307i −0.991754 0.128154i \(-0.959095\pi\)
0.991754 0.128154i \(-0.0409051\pi\)
\(138\) 0 0
\(139\) 12.0000 1.01783 0.508913 0.860818i \(-0.330047\pi\)
0.508913 + 0.860818i \(0.330047\pi\)
\(140\) 2.00000 0.169031
\(141\) 0 0
\(142\) −6.00000 −0.503509
\(143\) 0 0
\(144\) 0 0
\(145\) 1.00000i 0.0830455i
\(146\) −11.0000 −0.910366
\(147\) 0 0
\(148\) − 1.00000i − 0.0821995i
\(149\) − 3.00000i − 0.245770i −0.992421 0.122885i \(-0.960785\pi\)
0.992421 0.122885i \(-0.0392146\pi\)
\(150\) 0 0
\(151\) 2.00000i 0.162758i 0.996683 + 0.0813788i \(0.0259324\pi\)
−0.996683 + 0.0813788i \(0.974068\pi\)
\(152\) −18.0000 −1.45999
\(153\) 0 0
\(154\) 4.00000i 0.322329i
\(155\) −4.00000 −0.321288
\(156\) 0 0
\(157\) −3.00000 −0.239426 −0.119713 0.992809i \(-0.538197\pi\)
−0.119713 + 0.992809i \(0.538197\pi\)
\(158\) 4.00000i 0.318223i
\(159\) 0 0
\(160\) 5.00000 0.395285
\(161\) 12.0000i 0.945732i
\(162\) 0 0
\(163\) 4.00000i 0.313304i 0.987654 + 0.156652i \(0.0500701\pi\)
−0.987654 + 0.156652i \(0.949930\pi\)
\(164\) − 9.00000i − 0.702782i
\(165\) 0 0
\(166\) 14.0000 1.08661
\(167\) 16.0000i 1.23812i 0.785345 + 0.619059i \(0.212486\pi\)
−0.785345 + 0.619059i \(0.787514\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) −7.00000 −0.536875
\(171\) 0 0
\(172\) −6.00000 −0.457496
\(173\) −6.00000 −0.456172 −0.228086 0.973641i \(-0.573247\pi\)
−0.228086 + 0.973641i \(0.573247\pi\)
\(174\) 0 0
\(175\) − 8.00000i − 0.604743i
\(176\) 2.00000i 0.150756i
\(177\) 0 0
\(178\) −14.0000 −1.04934
\(179\) −2.00000 −0.149487 −0.0747435 0.997203i \(-0.523814\pi\)
−0.0747435 + 0.997203i \(0.523814\pi\)
\(180\) 0 0
\(181\) 7.00000 0.520306 0.260153 0.965567i \(-0.416227\pi\)
0.260153 + 0.965567i \(0.416227\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 18.0000i 1.32698i
\(185\) 1.00000 0.0735215
\(186\) 0 0
\(187\) 14.0000i 1.02378i
\(188\) 6.00000i 0.437595i
\(189\) 0 0
\(190\) − 6.00000i − 0.435286i
\(191\) 4.00000 0.289430 0.144715 0.989473i \(-0.453773\pi\)
0.144715 + 0.989473i \(0.453773\pi\)
\(192\) 0 0
\(193\) 9.00000i 0.647834i 0.946085 + 0.323917i \(0.105000\pi\)
−0.946085 + 0.323917i \(0.895000\pi\)
\(194\) −2.00000 −0.143592
\(195\) 0 0
\(196\) 3.00000 0.214286
\(197\) − 6.00000i − 0.427482i −0.976890 0.213741i \(-0.931435\pi\)
0.976890 0.213741i \(-0.0685649\pi\)
\(198\) 0 0
\(199\) −14.0000 −0.992434 −0.496217 0.868199i \(-0.665278\pi\)
−0.496217 + 0.868199i \(0.665278\pi\)
\(200\) − 12.0000i − 0.848528i
\(201\) 0 0
\(202\) − 3.00000i − 0.211079i
\(203\) − 2.00000i − 0.140372i
\(204\) 0 0
\(205\) 9.00000 0.628587
\(206\) 6.00000i 0.418040i
\(207\) 0 0
\(208\) 0 0
\(209\) −12.0000 −0.830057
\(210\) 0 0
\(211\) −8.00000 −0.550743 −0.275371 0.961338i \(-0.588801\pi\)
−0.275371 + 0.961338i \(0.588801\pi\)
\(212\) 9.00000 0.618123
\(213\) 0 0
\(214\) − 6.00000i − 0.410152i
\(215\) − 6.00000i − 0.409197i
\(216\) 0 0
\(217\) 8.00000 0.543075
\(218\) −2.00000 −0.135457
\(219\) 0 0
\(220\) 2.00000 0.134840
\(221\) 0 0
\(222\) 0 0
\(223\) 16.0000i 1.07144i 0.844396 + 0.535720i \(0.179960\pi\)
−0.844396 + 0.535720i \(0.820040\pi\)
\(224\) −10.0000 −0.668153
\(225\) 0 0
\(226\) − 15.0000i − 0.997785i
\(227\) 14.0000i 0.929213i 0.885517 + 0.464606i \(0.153804\pi\)
−0.885517 + 0.464606i \(0.846196\pi\)
\(228\) 0 0
\(229\) 22.0000i 1.45380i 0.686743 + 0.726900i \(0.259040\pi\)
−0.686743 + 0.726900i \(0.740960\pi\)
\(230\) −6.00000 −0.395628
\(231\) 0 0
\(232\) − 3.00000i − 0.196960i
\(233\) 10.0000 0.655122 0.327561 0.944830i \(-0.393773\pi\)
0.327561 + 0.944830i \(0.393773\pi\)
\(234\) 0 0
\(235\) −6.00000 −0.391397
\(236\) 0 0
\(237\) 0 0
\(238\) 14.0000 0.907485
\(239\) − 30.0000i − 1.94054i −0.242028 0.970269i \(-0.577812\pi\)
0.242028 0.970269i \(-0.422188\pi\)
\(240\) 0 0
\(241\) − 7.00000i − 0.450910i −0.974254 0.225455i \(-0.927613\pi\)
0.974254 0.225455i \(-0.0723868\pi\)
\(242\) − 7.00000i − 0.449977i
\(243\) 0 0
\(244\) 1.00000 0.0640184
\(245\) 3.00000i 0.191663i
\(246\) 0 0
\(247\) 0 0
\(248\) 12.0000 0.762001
\(249\) 0 0
\(250\) 9.00000 0.569210
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 0 0
\(253\) 12.0000i 0.754434i
\(254\) 20.0000i 1.25491i
\(255\) 0 0
\(256\) −17.0000 −1.06250
\(257\) −7.00000 −0.436648 −0.218324 0.975876i \(-0.570059\pi\)
−0.218324 + 0.975876i \(0.570059\pi\)
\(258\) 0 0
\(259\) −2.00000 −0.124274
\(260\) 0 0
\(261\) 0 0
\(262\) − 8.00000i − 0.494242i
\(263\) 30.0000 1.84988 0.924940 0.380114i \(-0.124115\pi\)
0.924940 + 0.380114i \(0.124115\pi\)
\(264\) 0 0
\(265\) 9.00000i 0.552866i
\(266\) 12.0000i 0.735767i
\(267\) 0 0
\(268\) − 2.00000i − 0.122169i
\(269\) 14.0000 0.853595 0.426798 0.904347i \(-0.359642\pi\)
0.426798 + 0.904347i \(0.359642\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 7.00000 0.424437
\(273\) 0 0
\(274\) −3.00000 −0.181237
\(275\) − 8.00000i − 0.482418i
\(276\) 0 0
\(277\) 31.0000 1.86261 0.931305 0.364241i \(-0.118672\pi\)
0.931305 + 0.364241i \(0.118672\pi\)
\(278\) − 12.0000i − 0.719712i
\(279\) 0 0
\(280\) − 6.00000i − 0.358569i
\(281\) − 19.0000i − 1.13344i −0.823909 0.566722i \(-0.808211\pi\)
0.823909 0.566722i \(-0.191789\pi\)
\(282\) 0 0
\(283\) 18.0000 1.06999 0.534994 0.844856i \(-0.320314\pi\)
0.534994 + 0.844856i \(0.320314\pi\)
\(284\) − 6.00000i − 0.356034i
\(285\) 0 0
\(286\) 0 0
\(287\) −18.0000 −1.06251
\(288\) 0 0
\(289\) 32.0000 1.88235
\(290\) 1.00000 0.0587220
\(291\) 0 0
\(292\) − 11.0000i − 0.643726i
\(293\) − 9.00000i − 0.525786i −0.964825 0.262893i \(-0.915323\pi\)
0.964825 0.262893i \(-0.0846766\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −3.00000 −0.174371
\(297\) 0 0
\(298\) −3.00000 −0.173785
\(299\) 0 0
\(300\) 0 0
\(301\) 12.0000i 0.691669i
\(302\) 2.00000 0.115087
\(303\) 0 0
\(304\) 6.00000i 0.344124i
\(305\) 1.00000i 0.0572598i
\(306\) 0 0
\(307\) − 14.0000i − 0.799022i −0.916728 0.399511i \(-0.869180\pi\)
0.916728 0.399511i \(-0.130820\pi\)
\(308\) −4.00000 −0.227921
\(309\) 0 0
\(310\) 4.00000i 0.227185i
\(311\) 18.0000 1.02069 0.510343 0.859971i \(-0.329518\pi\)
0.510343 + 0.859971i \(0.329518\pi\)
\(312\) 0 0
\(313\) 6.00000 0.339140 0.169570 0.985518i \(-0.445762\pi\)
0.169570 + 0.985518i \(0.445762\pi\)
\(314\) 3.00000i 0.169300i
\(315\) 0 0
\(316\) −4.00000 −0.225018
\(317\) 25.0000i 1.40414i 0.712108 + 0.702070i \(0.247741\pi\)
−0.712108 + 0.702070i \(0.752259\pi\)
\(318\) 0 0
\(319\) − 2.00000i − 0.111979i
\(320\) − 7.00000i − 0.391312i
\(321\) 0 0
\(322\) 12.0000 0.668734
\(323\) 42.0000i 2.33694i
\(324\) 0 0
\(325\) 0 0
\(326\) 4.00000 0.221540
\(327\) 0 0
\(328\) −27.0000 −1.49083
\(329\) 12.0000 0.661581
\(330\) 0 0
\(331\) − 4.00000i − 0.219860i −0.993939 0.109930i \(-0.964937\pi\)
0.993939 0.109930i \(-0.0350627\pi\)
\(332\) 14.0000i 0.768350i
\(333\) 0 0
\(334\) 16.0000 0.875481
\(335\) 2.00000 0.109272
\(336\) 0 0
\(337\) 33.0000 1.79762 0.898812 0.438334i \(-0.144431\pi\)
0.898812 + 0.438334i \(0.144431\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) − 7.00000i − 0.379628i
\(341\) 8.00000 0.433224
\(342\) 0 0
\(343\) − 20.0000i − 1.07990i
\(344\) 18.0000i 0.970495i
\(345\) 0 0
\(346\) 6.00000i 0.322562i
\(347\) −18.0000 −0.966291 −0.483145 0.875540i \(-0.660506\pi\)
−0.483145 + 0.875540i \(0.660506\pi\)
\(348\) 0 0
\(349\) 26.0000i 1.39175i 0.718164 + 0.695874i \(0.244983\pi\)
−0.718164 + 0.695874i \(0.755017\pi\)
\(350\) −8.00000 −0.427618
\(351\) 0 0
\(352\) −10.0000 −0.533002
\(353\) 11.0000i 0.585471i 0.956193 + 0.292735i \(0.0945655\pi\)
−0.956193 + 0.292735i \(0.905434\pi\)
\(354\) 0 0
\(355\) 6.00000 0.318447
\(356\) − 14.0000i − 0.741999i
\(357\) 0 0
\(358\) 2.00000i 0.105703i
\(359\) − 18.0000i − 0.950004i −0.879985 0.475002i \(-0.842447\pi\)
0.879985 0.475002i \(-0.157553\pi\)
\(360\) 0 0
\(361\) −17.0000 −0.894737
\(362\) − 7.00000i − 0.367912i
\(363\) 0 0
\(364\) 0 0
\(365\) 11.0000 0.575766
\(366\) 0 0
\(367\) 10.0000 0.521996 0.260998 0.965339i \(-0.415948\pi\)
0.260998 + 0.965339i \(0.415948\pi\)
\(368\) 6.00000 0.312772
\(369\) 0 0
\(370\) − 1.00000i − 0.0519875i
\(371\) − 18.0000i − 0.934513i
\(372\) 0 0
\(373\) −11.0000 −0.569558 −0.284779 0.958593i \(-0.591920\pi\)
−0.284779 + 0.958593i \(0.591920\pi\)
\(374\) 14.0000 0.723923
\(375\) 0 0
\(376\) 18.0000 0.928279
\(377\) 0 0
\(378\) 0 0
\(379\) − 36.0000i − 1.84920i −0.380945 0.924598i \(-0.624401\pi\)
0.380945 0.924598i \(-0.375599\pi\)
\(380\) 6.00000 0.307794
\(381\) 0 0
\(382\) − 4.00000i − 0.204658i
\(383\) − 8.00000i − 0.408781i −0.978889 0.204390i \(-0.934479\pi\)
0.978889 0.204390i \(-0.0655212\pi\)
\(384\) 0 0
\(385\) − 4.00000i − 0.203859i
\(386\) 9.00000 0.458088
\(387\) 0 0
\(388\) − 2.00000i − 0.101535i
\(389\) 19.0000 0.963338 0.481669 0.876353i \(-0.340031\pi\)
0.481669 + 0.876353i \(0.340031\pi\)
\(390\) 0 0
\(391\) 42.0000 2.12403
\(392\) − 9.00000i − 0.454569i
\(393\) 0 0
\(394\) −6.00000 −0.302276
\(395\) − 4.00000i − 0.201262i
\(396\) 0 0
\(397\) 34.0000i 1.70641i 0.521575 + 0.853206i \(0.325345\pi\)
−0.521575 + 0.853206i \(0.674655\pi\)
\(398\) 14.0000i 0.701757i
\(399\) 0 0
\(400\) −4.00000 −0.200000
\(401\) 1.00000i 0.0499376i 0.999688 + 0.0249688i \(0.00794864\pi\)
−0.999688 + 0.0249688i \(0.992051\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 3.00000 0.149256
\(405\) 0 0
\(406\) −2.00000 −0.0992583
\(407\) −2.00000 −0.0991363
\(408\) 0 0
\(409\) 7.00000i 0.346128i 0.984911 + 0.173064i \(0.0553667\pi\)
−0.984911 + 0.173064i \(0.944633\pi\)
\(410\) − 9.00000i − 0.444478i
\(411\) 0 0
\(412\) −6.00000 −0.295599
\(413\) 0 0
\(414\) 0 0
\(415\) −14.0000 −0.687233
\(416\) 0 0
\(417\) 0 0
\(418\) 12.0000i 0.586939i
\(419\) −16.0000 −0.781651 −0.390826 0.920465i \(-0.627810\pi\)
−0.390826 + 0.920465i \(0.627810\pi\)
\(420\) 0 0
\(421\) − 19.0000i − 0.926003i −0.886357 0.463002i \(-0.846772\pi\)
0.886357 0.463002i \(-0.153228\pi\)
\(422\) 8.00000i 0.389434i
\(423\) 0 0
\(424\) − 27.0000i − 1.31124i
\(425\) −28.0000 −1.35820
\(426\) 0 0
\(427\) − 2.00000i − 0.0967868i
\(428\) 6.00000 0.290021
\(429\) 0 0
\(430\) −6.00000 −0.289346
\(431\) 30.0000i 1.44505i 0.691345 + 0.722525i \(0.257018\pi\)
−0.691345 + 0.722525i \(0.742982\pi\)
\(432\) 0 0
\(433\) −19.0000 −0.913082 −0.456541 0.889702i \(-0.650912\pi\)
−0.456541 + 0.889702i \(0.650912\pi\)
\(434\) − 8.00000i − 0.384012i
\(435\) 0 0
\(436\) − 2.00000i − 0.0957826i
\(437\) 36.0000i 1.72211i
\(438\) 0 0
\(439\) −14.0000 −0.668184 −0.334092 0.942541i \(-0.608430\pi\)
−0.334092 + 0.942541i \(0.608430\pi\)
\(440\) − 6.00000i − 0.286039i
\(441\) 0 0
\(442\) 0 0
\(443\) 4.00000 0.190046 0.0950229 0.995475i \(-0.469708\pi\)
0.0950229 + 0.995475i \(0.469708\pi\)
\(444\) 0 0
\(445\) 14.0000 0.663664
\(446\) 16.0000 0.757622
\(447\) 0 0
\(448\) 14.0000i 0.661438i
\(449\) 34.0000i 1.60456i 0.596948 + 0.802280i \(0.296380\pi\)
−0.596948 + 0.802280i \(0.703620\pi\)
\(450\) 0 0
\(451\) −18.0000 −0.847587
\(452\) 15.0000 0.705541
\(453\) 0 0
\(454\) 14.0000 0.657053
\(455\) 0 0
\(456\) 0 0
\(457\) − 13.0000i − 0.608114i −0.952654 0.304057i \(-0.901659\pi\)
0.952654 0.304057i \(-0.0983414\pi\)
\(458\) 22.0000 1.02799
\(459\) 0 0
\(460\) − 6.00000i − 0.279751i
\(461\) − 19.0000i − 0.884918i −0.896789 0.442459i \(-0.854106\pi\)
0.896789 0.442459i \(-0.145894\pi\)
\(462\) 0 0
\(463\) 26.0000i 1.20832i 0.796862 + 0.604161i \(0.206492\pi\)
−0.796862 + 0.604161i \(0.793508\pi\)
\(464\) −1.00000 −0.0464238
\(465\) 0 0
\(466\) − 10.0000i − 0.463241i
\(467\) 6.00000 0.277647 0.138823 0.990317i \(-0.455668\pi\)
0.138823 + 0.990317i \(0.455668\pi\)
\(468\) 0 0
\(469\) −4.00000 −0.184703
\(470\) 6.00000i 0.276759i
\(471\) 0 0
\(472\) 0 0
\(473\) 12.0000i 0.551761i
\(474\) 0 0
\(475\) − 24.0000i − 1.10120i
\(476\) 14.0000i 0.641689i
\(477\) 0 0
\(478\) −30.0000 −1.37217
\(479\) 24.0000i 1.09659i 0.836286 + 0.548294i \(0.184723\pi\)
−0.836286 + 0.548294i \(0.815277\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −7.00000 −0.318841
\(483\) 0 0
\(484\) 7.00000 0.318182
\(485\) 2.00000 0.0908153
\(486\) 0 0
\(487\) 18.0000i 0.815658i 0.913058 + 0.407829i \(0.133714\pi\)
−0.913058 + 0.407829i \(0.866286\pi\)
\(488\) − 3.00000i − 0.135804i
\(489\) 0 0
\(490\) 3.00000 0.135526
\(491\) 6.00000 0.270776 0.135388 0.990793i \(-0.456772\pi\)
0.135388 + 0.990793i \(0.456772\pi\)
\(492\) 0 0
\(493\) −7.00000 −0.315264
\(494\) 0 0
\(495\) 0 0
\(496\) − 4.00000i − 0.179605i
\(497\) −12.0000 −0.538274
\(498\) 0 0
\(499\) 24.0000i 1.07439i 0.843459 + 0.537194i \(0.180516\pi\)
−0.843459 + 0.537194i \(0.819484\pi\)
\(500\) 9.00000i 0.402492i
\(501\) 0 0
\(502\) − 12.0000i − 0.535586i
\(503\) 2.00000 0.0891756 0.0445878 0.999005i \(-0.485803\pi\)
0.0445878 + 0.999005i \(0.485803\pi\)
\(504\) 0 0
\(505\) 3.00000i 0.133498i
\(506\) 12.0000 0.533465
\(507\) 0 0
\(508\) −20.0000 −0.887357
\(509\) − 7.00000i − 0.310270i −0.987893 0.155135i \(-0.950419\pi\)
0.987893 0.155135i \(-0.0495812\pi\)
\(510\) 0 0
\(511\) −22.0000 −0.973223
\(512\) 11.0000i 0.486136i
\(513\) 0 0
\(514\) 7.00000i 0.308757i
\(515\) − 6.00000i − 0.264392i
\(516\) 0 0
\(517\) 12.0000 0.527759
\(518\) 2.00000i 0.0878750i
\(519\) 0 0
\(520\) 0 0
\(521\) 3.00000 0.131432 0.0657162 0.997838i \(-0.479067\pi\)
0.0657162 + 0.997838i \(0.479067\pi\)
\(522\) 0 0
\(523\) 14.0000 0.612177 0.306089 0.952003i \(-0.400980\pi\)
0.306089 + 0.952003i \(0.400980\pi\)
\(524\) 8.00000 0.349482
\(525\) 0 0
\(526\) − 30.0000i − 1.30806i
\(527\) − 28.0000i − 1.21970i
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 9.00000 0.390935
\(531\) 0 0
\(532\) −12.0000 −0.520266
\(533\) 0 0
\(534\) 0 0
\(535\) 6.00000i 0.259403i
\(536\) −6.00000 −0.259161
\(537\) 0 0
\(538\) − 14.0000i − 0.603583i
\(539\) − 6.00000i − 0.258438i
\(540\) 0 0
\(541\) − 45.0000i − 1.93470i −0.253442 0.967351i \(-0.581563\pi\)
0.253442 0.967351i \(-0.418437\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 35.0000i 1.50061i
\(545\) 2.00000 0.0856706
\(546\) 0 0
\(547\) −26.0000 −1.11168 −0.555840 0.831289i \(-0.687603\pi\)
−0.555840 + 0.831289i \(0.687603\pi\)
\(548\) − 3.00000i − 0.128154i
\(549\) 0 0
\(550\) −8.00000 −0.341121
\(551\) − 6.00000i − 0.255609i
\(552\) 0 0
\(553\) 8.00000i 0.340195i
\(554\) − 31.0000i − 1.31706i
\(555\) 0 0
\(556\) 12.0000 0.508913
\(557\) − 9.00000i − 0.381342i −0.981654 0.190671i \(-0.938934\pi\)
0.981654 0.190671i \(-0.0610664\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −2.00000 −0.0845154
\(561\) 0 0
\(562\) −19.0000 −0.801467
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 15.0000i 0.631055i
\(566\) − 18.0000i − 0.756596i
\(567\) 0 0
\(568\) −18.0000 −0.755263
\(569\) 22.0000 0.922288 0.461144 0.887325i \(-0.347439\pi\)
0.461144 + 0.887325i \(0.347439\pi\)
\(570\) 0 0
\(571\) −26.0000 −1.08807 −0.544033 0.839064i \(-0.683103\pi\)
−0.544033 + 0.839064i \(0.683103\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 18.0000i 0.751305i
\(575\) −24.0000 −1.00087
\(576\) 0 0
\(577\) 11.0000i 0.457936i 0.973434 + 0.228968i \(0.0735351\pi\)
−0.973434 + 0.228968i \(0.926465\pi\)
\(578\) − 32.0000i − 1.33102i
\(579\) 0 0
\(580\) 1.00000i 0.0415227i
\(581\) 28.0000 1.16164
\(582\) 0 0
\(583\) − 18.0000i − 0.745484i
\(584\) −33.0000 −1.36555
\(585\) 0 0
\(586\) −9.00000 −0.371787
\(587\) − 16.0000i − 0.660391i −0.943913 0.330195i \(-0.892885\pi\)
0.943913 0.330195i \(-0.107115\pi\)
\(588\) 0 0
\(589\) 24.0000 0.988903
\(590\) 0 0
\(591\) 0 0
\(592\) 1.00000i 0.0410997i
\(593\) 13.0000i 0.533846i 0.963718 + 0.266923i \(0.0860069\pi\)
−0.963718 + 0.266923i \(0.913993\pi\)
\(594\) 0 0
\(595\) −14.0000 −0.573944
\(596\) − 3.00000i − 0.122885i
\(597\) 0 0
\(598\) 0 0
\(599\) 16.0000 0.653742 0.326871 0.945069i \(-0.394006\pi\)
0.326871 + 0.945069i \(0.394006\pi\)
\(600\) 0 0
\(601\) −5.00000 −0.203954 −0.101977 0.994787i \(-0.532517\pi\)
−0.101977 + 0.994787i \(0.532517\pi\)
\(602\) 12.0000 0.489083
\(603\) 0 0
\(604\) 2.00000i 0.0813788i
\(605\) 7.00000i 0.284590i
\(606\) 0 0
\(607\) 8.00000 0.324710 0.162355 0.986732i \(-0.448091\pi\)
0.162355 + 0.986732i \(0.448091\pi\)
\(608\) −30.0000 −1.21666
\(609\) 0 0
\(610\) 1.00000 0.0404888
\(611\) 0 0
\(612\) 0 0
\(613\) − 23.0000i − 0.928961i −0.885583 0.464481i \(-0.846241\pi\)
0.885583 0.464481i \(-0.153759\pi\)
\(614\) −14.0000 −0.564994
\(615\) 0 0
\(616\) 12.0000i 0.483494i
\(617\) − 13.0000i − 0.523360i −0.965155 0.261680i \(-0.915723\pi\)
0.965155 0.261680i \(-0.0842766\pi\)
\(618\) 0 0
\(619\) 24.0000i 0.964641i 0.875995 + 0.482321i \(0.160206\pi\)
−0.875995 + 0.482321i \(0.839794\pi\)
\(620\) −4.00000 −0.160644
\(621\) 0 0
\(622\) − 18.0000i − 0.721734i
\(623\) −28.0000 −1.12180
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) − 6.00000i − 0.239808i
\(627\) 0 0
\(628\) −3.00000 −0.119713
\(629\) 7.00000i 0.279108i
\(630\) 0 0
\(631\) − 20.0000i − 0.796187i −0.917345 0.398094i \(-0.869672\pi\)
0.917345 0.398094i \(-0.130328\pi\)
\(632\) 12.0000i 0.477334i
\(633\) 0 0
\(634\) 25.0000 0.992877
\(635\) − 20.0000i − 0.793676i
\(636\) 0 0
\(637\) 0 0
\(638\) −2.00000 −0.0791808
\(639\) 0 0
\(640\) 3.00000 0.118585
\(641\) −31.0000 −1.22443 −0.612213 0.790693i \(-0.709721\pi\)
−0.612213 + 0.790693i \(0.709721\pi\)
\(642\) 0 0
\(643\) − 16.0000i − 0.630978i −0.948929 0.315489i \(-0.897831\pi\)
0.948929 0.315489i \(-0.102169\pi\)
\(644\) 12.0000i 0.472866i
\(645\) 0 0
\(646\) 42.0000 1.65247
\(647\) −32.0000 −1.25805 −0.629025 0.777385i \(-0.716546\pi\)
−0.629025 + 0.777385i \(0.716546\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 4.00000i 0.156652i
\(653\) 6.00000 0.234798 0.117399 0.993085i \(-0.462544\pi\)
0.117399 + 0.993085i \(0.462544\pi\)
\(654\) 0 0
\(655\) 8.00000i 0.312586i
\(656\) 9.00000i 0.351391i
\(657\) 0 0
\(658\) − 12.0000i − 0.467809i
\(659\) 8.00000 0.311636 0.155818 0.987786i \(-0.450199\pi\)
0.155818 + 0.987786i \(0.450199\pi\)
\(660\) 0 0
\(661\) − 45.0000i − 1.75030i −0.483854 0.875149i \(-0.660764\pi\)
0.483854 0.875149i \(-0.339236\pi\)
\(662\) −4.00000 −0.155464
\(663\) 0 0
\(664\) 42.0000 1.62992
\(665\) − 12.0000i − 0.465340i
\(666\) 0 0
\(667\) −6.00000 −0.232321
\(668\) 16.0000i 0.619059i
\(669\) 0 0
\(670\) − 2.00000i − 0.0772667i
\(671\) − 2.00000i − 0.0772091i
\(672\) 0 0
\(673\) 29.0000 1.11787 0.558934 0.829212i \(-0.311211\pi\)
0.558934 + 0.829212i \(0.311211\pi\)
\(674\) − 33.0000i − 1.27111i
\(675\) 0 0
\(676\) 0 0
\(677\) −34.0000 −1.30673 −0.653363 0.757045i \(-0.726642\pi\)
−0.653363 + 0.757045i \(0.726642\pi\)
\(678\) 0 0
\(679\) −4.00000 −0.153506
\(680\) −21.0000 −0.805313
\(681\) 0 0
\(682\) − 8.00000i − 0.306336i
\(683\) − 24.0000i − 0.918334i −0.888350 0.459167i \(-0.848148\pi\)
0.888350 0.459167i \(-0.151852\pi\)
\(684\) 0 0
\(685\) 3.00000 0.114624
\(686\) −20.0000 −0.763604
\(687\) 0 0
\(688\) 6.00000 0.228748
\(689\) 0 0
\(690\) 0 0
\(691\) 42.0000i 1.59776i 0.601494 + 0.798878i \(0.294573\pi\)
−0.601494 + 0.798878i \(0.705427\pi\)
\(692\) −6.00000 −0.228086
\(693\) 0 0
\(694\) 18.0000i 0.683271i
\(695\) 12.0000i 0.455186i
\(696\) 0 0
\(697\) 63.0000i 2.38630i
\(698\) 26.0000 0.984115
\(699\) 0 0
\(700\) − 8.00000i − 0.302372i
\(701\) 2.00000 0.0755390 0.0377695 0.999286i \(-0.487975\pi\)
0.0377695 + 0.999286i \(0.487975\pi\)
\(702\) 0 0
\(703\) −6.00000 −0.226294
\(704\) 14.0000i 0.527645i
\(705\) 0 0
\(706\) 11.0000 0.413990
\(707\) − 6.00000i − 0.225653i
\(708\) 0 0
\(709\) 11.0000i 0.413114i 0.978435 + 0.206557i \(0.0662258\pi\)
−0.978435 + 0.206557i \(0.933774\pi\)
\(710\) − 6.00000i − 0.225176i
\(711\) 0 0
\(712\) −42.0000 −1.57402
\(713\) − 24.0000i − 0.898807i
\(714\) 0 0
\(715\) 0 0
\(716\) −2.00000 −0.0747435
\(717\) 0 0
\(718\) −18.0000 −0.671754
\(719\) −48.0000 −1.79010 −0.895049 0.445968i \(-0.852860\pi\)
−0.895049 + 0.445968i \(0.852860\pi\)
\(720\) 0 0
\(721\) 12.0000i 0.446903i
\(722\) 17.0000i 0.632674i
\(723\) 0 0
\(724\) 7.00000 0.260153
\(725\) 4.00000 0.148556
\(726\) 0 0
\(727\) −14.0000 −0.519231 −0.259616 0.965712i \(-0.583596\pi\)
−0.259616 + 0.965712i \(0.583596\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) − 11.0000i − 0.407128i
\(731\) 42.0000 1.55343
\(732\) 0 0
\(733\) − 15.0000i − 0.554038i −0.960864 0.277019i \(-0.910654\pi\)
0.960864 0.277019i \(-0.0893464\pi\)
\(734\) − 10.0000i − 0.369107i
\(735\) 0 0
\(736\) 30.0000i 1.10581i
\(737\) −4.00000 −0.147342
\(738\) 0 0
\(739\) 16.0000i 0.588570i 0.955718 + 0.294285i \(0.0950814\pi\)
−0.955718 + 0.294285i \(0.904919\pi\)
\(740\) 1.00000 0.0367607
\(741\) 0 0
\(742\) −18.0000 −0.660801
\(743\) 36.0000i 1.32071i 0.750953 + 0.660356i \(0.229595\pi\)
−0.750953 + 0.660356i \(0.770405\pi\)
\(744\) 0 0
\(745\) 3.00000 0.109911
\(746\) 11.0000i 0.402739i
\(747\) 0 0
\(748\) 14.0000i 0.511891i
\(749\) − 12.0000i − 0.438470i
\(750\) 0 0
\(751\) 34.0000 1.24068 0.620339 0.784334i \(-0.286995\pi\)
0.620339 + 0.784334i \(0.286995\pi\)
\(752\) − 6.00000i − 0.218797i
\(753\) 0 0
\(754\) 0 0
\(755\) −2.00000 −0.0727875
\(756\) 0 0
\(757\) −50.0000 −1.81728 −0.908640 0.417579i \(-0.862879\pi\)
−0.908640 + 0.417579i \(0.862879\pi\)
\(758\) −36.0000 −1.30758
\(759\) 0 0
\(760\) − 18.0000i − 0.652929i
\(761\) 50.0000i 1.81250i 0.422744 + 0.906249i \(0.361067\pi\)
−0.422744 + 0.906249i \(0.638933\pi\)
\(762\) 0 0
\(763\) −4.00000 −0.144810
\(764\) 4.00000 0.144715
\(765\) 0 0
\(766\) −8.00000 −0.289052
\(767\) 0 0
\(768\) 0 0
\(769\) 30.0000i 1.08183i 0.841078 + 0.540914i \(0.181921\pi\)
−0.841078 + 0.540914i \(0.818079\pi\)
\(770\) −4.00000 −0.144150
\(771\) 0 0
\(772\) 9.00000i 0.323917i
\(773\) 14.0000i 0.503545i 0.967786 + 0.251773i \(0.0810135\pi\)
−0.967786 + 0.251773i \(0.918987\pi\)
\(774\) 0 0
\(775\) 16.0000i 0.574737i
\(776\) −6.00000 −0.215387
\(777\) 0 0
\(778\) − 19.0000i − 0.681183i
\(779\) −54.0000 −1.93475
\(780\) 0 0
\(781\) −12.0000 −0.429394
\(782\) − 42.0000i − 1.50192i
\(783\) 0 0
\(784\) −3.00000 −0.107143
\(785\) − 3.00000i − 0.107075i
\(786\) 0 0
\(787\) − 28.0000i − 0.998092i −0.866575 0.499046i \(-0.833684\pi\)
0.866575 0.499046i \(-0.166316\pi\)
\(788\) − 6.00000i − 0.213741i
\(789\) 0 0
\(790\) −4.00000 −0.142314
\(791\) − 30.0000i − 1.06668i
\(792\) 0 0
\(793\) 0 0
\(794\) 34.0000 1.20661
\(795\) 0 0
\(796\) −14.0000 −0.496217
\(797\) −2.00000 −0.0708436 −0.0354218 0.999372i \(-0.511277\pi\)
−0.0354218 + 0.999372i \(0.511277\pi\)
\(798\) 0 0
\(799\) − 42.0000i − 1.48585i
\(800\) − 20.0000i − 0.707107i
\(801\) 0 0
\(802\) 1.00000 0.0353112
\(803\) −22.0000 −0.776363
\(804\) 0 0
\(805\) −12.0000 −0.422944
\(806\) 0 0
\(807\) 0 0
\(808\) − 9.00000i − 0.316619i
\(809\) −33.0000 −1.16022 −0.580109 0.814539i \(-0.696990\pi\)
−0.580109 + 0.814539i \(0.696990\pi\)
\(810\) 0 0
\(811\) − 28.0000i − 0.983213i −0.870817 0.491606i \(-0.836410\pi\)
0.870817 0.491606i \(-0.163590\pi\)
\(812\) − 2.00000i − 0.0701862i
\(813\) 0 0
\(814\) 2.00000i 0.0701000i
\(815\) −4.00000 −0.140114
\(816\) 0 0
\(817\) 36.0000i 1.25948i
\(818\) 7.00000 0.244749
\(819\) 0 0
\(820\) 9.00000 0.314294
\(821\) − 50.0000i − 1.74501i −0.488603 0.872506i \(-0.662493\pi\)
0.488603 0.872506i \(-0.337507\pi\)
\(822\) 0 0
\(823\) 24.0000 0.836587 0.418294 0.908312i \(-0.362628\pi\)
0.418294 + 0.908312i \(0.362628\pi\)
\(824\) 18.0000i 0.627060i
\(825\) 0 0
\(826\) 0 0
\(827\) 16.0000i 0.556375i 0.960527 + 0.278187i \(0.0897336\pi\)
−0.960527 + 0.278187i \(0.910266\pi\)
\(828\) 0 0
\(829\) −17.0000 −0.590434 −0.295217 0.955430i \(-0.595392\pi\)
−0.295217 + 0.955430i \(0.595392\pi\)
\(830\) 14.0000i 0.485947i
\(831\) 0 0
\(832\) 0 0
\(833\) −21.0000 −0.727607
\(834\) 0 0
\(835\) −16.0000 −0.553703
\(836\) −12.0000 −0.415029
\(837\) 0 0
\(838\) 16.0000i 0.552711i
\(839\) 12.0000i 0.414286i 0.978311 + 0.207143i \(0.0664165\pi\)
−0.978311 + 0.207143i \(0.933583\pi\)
\(840\) 0 0
\(841\) −28.0000 −0.965517
\(842\) −19.0000 −0.654783
\(843\) 0 0
\(844\) −8.00000 −0.275371
\(845\) 0 0
\(846\) 0 0
\(847\) − 14.0000i − 0.481046i
\(848\) −9.00000 −0.309061
\(849\) 0 0
\(850\) 28.0000i 0.960392i
\(851\) 6.00000i 0.205677i
\(852\) 0 0
\(853\) − 21.0000i − 0.719026i −0.933140 0.359513i \(-0.882943\pi\)
0.933140 0.359513i \(-0.117057\pi\)
\(854\) −2.00000 −0.0684386
\(855\) 0 0
\(856\) − 18.0000i − 0.615227i
\(857\) −31.0000 −1.05894 −0.529470 0.848329i \(-0.677609\pi\)
−0.529470 + 0.848329i \(0.677609\pi\)
\(858\) 0 0
\(859\) 34.0000 1.16007 0.580033 0.814593i \(-0.303040\pi\)
0.580033 + 0.814593i \(0.303040\pi\)
\(860\) − 6.00000i − 0.204598i
\(861\) 0 0
\(862\) 30.0000 1.02180
\(863\) − 10.0000i − 0.340404i −0.985409 0.170202i \(-0.945558\pi\)
0.985409 0.170202i \(-0.0544420\pi\)
\(864\) 0 0
\(865\) − 6.00000i − 0.204006i
\(866\) 19.0000i 0.645646i
\(867\) 0 0
\(868\) 8.00000 0.271538
\(869\) 8.00000i 0.271381i
\(870\) 0 0
\(871\) 0 0
\(872\) −6.00000 −0.203186
\(873\) 0 0
\(874\) 36.0000 1.21772
\(875\) 18.0000 0.608511
\(876\) 0 0
\(877\) 17.0000i 0.574049i 0.957923 + 0.287025i \(0.0926662\pi\)
−0.957923 + 0.287025i \(0.907334\pi\)
\(878\) 14.0000i 0.472477i
\(879\) 0 0
\(880\) −2.00000 −0.0674200
\(881\) 37.0000 1.24656 0.623281 0.781998i \(-0.285799\pi\)
0.623281 + 0.781998i \(0.285799\pi\)
\(882\) 0 0
\(883\) −16.0000 −0.538443 −0.269221 0.963078i \(-0.586766\pi\)
−0.269221 + 0.963078i \(0.586766\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) − 4.00000i − 0.134383i
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 40.0000i 1.34156i
\(890\) − 14.0000i − 0.469281i
\(891\) 0 0
\(892\) 16.0000i 0.535720i
\(893\) 36.0000 1.20469
\(894\) 0 0
\(895\) − 2.00000i − 0.0668526i
\(896\) −6.00000 −0.200446
\(897\) 0 0
\(898\) 34.0000 1.13459
\(899\) 4.00000i 0.133407i
\(900\) 0 0
\(901\) −63.0000 −2.09883
\(902\) 18.0000i 0.599334i
\(903\) 0 0
\(904\) − 45.0000i − 1.49668i
\(905\) 7.00000i 0.232688i
\(906\) 0 0
\(907\) −12.0000 −0.398453 −0.199227 0.979953i \(-0.563843\pi\)
−0.199227 + 0.979953i \(0.563843\pi\)
\(908\) 14.0000i 0.464606i
\(909\) 0 0
\(910\) 0 0
\(911\) 40.0000 1.32526 0.662630 0.748947i \(-0.269440\pi\)
0.662630 + 0.748947i \(0.269440\pi\)
\(912\) 0 0
\(913\) 28.0000 0.926665
\(914\) −13.0000 −0.430002
\(915\) 0 0
\(916\) 22.0000i 0.726900i
\(917\) − 16.0000i − 0.528367i
\(918\) 0 0
\(919\) 24.0000 0.791687 0.395843 0.918318i \(-0.370452\pi\)
0.395843 + 0.918318i \(0.370452\pi\)
\(920\) −18.0000 −0.593442
\(921\) 0 0
\(922\) −19.0000 −0.625732
\(923\) 0 0
\(924\) 0 0
\(925\) − 4.00000i − 0.131519i
\(926\) 26.0000 0.854413
\(927\) 0 0
\(928\) − 5.00000i − 0.164133i
\(929\) 27.0000i 0.885841i 0.896561 + 0.442921i \(0.146058\pi\)
−0.896561 + 0.442921i \(0.853942\pi\)
\(930\) 0 0
\(931\) − 18.0000i − 0.589926i
\(932\) 10.0000 0.327561
\(933\) 0 0
\(934\) − 6.00000i − 0.196326i
\(935\) −14.0000 −0.457849
\(936\) 0 0
\(937\) −49.0000 −1.60076 −0.800380 0.599493i \(-0.795369\pi\)
−0.800380 + 0.599493i \(0.795369\pi\)
\(938\) 4.00000i 0.130605i
\(939\) 0 0
\(940\) −6.00000 −0.195698
\(941\) 38.0000i 1.23876i 0.785090 + 0.619382i \(0.212617\pi\)
−0.785090 + 0.619382i \(0.787383\pi\)
\(942\) 0 0
\(943\) 54.0000i 1.75848i
\(944\) 0 0
\(945\) 0 0
\(946\) 12.0000 0.390154
\(947\) − 48.0000i − 1.55979i −0.625910 0.779895i \(-0.715272\pi\)
0.625910 0.779895i \(-0.284728\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −24.0000 −0.778663
\(951\) 0 0
\(952\) 42.0000 1.36123
\(953\) 6.00000 0.194359 0.0971795 0.995267i \(-0.469018\pi\)
0.0971795 + 0.995267i \(0.469018\pi\)
\(954\) 0 0
\(955\) 4.00000i 0.129437i
\(956\) − 30.0000i − 0.970269i
\(957\) 0 0
\(958\) 24.0000 0.775405
\(959\) −6.00000 −0.193750
\(960\) 0 0
\(961\) 15.0000 0.483871
\(962\) 0 0
\(963\) 0 0
\(964\) − 7.00000i − 0.225455i
\(965\) −9.00000 −0.289720
\(966\) 0 0
\(967\) 2.00000i 0.0643157i 0.999483 + 0.0321578i \(0.0102379\pi\)
−0.999483 + 0.0321578i \(0.989762\pi\)
\(968\) − 21.0000i − 0.674966i
\(969\) 0 0
\(970\) − 2.00000i − 0.0642161i
\(971\) −36.0000 −1.15529 −0.577647 0.816286i \(-0.696029\pi\)
−0.577647 + 0.816286i \(0.696029\pi\)
\(972\) 0 0
\(973\) − 24.0000i − 0.769405i
\(974\) 18.0000 0.576757
\(975\) 0 0
\(976\) −1.00000 −0.0320092
\(977\) − 33.0000i − 1.05576i −0.849318 0.527882i \(-0.822986\pi\)
0.849318 0.527882i \(-0.177014\pi\)
\(978\) 0 0
\(979\) −28.0000 −0.894884
\(980\) 3.00000i 0.0958315i
\(981\) 0 0
\(982\) − 6.00000i − 0.191468i
\(983\) 4.00000i 0.127580i 0.997963 + 0.0637901i \(0.0203188\pi\)
−0.997963 + 0.0637901i \(0.979681\pi\)
\(984\) 0 0
\(985\) 6.00000 0.191176
\(986\) 7.00000i 0.222925i
\(987\) 0 0
\(988\) 0 0
\(989\) 36.0000 1.14473
\(990\) 0 0
\(991\) −2.00000 −0.0635321 −0.0317660 0.999495i \(-0.510113\pi\)
−0.0317660 + 0.999495i \(0.510113\pi\)
\(992\) 20.0000 0.635001
\(993\) 0 0
\(994\) 12.0000i 0.380617i
\(995\) − 14.0000i − 0.443830i
\(996\) 0 0
\(997\) −35.0000 −1.10846 −0.554231 0.832363i \(-0.686987\pi\)
−0.554231 + 0.832363i \(0.686987\pi\)
\(998\) 24.0000 0.759707
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1521.2.b.c.1351.1 2
3.2 odd 2 507.2.b.b.337.2 2
13.2 odd 12 117.2.g.b.100.1 2
13.5 odd 4 1521.2.a.a.1.1 1
13.6 odd 12 117.2.g.b.55.1 2
13.8 odd 4 1521.2.a.d.1.1 1
13.12 even 2 inner 1521.2.b.c.1351.2 2
39.2 even 12 39.2.e.a.22.1 yes 2
39.5 even 4 507.2.a.c.1.1 1
39.8 even 4 507.2.a.b.1.1 1
39.11 even 12 507.2.e.c.22.1 2
39.17 odd 6 507.2.j.d.361.1 4
39.20 even 12 507.2.e.c.484.1 2
39.23 odd 6 507.2.j.d.316.2 4
39.29 odd 6 507.2.j.d.316.1 4
39.32 even 12 39.2.e.a.16.1 2
39.35 odd 6 507.2.j.d.361.2 4
39.38 odd 2 507.2.b.b.337.1 2
52.15 even 12 1872.2.t.j.1153.1 2
52.19 even 12 1872.2.t.j.289.1 2
156.47 odd 4 8112.2.a.bc.1.1 1
156.71 odd 12 624.2.q.c.289.1 2
156.83 odd 4 8112.2.a.w.1.1 1
156.119 odd 12 624.2.q.c.529.1 2
195.2 odd 12 975.2.bb.d.724.1 4
195.32 odd 12 975.2.bb.d.874.2 4
195.119 even 12 975.2.i.f.451.1 2
195.149 even 12 975.2.i.f.601.1 2
195.158 odd 12 975.2.bb.d.724.2 4
195.188 odd 12 975.2.bb.d.874.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
39.2.e.a.16.1 2 39.32 even 12
39.2.e.a.22.1 yes 2 39.2 even 12
117.2.g.b.55.1 2 13.6 odd 12
117.2.g.b.100.1 2 13.2 odd 12
507.2.a.b.1.1 1 39.8 even 4
507.2.a.c.1.1 1 39.5 even 4
507.2.b.b.337.1 2 39.38 odd 2
507.2.b.b.337.2 2 3.2 odd 2
507.2.e.c.22.1 2 39.11 even 12
507.2.e.c.484.1 2 39.20 even 12
507.2.j.d.316.1 4 39.29 odd 6
507.2.j.d.316.2 4 39.23 odd 6
507.2.j.d.361.1 4 39.17 odd 6
507.2.j.d.361.2 4 39.35 odd 6
624.2.q.c.289.1 2 156.71 odd 12
624.2.q.c.529.1 2 156.119 odd 12
975.2.i.f.451.1 2 195.119 even 12
975.2.i.f.601.1 2 195.149 even 12
975.2.bb.d.724.1 4 195.2 odd 12
975.2.bb.d.724.2 4 195.158 odd 12
975.2.bb.d.874.1 4 195.188 odd 12
975.2.bb.d.874.2 4 195.32 odd 12
1521.2.a.a.1.1 1 13.5 odd 4
1521.2.a.d.1.1 1 13.8 odd 4
1521.2.b.c.1351.1 2 1.1 even 1 trivial
1521.2.b.c.1351.2 2 13.12 even 2 inner
1872.2.t.j.289.1 2 52.19 even 12
1872.2.t.j.1153.1 2 52.15 even 12
8112.2.a.w.1.1 1 156.83 odd 4
8112.2.a.bc.1.1 1 156.47 odd 4