Properties

Label 624.2.q.c.289.1
Level $624$
Weight $2$
Character 624.289
Analytic conductor $4.983$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [624,2,Mod(289,624)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(624, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("624.289");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 624 = 2^{4} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 624.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.98266508613\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 39)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 624.289
Dual form 624.2.q.c.529.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{3} -1.00000 q^{5} +(1.00000 - 1.73205i) q^{7} +(-0.500000 + 0.866025i) q^{9} +(-1.00000 - 1.73205i) q^{11} +(-3.50000 + 0.866025i) q^{13} +(0.500000 + 0.866025i) q^{15} +(3.50000 - 6.06218i) q^{17} +(-3.00000 + 5.19615i) q^{19} -2.00000 q^{21} +(-3.00000 - 5.19615i) q^{23} -4.00000 q^{25} +1.00000 q^{27} +(0.500000 + 0.866025i) q^{29} -4.00000 q^{31} +(-1.00000 + 1.73205i) q^{33} +(-1.00000 + 1.73205i) q^{35} +(-0.500000 - 0.866025i) q^{37} +(2.50000 + 2.59808i) q^{39} +(-4.50000 - 7.79423i) q^{41} +(3.00000 - 5.19615i) q^{43} +(0.500000 - 0.866025i) q^{45} -6.00000 q^{47} +(1.50000 + 2.59808i) q^{49} -7.00000 q^{51} -9.00000 q^{53} +(1.00000 + 1.73205i) q^{55} +6.00000 q^{57} +(-0.500000 + 0.866025i) q^{61} +(1.00000 + 1.73205i) q^{63} +(3.50000 - 0.866025i) q^{65} +(-1.00000 - 1.73205i) q^{67} +(-3.00000 + 5.19615i) q^{69} +(3.00000 - 5.19615i) q^{71} +11.0000 q^{73} +(2.00000 + 3.46410i) q^{75} -4.00000 q^{77} +4.00000 q^{79} +(-0.500000 - 0.866025i) q^{81} +14.0000 q^{83} +(-3.50000 + 6.06218i) q^{85} +(0.500000 - 0.866025i) q^{87} +(7.00000 + 12.1244i) q^{89} +(-2.00000 + 6.92820i) q^{91} +(2.00000 + 3.46410i) q^{93} +(3.00000 - 5.19615i) q^{95} +(1.00000 - 1.73205i) q^{97} +2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{3} - 2 q^{5} + 2 q^{7} - q^{9} - 2 q^{11} - 7 q^{13} + q^{15} + 7 q^{17} - 6 q^{19} - 4 q^{21} - 6 q^{23} - 8 q^{25} + 2 q^{27} + q^{29} - 8 q^{31} - 2 q^{33} - 2 q^{35} - q^{37} + 5 q^{39}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/624\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(209\) \(469\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.500000 0.866025i −0.288675 0.500000i
\(4\) 0 0
\(5\) −1.00000 −0.447214 −0.223607 0.974679i \(-0.571783\pi\)
−0.223607 + 0.974679i \(0.571783\pi\)
\(6\) 0 0
\(7\) 1.00000 1.73205i 0.377964 0.654654i −0.612801 0.790237i \(-0.709957\pi\)
0.990766 + 0.135583i \(0.0432908\pi\)
\(8\) 0 0
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) −1.00000 1.73205i −0.301511 0.522233i 0.674967 0.737848i \(-0.264158\pi\)
−0.976478 + 0.215615i \(0.930824\pi\)
\(12\) 0 0
\(13\) −3.50000 + 0.866025i −0.970725 + 0.240192i
\(14\) 0 0
\(15\) 0.500000 + 0.866025i 0.129099 + 0.223607i
\(16\) 0 0
\(17\) 3.50000 6.06218i 0.848875 1.47029i −0.0333386 0.999444i \(-0.510614\pi\)
0.882213 0.470850i \(-0.156053\pi\)
\(18\) 0 0
\(19\) −3.00000 + 5.19615i −0.688247 + 1.19208i 0.284157 + 0.958778i \(0.408286\pi\)
−0.972404 + 0.233301i \(0.925047\pi\)
\(20\) 0 0
\(21\) −2.00000 −0.436436
\(22\) 0 0
\(23\) −3.00000 5.19615i −0.625543 1.08347i −0.988436 0.151642i \(-0.951544\pi\)
0.362892 0.931831i \(-0.381789\pi\)
\(24\) 0 0
\(25\) −4.00000 −0.800000
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 0.500000 + 0.866025i 0.0928477 + 0.160817i 0.908708 0.417432i \(-0.137070\pi\)
−0.815861 + 0.578249i \(0.803736\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 0 0
\(33\) −1.00000 + 1.73205i −0.174078 + 0.301511i
\(34\) 0 0
\(35\) −1.00000 + 1.73205i −0.169031 + 0.292770i
\(36\) 0 0
\(37\) −0.500000 0.866025i −0.0821995 0.142374i 0.821995 0.569495i \(-0.192861\pi\)
−0.904194 + 0.427121i \(0.859528\pi\)
\(38\) 0 0
\(39\) 2.50000 + 2.59808i 0.400320 + 0.416025i
\(40\) 0 0
\(41\) −4.50000 7.79423i −0.702782 1.21725i −0.967486 0.252924i \(-0.918608\pi\)
0.264704 0.964330i \(-0.414726\pi\)
\(42\) 0 0
\(43\) 3.00000 5.19615i 0.457496 0.792406i −0.541332 0.840809i \(-0.682080\pi\)
0.998828 + 0.0484030i \(0.0154132\pi\)
\(44\) 0 0
\(45\) 0.500000 0.866025i 0.0745356 0.129099i
\(46\) 0 0
\(47\) −6.00000 −0.875190 −0.437595 0.899172i \(-0.644170\pi\)
−0.437595 + 0.899172i \(0.644170\pi\)
\(48\) 0 0
\(49\) 1.50000 + 2.59808i 0.214286 + 0.371154i
\(50\) 0 0
\(51\) −7.00000 −0.980196
\(52\) 0 0
\(53\) −9.00000 −1.23625 −0.618123 0.786082i \(-0.712106\pi\)
−0.618123 + 0.786082i \(0.712106\pi\)
\(54\) 0 0
\(55\) 1.00000 + 1.73205i 0.134840 + 0.233550i
\(56\) 0 0
\(57\) 6.00000 0.794719
\(58\) 0 0
\(59\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(60\) 0 0
\(61\) −0.500000 + 0.866025i −0.0640184 + 0.110883i −0.896258 0.443533i \(-0.853725\pi\)
0.832240 + 0.554416i \(0.187058\pi\)
\(62\) 0 0
\(63\) 1.00000 + 1.73205i 0.125988 + 0.218218i
\(64\) 0 0
\(65\) 3.50000 0.866025i 0.434122 0.107417i
\(66\) 0 0
\(67\) −1.00000 1.73205i −0.122169 0.211604i 0.798454 0.602056i \(-0.205652\pi\)
−0.920623 + 0.390453i \(0.872318\pi\)
\(68\) 0 0
\(69\) −3.00000 + 5.19615i −0.361158 + 0.625543i
\(70\) 0 0
\(71\) 3.00000 5.19615i 0.356034 0.616670i −0.631260 0.775571i \(-0.717462\pi\)
0.987294 + 0.158901i \(0.0507952\pi\)
\(72\) 0 0
\(73\) 11.0000 1.28745 0.643726 0.765256i \(-0.277388\pi\)
0.643726 + 0.765256i \(0.277388\pi\)
\(74\) 0 0
\(75\) 2.00000 + 3.46410i 0.230940 + 0.400000i
\(76\) 0 0
\(77\) −4.00000 −0.455842
\(78\) 0 0
\(79\) 4.00000 0.450035 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 14.0000 1.53670 0.768350 0.640030i \(-0.221078\pi\)
0.768350 + 0.640030i \(0.221078\pi\)
\(84\) 0 0
\(85\) −3.50000 + 6.06218i −0.379628 + 0.657536i
\(86\) 0 0
\(87\) 0.500000 0.866025i 0.0536056 0.0928477i
\(88\) 0 0
\(89\) 7.00000 + 12.1244i 0.741999 + 1.28518i 0.951584 + 0.307389i \(0.0994552\pi\)
−0.209585 + 0.977790i \(0.567211\pi\)
\(90\) 0 0
\(91\) −2.00000 + 6.92820i −0.209657 + 0.726273i
\(92\) 0 0
\(93\) 2.00000 + 3.46410i 0.207390 + 0.359211i
\(94\) 0 0
\(95\) 3.00000 5.19615i 0.307794 0.533114i
\(96\) 0 0
\(97\) 1.00000 1.73205i 0.101535 0.175863i −0.810782 0.585348i \(-0.800958\pi\)
0.912317 + 0.409484i \(0.134291\pi\)
\(98\) 0 0
\(99\) 2.00000 0.201008
\(100\) 0 0
\(101\) −1.50000 2.59808i −0.149256 0.258518i 0.781697 0.623658i \(-0.214354\pi\)
−0.930953 + 0.365140i \(0.881021\pi\)
\(102\) 0 0
\(103\) −6.00000 −0.591198 −0.295599 0.955312i \(-0.595519\pi\)
−0.295599 + 0.955312i \(0.595519\pi\)
\(104\) 0 0
\(105\) 2.00000 0.195180
\(106\) 0 0
\(107\) −3.00000 5.19615i −0.290021 0.502331i 0.683793 0.729676i \(-0.260329\pi\)
−0.973814 + 0.227345i \(0.926996\pi\)
\(108\) 0 0
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) 0 0
\(111\) −0.500000 + 0.866025i −0.0474579 + 0.0821995i
\(112\) 0 0
\(113\) 7.50000 12.9904i 0.705541 1.22203i −0.260955 0.965351i \(-0.584038\pi\)
0.966496 0.256681i \(-0.0826291\pi\)
\(114\) 0 0
\(115\) 3.00000 + 5.19615i 0.279751 + 0.484544i
\(116\) 0 0
\(117\) 1.00000 3.46410i 0.0924500 0.320256i
\(118\) 0 0
\(119\) −7.00000 12.1244i −0.641689 1.11144i
\(120\) 0 0
\(121\) 3.50000 6.06218i 0.318182 0.551107i
\(122\) 0 0
\(123\) −4.50000 + 7.79423i −0.405751 + 0.702782i
\(124\) 0 0
\(125\) 9.00000 0.804984
\(126\) 0 0
\(127\) 10.0000 + 17.3205i 0.887357 + 1.53695i 0.842989 + 0.537931i \(0.180794\pi\)
0.0443678 + 0.999015i \(0.485873\pi\)
\(128\) 0 0
\(129\) −6.00000 −0.528271
\(130\) 0 0
\(131\) 8.00000 0.698963 0.349482 0.936943i \(-0.386358\pi\)
0.349482 + 0.936943i \(0.386358\pi\)
\(132\) 0 0
\(133\) 6.00000 + 10.3923i 0.520266 + 0.901127i
\(134\) 0 0
\(135\) −1.00000 −0.0860663
\(136\) 0 0
\(137\) 1.50000 2.59808i 0.128154 0.221969i −0.794808 0.606861i \(-0.792428\pi\)
0.922961 + 0.384893i \(0.125762\pi\)
\(138\) 0 0
\(139\) 6.00000 10.3923i 0.508913 0.881464i −0.491033 0.871141i \(-0.663381\pi\)
0.999947 0.0103230i \(-0.00328598\pi\)
\(140\) 0 0
\(141\) 3.00000 + 5.19615i 0.252646 + 0.437595i
\(142\) 0 0
\(143\) 5.00000 + 5.19615i 0.418121 + 0.434524i
\(144\) 0 0
\(145\) −0.500000 0.866025i −0.0415227 0.0719195i
\(146\) 0 0
\(147\) 1.50000 2.59808i 0.123718 0.214286i
\(148\) 0 0
\(149\) −1.50000 + 2.59808i −0.122885 + 0.212843i −0.920904 0.389789i \(-0.872548\pi\)
0.798019 + 0.602632i \(0.205881\pi\)
\(150\) 0 0
\(151\) 2.00000 0.162758 0.0813788 0.996683i \(-0.474068\pi\)
0.0813788 + 0.996683i \(0.474068\pi\)
\(152\) 0 0
\(153\) 3.50000 + 6.06218i 0.282958 + 0.490098i
\(154\) 0 0
\(155\) 4.00000 0.321288
\(156\) 0 0
\(157\) −3.00000 −0.239426 −0.119713 0.992809i \(-0.538197\pi\)
−0.119713 + 0.992809i \(0.538197\pi\)
\(158\) 0 0
\(159\) 4.50000 + 7.79423i 0.356873 + 0.618123i
\(160\) 0 0
\(161\) −12.0000 −0.945732
\(162\) 0 0
\(163\) −2.00000 + 3.46410i −0.156652 + 0.271329i −0.933659 0.358162i \(-0.883403\pi\)
0.777007 + 0.629492i \(0.216737\pi\)
\(164\) 0 0
\(165\) 1.00000 1.73205i 0.0778499 0.134840i
\(166\) 0 0
\(167\) 8.00000 + 13.8564i 0.619059 + 1.07224i 0.989658 + 0.143448i \(0.0458190\pi\)
−0.370599 + 0.928793i \(0.620848\pi\)
\(168\) 0 0
\(169\) 11.5000 6.06218i 0.884615 0.466321i
\(170\) 0 0
\(171\) −3.00000 5.19615i −0.229416 0.397360i
\(172\) 0 0
\(173\) 3.00000 5.19615i 0.228086 0.395056i −0.729155 0.684349i \(-0.760087\pi\)
0.957241 + 0.289292i \(0.0934200\pi\)
\(174\) 0 0
\(175\) −4.00000 + 6.92820i −0.302372 + 0.523723i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1.00000 1.73205i −0.0747435 0.129460i 0.826231 0.563331i \(-0.190480\pi\)
−0.900975 + 0.433872i \(0.857147\pi\)
\(180\) 0 0
\(181\) −7.00000 −0.520306 −0.260153 0.965567i \(-0.583773\pi\)
−0.260153 + 0.965567i \(0.583773\pi\)
\(182\) 0 0
\(183\) 1.00000 0.0739221
\(184\) 0 0
\(185\) 0.500000 + 0.866025i 0.0367607 + 0.0636715i
\(186\) 0 0
\(187\) −14.0000 −1.02378
\(188\) 0 0
\(189\) 1.00000 1.73205i 0.0727393 0.125988i
\(190\) 0 0
\(191\) −2.00000 + 3.46410i −0.144715 + 0.250654i −0.929267 0.369410i \(-0.879560\pi\)
0.784552 + 0.620063i \(0.212893\pi\)
\(192\) 0 0
\(193\) 4.50000 + 7.79423i 0.323917 + 0.561041i 0.981293 0.192522i \(-0.0616668\pi\)
−0.657376 + 0.753563i \(0.728333\pi\)
\(194\) 0 0
\(195\) −2.50000 2.59808i −0.179029 0.186052i
\(196\) 0 0
\(197\) −3.00000 5.19615i −0.213741 0.370211i 0.739141 0.673550i \(-0.235232\pi\)
−0.952882 + 0.303340i \(0.901898\pi\)
\(198\) 0 0
\(199\) 7.00000 12.1244i 0.496217 0.859473i −0.503774 0.863836i \(-0.668055\pi\)
0.999990 + 0.00436292i \(0.00138876\pi\)
\(200\) 0 0
\(201\) −1.00000 + 1.73205i −0.0705346 + 0.122169i
\(202\) 0 0
\(203\) 2.00000 0.140372
\(204\) 0 0
\(205\) 4.50000 + 7.79423i 0.314294 + 0.544373i
\(206\) 0 0
\(207\) 6.00000 0.417029
\(208\) 0 0
\(209\) 12.0000 0.830057
\(210\) 0 0
\(211\) −4.00000 6.92820i −0.275371 0.476957i 0.694857 0.719148i \(-0.255467\pi\)
−0.970229 + 0.242190i \(0.922134\pi\)
\(212\) 0 0
\(213\) −6.00000 −0.411113
\(214\) 0 0
\(215\) −3.00000 + 5.19615i −0.204598 + 0.354375i
\(216\) 0 0
\(217\) −4.00000 + 6.92820i −0.271538 + 0.470317i
\(218\) 0 0
\(219\) −5.50000 9.52628i −0.371656 0.643726i
\(220\) 0 0
\(221\) −7.00000 + 24.2487i −0.470871 + 1.63114i
\(222\) 0 0
\(223\) 8.00000 + 13.8564i 0.535720 + 0.927894i 0.999128 + 0.0417488i \(0.0132929\pi\)
−0.463409 + 0.886145i \(0.653374\pi\)
\(224\) 0 0
\(225\) 2.00000 3.46410i 0.133333 0.230940i
\(226\) 0 0
\(227\) −7.00000 + 12.1244i −0.464606 + 0.804722i −0.999184 0.0403978i \(-0.987137\pi\)
0.534577 + 0.845120i \(0.320471\pi\)
\(228\) 0 0
\(229\) −22.0000 −1.45380 −0.726900 0.686743i \(-0.759040\pi\)
−0.726900 + 0.686743i \(0.759040\pi\)
\(230\) 0 0
\(231\) 2.00000 + 3.46410i 0.131590 + 0.227921i
\(232\) 0 0
\(233\) 10.0000 0.655122 0.327561 0.944830i \(-0.393773\pi\)
0.327561 + 0.944830i \(0.393773\pi\)
\(234\) 0 0
\(235\) 6.00000 0.391397
\(236\) 0 0
\(237\) −2.00000 3.46410i −0.129914 0.225018i
\(238\) 0 0
\(239\) −30.0000 −1.94054 −0.970269 0.242028i \(-0.922188\pi\)
−0.970269 + 0.242028i \(0.922188\pi\)
\(240\) 0 0
\(241\) −3.50000 + 6.06218i −0.225455 + 0.390499i −0.956456 0.291877i \(-0.905720\pi\)
0.731001 + 0.682376i \(0.239053\pi\)
\(242\) 0 0
\(243\) −0.500000 + 0.866025i −0.0320750 + 0.0555556i
\(244\) 0 0
\(245\) −1.50000 2.59808i −0.0958315 0.165985i
\(246\) 0 0
\(247\) 6.00000 20.7846i 0.381771 1.32249i
\(248\) 0 0
\(249\) −7.00000 12.1244i −0.443607 0.768350i
\(250\) 0 0
\(251\) 6.00000 10.3923i 0.378717 0.655956i −0.612159 0.790735i \(-0.709699\pi\)
0.990876 + 0.134778i \(0.0430322\pi\)
\(252\) 0 0
\(253\) −6.00000 + 10.3923i −0.377217 + 0.653359i
\(254\) 0 0
\(255\) 7.00000 0.438357
\(256\) 0 0
\(257\) 3.50000 + 6.06218i 0.218324 + 0.378148i 0.954296 0.298864i \(-0.0966077\pi\)
−0.735972 + 0.677012i \(0.763274\pi\)
\(258\) 0 0
\(259\) −2.00000 −0.124274
\(260\) 0 0
\(261\) −1.00000 −0.0618984
\(262\) 0 0
\(263\) −15.0000 25.9808i −0.924940 1.60204i −0.791658 0.610964i \(-0.790782\pi\)
−0.133281 0.991078i \(-0.542551\pi\)
\(264\) 0 0
\(265\) 9.00000 0.552866
\(266\) 0 0
\(267\) 7.00000 12.1244i 0.428393 0.741999i
\(268\) 0 0
\(269\) 7.00000 12.1244i 0.426798 0.739235i −0.569789 0.821791i \(-0.692975\pi\)
0.996586 + 0.0825561i \(0.0263084\pi\)
\(270\) 0 0
\(271\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(272\) 0 0
\(273\) 7.00000 1.73205i 0.423659 0.104828i
\(274\) 0 0
\(275\) 4.00000 + 6.92820i 0.241209 + 0.417786i
\(276\) 0 0
\(277\) 15.5000 26.8468i 0.931305 1.61307i 0.150210 0.988654i \(-0.452005\pi\)
0.781094 0.624413i \(-0.214662\pi\)
\(278\) 0 0
\(279\) 2.00000 3.46410i 0.119737 0.207390i
\(280\) 0 0
\(281\) −19.0000 −1.13344 −0.566722 0.823909i \(-0.691789\pi\)
−0.566722 + 0.823909i \(0.691789\pi\)
\(282\) 0 0
\(283\) −9.00000 15.5885i −0.534994 0.926638i −0.999164 0.0408910i \(-0.986980\pi\)
0.464169 0.885747i \(-0.346353\pi\)
\(284\) 0 0
\(285\) −6.00000 −0.355409
\(286\) 0 0
\(287\) −18.0000 −1.06251
\(288\) 0 0
\(289\) −16.0000 27.7128i −0.941176 1.63017i
\(290\) 0 0
\(291\) −2.00000 −0.117242
\(292\) 0 0
\(293\) 4.50000 7.79423i 0.262893 0.455344i −0.704117 0.710084i \(-0.748657\pi\)
0.967009 + 0.254741i \(0.0819901\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −1.00000 1.73205i −0.0580259 0.100504i
\(298\) 0 0
\(299\) 15.0000 + 15.5885i 0.867472 + 0.901504i
\(300\) 0 0
\(301\) −6.00000 10.3923i −0.345834 0.599002i
\(302\) 0 0
\(303\) −1.50000 + 2.59808i −0.0861727 + 0.149256i
\(304\) 0 0
\(305\) 0.500000 0.866025i 0.0286299 0.0495885i
\(306\) 0 0
\(307\) −14.0000 −0.799022 −0.399511 0.916728i \(-0.630820\pi\)
−0.399511 + 0.916728i \(0.630820\pi\)
\(308\) 0 0
\(309\) 3.00000 + 5.19615i 0.170664 + 0.295599i
\(310\) 0 0
\(311\) −18.0000 −1.02069 −0.510343 0.859971i \(-0.670482\pi\)
−0.510343 + 0.859971i \(0.670482\pi\)
\(312\) 0 0
\(313\) 6.00000 0.339140 0.169570 0.985518i \(-0.445762\pi\)
0.169570 + 0.985518i \(0.445762\pi\)
\(314\) 0 0
\(315\) −1.00000 1.73205i −0.0563436 0.0975900i
\(316\) 0 0
\(317\) −25.0000 −1.40414 −0.702070 0.712108i \(-0.747741\pi\)
−0.702070 + 0.712108i \(0.747741\pi\)
\(318\) 0 0
\(319\) 1.00000 1.73205i 0.0559893 0.0969762i
\(320\) 0 0
\(321\) −3.00000 + 5.19615i −0.167444 + 0.290021i
\(322\) 0 0
\(323\) 21.0000 + 36.3731i 1.16847 + 2.02385i
\(324\) 0 0
\(325\) 14.0000 3.46410i 0.776580 0.192154i
\(326\) 0 0
\(327\) 1.00000 + 1.73205i 0.0553001 + 0.0957826i
\(328\) 0 0
\(329\) −6.00000 + 10.3923i −0.330791 + 0.572946i
\(330\) 0 0
\(331\) −2.00000 + 3.46410i −0.109930 + 0.190404i −0.915742 0.401768i \(-0.868396\pi\)
0.805812 + 0.592172i \(0.201729\pi\)
\(332\) 0 0
\(333\) 1.00000 0.0547997
\(334\) 0 0
\(335\) 1.00000 + 1.73205i 0.0546358 + 0.0946320i
\(336\) 0 0
\(337\) −33.0000 −1.79762 −0.898812 0.438334i \(-0.855569\pi\)
−0.898812 + 0.438334i \(0.855569\pi\)
\(338\) 0 0
\(339\) −15.0000 −0.814688
\(340\) 0 0
\(341\) 4.00000 + 6.92820i 0.216612 + 0.375183i
\(342\) 0 0
\(343\) 20.0000 1.07990
\(344\) 0 0
\(345\) 3.00000 5.19615i 0.161515 0.279751i
\(346\) 0 0
\(347\) 9.00000 15.5885i 0.483145 0.836832i −0.516667 0.856186i \(-0.672828\pi\)
0.999813 + 0.0193540i \(0.00616095\pi\)
\(348\) 0 0
\(349\) 13.0000 + 22.5167i 0.695874 + 1.20529i 0.969885 + 0.243563i \(0.0783162\pi\)
−0.274011 + 0.961727i \(0.588351\pi\)
\(350\) 0 0
\(351\) −3.50000 + 0.866025i −0.186816 + 0.0462250i
\(352\) 0 0
\(353\) 5.50000 + 9.52628i 0.292735 + 0.507033i 0.974456 0.224580i \(-0.0721011\pi\)
−0.681720 + 0.731613i \(0.738768\pi\)
\(354\) 0 0
\(355\) −3.00000 + 5.19615i −0.159223 + 0.275783i
\(356\) 0 0
\(357\) −7.00000 + 12.1244i −0.370479 + 0.641689i
\(358\) 0 0
\(359\) 18.0000 0.950004 0.475002 0.879985i \(-0.342447\pi\)
0.475002 + 0.879985i \(0.342447\pi\)
\(360\) 0 0
\(361\) −8.50000 14.7224i −0.447368 0.774865i
\(362\) 0 0
\(363\) −7.00000 −0.367405
\(364\) 0 0
\(365\) −11.0000 −0.575766
\(366\) 0 0
\(367\) 5.00000 + 8.66025i 0.260998 + 0.452062i 0.966507 0.256639i \(-0.0826151\pi\)
−0.705509 + 0.708700i \(0.749282\pi\)
\(368\) 0 0
\(369\) 9.00000 0.468521
\(370\) 0 0
\(371\) −9.00000 + 15.5885i −0.467257 + 0.809312i
\(372\) 0 0
\(373\) 5.50000 9.52628i 0.284779 0.493252i −0.687776 0.725923i \(-0.741413\pi\)
0.972556 + 0.232671i \(0.0747464\pi\)
\(374\) 0 0
\(375\) −4.50000 7.79423i −0.232379 0.402492i
\(376\) 0 0
\(377\) −2.50000 2.59808i −0.128757 0.133808i
\(378\) 0 0
\(379\) −18.0000 31.1769i −0.924598 1.60145i −0.792207 0.610253i \(-0.791068\pi\)
−0.132391 0.991198i \(-0.542266\pi\)
\(380\) 0 0
\(381\) 10.0000 17.3205i 0.512316 0.887357i
\(382\) 0 0
\(383\) 4.00000 6.92820i 0.204390 0.354015i −0.745548 0.666452i \(-0.767812\pi\)
0.949938 + 0.312437i \(0.101145\pi\)
\(384\) 0 0
\(385\) 4.00000 0.203859
\(386\) 0 0
\(387\) 3.00000 + 5.19615i 0.152499 + 0.264135i
\(388\) 0 0
\(389\) 19.0000 0.963338 0.481669 0.876353i \(-0.340031\pi\)
0.481669 + 0.876353i \(0.340031\pi\)
\(390\) 0 0
\(391\) −42.0000 −2.12403
\(392\) 0 0
\(393\) −4.00000 6.92820i −0.201773 0.349482i
\(394\) 0 0
\(395\) −4.00000 −0.201262
\(396\) 0 0
\(397\) 17.0000 29.4449i 0.853206 1.47780i −0.0250943 0.999685i \(-0.507989\pi\)
0.878300 0.478110i \(-0.158678\pi\)
\(398\) 0 0
\(399\) 6.00000 10.3923i 0.300376 0.520266i
\(400\) 0 0
\(401\) −0.500000 0.866025i −0.0249688 0.0432472i 0.853271 0.521468i \(-0.174615\pi\)
−0.878240 + 0.478220i \(0.841282\pi\)
\(402\) 0 0
\(403\) 14.0000 3.46410i 0.697390 0.172559i
\(404\) 0 0
\(405\) 0.500000 + 0.866025i 0.0248452 + 0.0430331i
\(406\) 0 0
\(407\) −1.00000 + 1.73205i −0.0495682 + 0.0858546i
\(408\) 0 0
\(409\) −3.50000 + 6.06218i −0.173064 + 0.299755i −0.939490 0.342578i \(-0.888700\pi\)
0.766426 + 0.642333i \(0.222033\pi\)
\(410\) 0 0
\(411\) −3.00000 −0.147979
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −14.0000 −0.687233
\(416\) 0 0
\(417\) −12.0000 −0.587643
\(418\) 0 0
\(419\) 8.00000 + 13.8564i 0.390826 + 0.676930i 0.992559 0.121768i \(-0.0388562\pi\)
−0.601733 + 0.798697i \(0.705523\pi\)
\(420\) 0 0
\(421\) −19.0000 −0.926003 −0.463002 0.886357i \(-0.653228\pi\)
−0.463002 + 0.886357i \(0.653228\pi\)
\(422\) 0 0
\(423\) 3.00000 5.19615i 0.145865 0.252646i
\(424\) 0 0
\(425\) −14.0000 + 24.2487i −0.679100 + 1.17624i
\(426\) 0 0
\(427\) 1.00000 + 1.73205i 0.0483934 + 0.0838198i
\(428\) 0 0
\(429\) 2.00000 6.92820i 0.0965609 0.334497i
\(430\) 0 0
\(431\) −15.0000 25.9808i −0.722525 1.25145i −0.959985 0.280052i \(-0.909648\pi\)
0.237460 0.971397i \(-0.423685\pi\)
\(432\) 0 0
\(433\) −9.50000 + 16.4545i −0.456541 + 0.790752i −0.998775 0.0494752i \(-0.984245\pi\)
0.542234 + 0.840227i \(0.317578\pi\)
\(434\) 0 0
\(435\) −0.500000 + 0.866025i −0.0239732 + 0.0415227i
\(436\) 0 0
\(437\) 36.0000 1.72211
\(438\) 0 0
\(439\) 7.00000 + 12.1244i 0.334092 + 0.578664i 0.983310 0.181938i \(-0.0582371\pi\)
−0.649218 + 0.760602i \(0.724904\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) 0 0
\(443\) 4.00000 0.190046 0.0950229 0.995475i \(-0.469708\pi\)
0.0950229 + 0.995475i \(0.469708\pi\)
\(444\) 0 0
\(445\) −7.00000 12.1244i −0.331832 0.574750i
\(446\) 0 0
\(447\) 3.00000 0.141895
\(448\) 0 0
\(449\) −17.0000 + 29.4449i −0.802280 + 1.38959i 0.115833 + 0.993269i \(0.463046\pi\)
−0.918112 + 0.396320i \(0.870287\pi\)
\(450\) 0 0
\(451\) −9.00000 + 15.5885i −0.423793 + 0.734032i
\(452\) 0 0
\(453\) −1.00000 1.73205i −0.0469841 0.0813788i
\(454\) 0 0
\(455\) 2.00000 6.92820i 0.0937614 0.324799i
\(456\) 0 0
\(457\) 6.50000 + 11.2583i 0.304057 + 0.526642i 0.977051 0.213006i \(-0.0683253\pi\)
−0.672994 + 0.739648i \(0.734992\pi\)
\(458\) 0 0
\(459\) 3.50000 6.06218i 0.163366 0.282958i
\(460\) 0 0
\(461\) −9.50000 + 16.4545i −0.442459 + 0.766362i −0.997871 0.0652135i \(-0.979227\pi\)
0.555412 + 0.831575i \(0.312560\pi\)
\(462\) 0 0
\(463\) 26.0000 1.20832 0.604161 0.796862i \(-0.293508\pi\)
0.604161 + 0.796862i \(0.293508\pi\)
\(464\) 0 0
\(465\) −2.00000 3.46410i −0.0927478 0.160644i
\(466\) 0 0
\(467\) −6.00000 −0.277647 −0.138823 0.990317i \(-0.544332\pi\)
−0.138823 + 0.990317i \(0.544332\pi\)
\(468\) 0 0
\(469\) −4.00000 −0.184703
\(470\) 0 0
\(471\) 1.50000 + 2.59808i 0.0691164 + 0.119713i
\(472\) 0 0
\(473\) −12.0000 −0.551761
\(474\) 0 0
\(475\) 12.0000 20.7846i 0.550598 0.953663i
\(476\) 0 0
\(477\) 4.50000 7.79423i 0.206041 0.356873i
\(478\) 0 0
\(479\) 12.0000 + 20.7846i 0.548294 + 0.949673i 0.998392 + 0.0566937i \(0.0180558\pi\)
−0.450098 + 0.892979i \(0.648611\pi\)
\(480\) 0 0
\(481\) 2.50000 + 2.59808i 0.113990 + 0.118462i
\(482\) 0 0
\(483\) 6.00000 + 10.3923i 0.273009 + 0.472866i
\(484\) 0 0
\(485\) −1.00000 + 1.73205i −0.0454077 + 0.0786484i
\(486\) 0 0
\(487\) 9.00000 15.5885i 0.407829 0.706380i −0.586817 0.809719i \(-0.699619\pi\)
0.994646 + 0.103339i \(0.0329526\pi\)
\(488\) 0 0
\(489\) 4.00000 0.180886
\(490\) 0 0
\(491\) 3.00000 + 5.19615i 0.135388 + 0.234499i 0.925746 0.378147i \(-0.123439\pi\)
−0.790358 + 0.612646i \(0.790105\pi\)
\(492\) 0 0
\(493\) 7.00000 0.315264
\(494\) 0 0
\(495\) −2.00000 −0.0898933
\(496\) 0 0
\(497\) −6.00000 10.3923i −0.269137 0.466159i
\(498\) 0 0
\(499\) −24.0000 −1.07439 −0.537194 0.843459i \(-0.680516\pi\)
−0.537194 + 0.843459i \(0.680516\pi\)
\(500\) 0 0
\(501\) 8.00000 13.8564i 0.357414 0.619059i
\(502\) 0 0
\(503\) −1.00000 + 1.73205i −0.0445878 + 0.0772283i −0.887458 0.460889i \(-0.847531\pi\)
0.842870 + 0.538117i \(0.180864\pi\)
\(504\) 0 0
\(505\) 1.50000 + 2.59808i 0.0667491 + 0.115613i
\(506\) 0 0
\(507\) −11.0000 6.92820i −0.488527 0.307692i
\(508\) 0 0
\(509\) −3.50000 6.06218i −0.155135 0.268701i 0.777973 0.628297i \(-0.216248\pi\)
−0.933108 + 0.359596i \(0.882915\pi\)
\(510\) 0 0
\(511\) 11.0000 19.0526i 0.486611 0.842836i
\(512\) 0 0
\(513\) −3.00000 + 5.19615i −0.132453 + 0.229416i
\(514\) 0 0
\(515\) 6.00000 0.264392
\(516\) 0 0
\(517\) 6.00000 + 10.3923i 0.263880 + 0.457053i
\(518\) 0 0
\(519\) −6.00000 −0.263371
\(520\) 0 0
\(521\) −3.00000 −0.131432 −0.0657162 0.997838i \(-0.520933\pi\)
−0.0657162 + 0.997838i \(0.520933\pi\)
\(522\) 0 0
\(523\) 7.00000 + 12.1244i 0.306089 + 0.530161i 0.977503 0.210921i \(-0.0676463\pi\)
−0.671414 + 0.741082i \(0.734313\pi\)
\(524\) 0 0
\(525\) 8.00000 0.349149
\(526\) 0 0
\(527\) −14.0000 + 24.2487i −0.609850 + 1.05629i
\(528\) 0 0
\(529\) −6.50000 + 11.2583i −0.282609 + 0.489493i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 22.5000 + 23.3827i 0.974583 + 1.01282i
\(534\) 0 0
\(535\) 3.00000 + 5.19615i 0.129701 + 0.224649i
\(536\) 0 0
\(537\) −1.00000 + 1.73205i −0.0431532 + 0.0747435i
\(538\) 0 0
\(539\) 3.00000 5.19615i 0.129219 0.223814i
\(540\) 0 0
\(541\) 45.0000 1.93470 0.967351 0.253442i \(-0.0815627\pi\)
0.967351 + 0.253442i \(0.0815627\pi\)
\(542\) 0 0
\(543\) 3.50000 + 6.06218i 0.150199 + 0.260153i
\(544\) 0 0
\(545\) 2.00000 0.0856706
\(546\) 0 0
\(547\) 26.0000 1.11168 0.555840 0.831289i \(-0.312397\pi\)
0.555840 + 0.831289i \(0.312397\pi\)
\(548\) 0 0
\(549\) −0.500000 0.866025i −0.0213395 0.0369611i
\(550\) 0 0
\(551\) −6.00000 −0.255609
\(552\) 0 0
\(553\) 4.00000 6.92820i 0.170097 0.294617i
\(554\) 0 0
\(555\) 0.500000 0.866025i 0.0212238 0.0367607i
\(556\) 0 0
\(557\) 4.50000 + 7.79423i 0.190671 + 0.330252i 0.945473 0.325701i \(-0.105600\pi\)
−0.754802 + 0.655953i \(0.772267\pi\)
\(558\) 0 0
\(559\) −6.00000 + 20.7846i −0.253773 + 0.879095i
\(560\) 0 0
\(561\) 7.00000 + 12.1244i 0.295540 + 0.511891i
\(562\) 0 0
\(563\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(564\) 0 0
\(565\) −7.50000 + 12.9904i −0.315527 + 0.546509i
\(566\) 0 0
\(567\) −2.00000 −0.0839921
\(568\) 0 0
\(569\) −11.0000 19.0526i −0.461144 0.798725i 0.537874 0.843025i \(-0.319228\pi\)
−0.999018 + 0.0443003i \(0.985894\pi\)
\(570\) 0 0
\(571\) −26.0000 −1.08807 −0.544033 0.839064i \(-0.683103\pi\)
−0.544033 + 0.839064i \(0.683103\pi\)
\(572\) 0 0
\(573\) 4.00000 0.167102
\(574\) 0 0
\(575\) 12.0000 + 20.7846i 0.500435 + 0.866778i
\(576\) 0 0
\(577\) 11.0000 0.457936 0.228968 0.973434i \(-0.426465\pi\)
0.228968 + 0.973434i \(0.426465\pi\)
\(578\) 0 0
\(579\) 4.50000 7.79423i 0.187014 0.323917i
\(580\) 0 0
\(581\) 14.0000 24.2487i 0.580818 1.00601i
\(582\) 0 0
\(583\) 9.00000 + 15.5885i 0.372742 + 0.645608i
\(584\) 0 0
\(585\) −1.00000 + 3.46410i −0.0413449 + 0.143223i
\(586\) 0 0
\(587\) 8.00000 + 13.8564i 0.330195 + 0.571915i 0.982550 0.185999i \(-0.0595520\pi\)
−0.652355 + 0.757914i \(0.726219\pi\)
\(588\) 0 0
\(589\) 12.0000 20.7846i 0.494451 0.856415i
\(590\) 0 0
\(591\) −3.00000 + 5.19615i −0.123404 + 0.213741i
\(592\) 0 0
\(593\) 13.0000 0.533846 0.266923 0.963718i \(-0.413993\pi\)
0.266923 + 0.963718i \(0.413993\pi\)
\(594\) 0 0
\(595\) 7.00000 + 12.1244i 0.286972 + 0.497050i
\(596\) 0 0
\(597\) −14.0000 −0.572982
\(598\) 0 0
\(599\) 16.0000 0.653742 0.326871 0.945069i \(-0.394006\pi\)
0.326871 + 0.945069i \(0.394006\pi\)
\(600\) 0 0
\(601\) 2.50000 + 4.33013i 0.101977 + 0.176630i 0.912499 0.409079i \(-0.134150\pi\)
−0.810522 + 0.585708i \(0.800816\pi\)
\(602\) 0 0
\(603\) 2.00000 0.0814463
\(604\) 0 0
\(605\) −3.50000 + 6.06218i −0.142295 + 0.246463i
\(606\) 0 0
\(607\) 4.00000 6.92820i 0.162355 0.281207i −0.773358 0.633970i \(-0.781424\pi\)
0.935713 + 0.352763i \(0.114758\pi\)
\(608\) 0 0
\(609\) −1.00000 1.73205i −0.0405220 0.0701862i
\(610\) 0 0
\(611\) 21.0000 5.19615i 0.849569 0.210214i
\(612\) 0 0
\(613\) 11.5000 + 19.9186i 0.464481 + 0.804504i 0.999178 0.0405396i \(-0.0129077\pi\)
−0.534697 + 0.845044i \(0.679574\pi\)
\(614\) 0 0
\(615\) 4.50000 7.79423i 0.181458 0.314294i
\(616\) 0 0
\(617\) −6.50000 + 11.2583i −0.261680 + 0.453243i −0.966689 0.255956i \(-0.917610\pi\)
0.705008 + 0.709199i \(0.250943\pi\)
\(618\) 0 0
\(619\) 24.0000 0.964641 0.482321 0.875995i \(-0.339794\pi\)
0.482321 + 0.875995i \(0.339794\pi\)
\(620\) 0 0
\(621\) −3.00000 5.19615i −0.120386 0.208514i
\(622\) 0 0
\(623\) 28.0000 1.12180
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) 0 0
\(627\) −6.00000 10.3923i −0.239617 0.415029i
\(628\) 0 0
\(629\) −7.00000 −0.279108
\(630\) 0 0
\(631\) 10.0000 17.3205i 0.398094 0.689519i −0.595397 0.803432i \(-0.703005\pi\)
0.993491 + 0.113913i \(0.0363385\pi\)
\(632\) 0 0
\(633\) −4.00000 + 6.92820i −0.158986 + 0.275371i
\(634\) 0 0
\(635\) −10.0000 17.3205i −0.396838 0.687343i
\(636\) 0 0
\(637\) −7.50000 7.79423i −0.297161 0.308819i
\(638\) 0 0
\(639\) 3.00000 + 5.19615i 0.118678 + 0.205557i
\(640\) 0 0
\(641\) 15.5000 26.8468i 0.612213 1.06038i −0.378653 0.925539i \(-0.623613\pi\)
0.990867 0.134846i \(-0.0430539\pi\)
\(642\) 0 0
\(643\) −8.00000 + 13.8564i −0.315489 + 0.546443i −0.979541 0.201243i \(-0.935502\pi\)
0.664052 + 0.747686i \(0.268835\pi\)
\(644\) 0 0
\(645\) 6.00000 0.236250
\(646\) 0 0
\(647\) −16.0000 27.7128i −0.629025 1.08950i −0.987748 0.156059i \(-0.950121\pi\)
0.358723 0.933444i \(-0.383212\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 8.00000 0.313545
\(652\) 0 0
\(653\) 3.00000 + 5.19615i 0.117399 + 0.203341i 0.918736 0.394872i \(-0.129211\pi\)
−0.801337 + 0.598213i \(0.795878\pi\)
\(654\) 0 0
\(655\) −8.00000 −0.312586
\(656\) 0 0
\(657\) −5.50000 + 9.52628i −0.214575 + 0.371656i
\(658\) 0 0
\(659\) −4.00000 + 6.92820i −0.155818 + 0.269884i −0.933357 0.358951i \(-0.883135\pi\)
0.777539 + 0.628835i \(0.216468\pi\)
\(660\) 0 0
\(661\) −22.5000 38.9711i −0.875149 1.51580i −0.856604 0.515974i \(-0.827430\pi\)
−0.0185442 0.999828i \(-0.505903\pi\)
\(662\) 0 0
\(663\) 24.5000 6.06218i 0.951501 0.235435i
\(664\) 0 0
\(665\) −6.00000 10.3923i −0.232670 0.402996i
\(666\) 0 0
\(667\) 3.00000 5.19615i 0.116160 0.201196i
\(668\) 0 0
\(669\) 8.00000 13.8564i 0.309298 0.535720i
\(670\) 0 0
\(671\) 2.00000 0.0772091
\(672\) 0 0
\(673\) 14.5000 + 25.1147i 0.558934 + 0.968102i 0.997586 + 0.0694449i \(0.0221228\pi\)
−0.438652 + 0.898657i \(0.644544\pi\)
\(674\) 0 0
\(675\) −4.00000 −0.153960
\(676\) 0 0
\(677\) 34.0000 1.30673 0.653363 0.757045i \(-0.273358\pi\)
0.653363 + 0.757045i \(0.273358\pi\)
\(678\) 0 0
\(679\) −2.00000 3.46410i −0.0767530 0.132940i
\(680\) 0 0
\(681\) 14.0000 0.536481
\(682\) 0 0
\(683\) −12.0000 + 20.7846i −0.459167 + 0.795301i −0.998917 0.0465244i \(-0.985185\pi\)
0.539750 + 0.841825i \(0.318519\pi\)
\(684\) 0 0
\(685\) −1.50000 + 2.59808i −0.0573121 + 0.0992674i
\(686\) 0 0
\(687\) 11.0000 + 19.0526i 0.419676 + 0.726900i
\(688\) 0 0
\(689\) 31.5000 7.79423i 1.20005 0.296936i
\(690\) 0 0
\(691\) 21.0000 + 36.3731i 0.798878 + 1.38370i 0.920348 + 0.391102i \(0.127906\pi\)
−0.121470 + 0.992595i \(0.538761\pi\)
\(692\) 0 0
\(693\) 2.00000 3.46410i 0.0759737 0.131590i
\(694\) 0 0
\(695\) −6.00000 + 10.3923i −0.227593 + 0.394203i
\(696\) 0 0
\(697\) −63.0000 −2.38630
\(698\) 0 0
\(699\) −5.00000 8.66025i −0.189117 0.327561i
\(700\) 0 0
\(701\) 2.00000 0.0755390 0.0377695 0.999286i \(-0.487975\pi\)
0.0377695 + 0.999286i \(0.487975\pi\)
\(702\) 0 0
\(703\) 6.00000 0.226294
\(704\) 0 0
\(705\) −3.00000 5.19615i −0.112987 0.195698i
\(706\) 0 0
\(707\) −6.00000 −0.225653
\(708\) 0 0
\(709\) 5.50000 9.52628i 0.206557 0.357767i −0.744071 0.668101i \(-0.767108\pi\)
0.950628 + 0.310334i \(0.100441\pi\)
\(710\) 0 0
\(711\) −2.00000 + 3.46410i −0.0750059 + 0.129914i
\(712\) 0 0
\(713\) 12.0000 + 20.7846i 0.449404 + 0.778390i
\(714\) 0 0
\(715\) −5.00000 5.19615i −0.186989 0.194325i
\(716\) 0 0
\(717\) 15.0000 + 25.9808i 0.560185 + 0.970269i
\(718\) 0 0
\(719\) −24.0000 + 41.5692i −0.895049 + 1.55027i −0.0613050 + 0.998119i \(0.519526\pi\)
−0.833744 + 0.552151i \(0.813807\pi\)
\(720\) 0 0
\(721\) −6.00000 + 10.3923i −0.223452 + 0.387030i
\(722\) 0 0
\(723\) 7.00000 0.260333
\(724\) 0 0
\(725\) −2.00000 3.46410i −0.0742781 0.128654i
\(726\) 0 0
\(727\) −14.0000 −0.519231 −0.259616 0.965712i \(-0.583596\pi\)
−0.259616 + 0.965712i \(0.583596\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −21.0000 36.3731i −0.776713 1.34531i
\(732\) 0 0
\(733\) −15.0000 −0.554038 −0.277019 0.960864i \(-0.589346\pi\)
−0.277019 + 0.960864i \(0.589346\pi\)
\(734\) 0 0
\(735\) −1.50000 + 2.59808i −0.0553283 + 0.0958315i
\(736\) 0 0
\(737\) −2.00000 + 3.46410i −0.0736709 + 0.127602i
\(738\) 0 0
\(739\) −8.00000 13.8564i −0.294285 0.509716i 0.680534 0.732717i \(-0.261748\pi\)
−0.974818 + 0.223001i \(0.928415\pi\)
\(740\) 0 0
\(741\) −21.0000 + 5.19615i −0.771454 + 0.190885i
\(742\) 0 0
\(743\) −18.0000 31.1769i −0.660356 1.14377i −0.980522 0.196409i \(-0.937072\pi\)
0.320166 0.947361i \(-0.396261\pi\)
\(744\) 0 0
\(745\) 1.50000 2.59808i 0.0549557 0.0951861i
\(746\) 0 0
\(747\) −7.00000 + 12.1244i −0.256117 + 0.443607i
\(748\) 0 0
\(749\) −12.0000 −0.438470
\(750\) 0 0
\(751\) −17.0000 29.4449i −0.620339 1.07446i −0.989423 0.145062i \(-0.953662\pi\)
0.369084 0.929396i \(-0.379672\pi\)
\(752\) 0 0
\(753\) −12.0000 −0.437304
\(754\) 0 0
\(755\) −2.00000 −0.0727875
\(756\) 0 0
\(757\) 25.0000 + 43.3013i 0.908640 + 1.57381i 0.815955 + 0.578116i \(0.196212\pi\)
0.0926859 + 0.995695i \(0.470455\pi\)
\(758\) 0 0
\(759\) 12.0000 0.435572
\(760\) 0 0
\(761\) −25.0000 + 43.3013i −0.906249 + 1.56967i −0.0870179 + 0.996207i \(0.527734\pi\)
−0.819231 + 0.573463i \(0.805600\pi\)
\(762\) 0 0
\(763\) −2.00000 + 3.46410i −0.0724049 + 0.125409i
\(764\) 0 0
\(765\) −3.50000 6.06218i −0.126543 0.219179i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −15.0000 25.9808i −0.540914 0.936890i −0.998852 0.0479061i \(-0.984745\pi\)
0.457938 0.888984i \(-0.348588\pi\)
\(770\) 0 0
\(771\) 3.50000 6.06218i 0.126049 0.218324i
\(772\) 0 0
\(773\) 7.00000 12.1244i 0.251773 0.436083i −0.712241 0.701935i \(-0.752320\pi\)
0.964014 + 0.265852i \(0.0856532\pi\)
\(774\) 0 0
\(775\) 16.0000 0.574737
\(776\) 0 0
\(777\) 1.00000 + 1.73205i 0.0358748 + 0.0621370i
\(778\) 0 0
\(779\) 54.0000 1.93475
\(780\) 0 0
\(781\) −12.0000 −0.429394
\(782\) 0 0
\(783\) 0.500000 + 0.866025i 0.0178685 + 0.0309492i
\(784\) 0 0
\(785\) 3.00000 0.107075
\(786\) 0 0
\(787\) 14.0000 24.2487i 0.499046 0.864373i −0.500953 0.865474i \(-0.667017\pi\)
0.999999 + 0.00110111i \(0.000350496\pi\)
\(788\) 0 0
\(789\) −15.0000 + 25.9808i −0.534014 + 0.924940i
\(790\) 0 0
\(791\) −15.0000 25.9808i −0.533339 0.923770i
\(792\) 0 0
\(793\) 1.00000 3.46410i 0.0355110 0.123014i
\(794\) 0 0
\(795\) −4.50000 7.79423i −0.159599 0.276433i
\(796\) 0 0
\(797\) 1.00000 1.73205i 0.0354218 0.0613524i −0.847771 0.530362i \(-0.822056\pi\)
0.883193 + 0.469010i \(0.155389\pi\)
\(798\) 0 0
\(799\) −21.0000 + 36.3731i −0.742927 + 1.28679i
\(800\) 0 0
\(801\) −14.0000 −0.494666
\(802\) 0 0
\(803\) −11.0000 19.0526i −0.388182 0.672350i
\(804\) 0 0
\(805\) 12.0000 0.422944
\(806\) 0 0
\(807\) −14.0000 −0.492823
\(808\) 0 0
\(809\) −16.5000 28.5788i −0.580109 1.00478i −0.995466 0.0951198i \(-0.969677\pi\)
0.415357 0.909659i \(-0.363657\pi\)
\(810\) 0 0
\(811\) 28.0000 0.983213 0.491606 0.870817i \(-0.336410\pi\)
0.491606 + 0.870817i \(0.336410\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 2.00000 3.46410i 0.0700569 0.121342i
\(816\) 0 0
\(817\) 18.0000 + 31.1769i 0.629740 + 1.09074i
\(818\) 0 0
\(819\) −5.00000 5.19615i −0.174714 0.181568i
\(820\) 0 0
\(821\) −25.0000 43.3013i −0.872506 1.51122i −0.859396 0.511311i \(-0.829160\pi\)
−0.0131101 0.999914i \(-0.504173\pi\)
\(822\) 0 0
\(823\) −12.0000 + 20.7846i −0.418294 + 0.724506i −0.995768 0.0919029i \(-0.970705\pi\)
0.577474 + 0.816409i \(0.304038\pi\)
\(824\) 0 0
\(825\) 4.00000 6.92820i 0.139262 0.241209i
\(826\) 0 0
\(827\) −16.0000 −0.556375 −0.278187 0.960527i \(-0.589734\pi\)
−0.278187 + 0.960527i \(0.589734\pi\)
\(828\) 0 0
\(829\) −8.50000 14.7224i −0.295217 0.511331i 0.679818 0.733381i \(-0.262059\pi\)
−0.975035 + 0.222049i \(0.928725\pi\)
\(830\) 0 0
\(831\) −31.0000 −1.07538
\(832\) 0 0
\(833\) 21.0000 0.727607
\(834\) 0 0
\(835\) −8.00000 13.8564i −0.276851 0.479521i
\(836\) 0 0
\(837\) −4.00000 −0.138260
\(838\) 0 0
\(839\) 6.00000 10.3923i 0.207143 0.358782i −0.743670 0.668546i \(-0.766917\pi\)
0.950813 + 0.309764i \(0.100250\pi\)
\(840\) 0 0
\(841\) 14.0000 24.2487i 0.482759 0.836162i
\(842\) 0 0
\(843\) 9.50000 + 16.4545i 0.327197 + 0.566722i
\(844\) 0 0
\(845\) −11.5000 + 6.06218i −0.395612 + 0.208545i
\(846\) 0 0
\(847\) −7.00000 12.1244i −0.240523 0.416598i
\(848\) 0 0
\(849\) −9.00000 + 15.5885i −0.308879 + 0.534994i
\(850\) 0 0
\(851\) −3.00000 + 5.19615i −0.102839 + 0.178122i
\(852\) 0 0
\(853\) 21.0000 0.719026 0.359513 0.933140i \(-0.382943\pi\)
0.359513 + 0.933140i \(0.382943\pi\)
\(854\) 0 0
\(855\) 3.00000 + 5.19615i 0.102598 + 0.177705i
\(856\) 0 0
\(857\) −31.0000 −1.05894 −0.529470 0.848329i \(-0.677609\pi\)
−0.529470 + 0.848329i \(0.677609\pi\)
\(858\) 0 0
\(859\) −34.0000 −1.16007 −0.580033 0.814593i \(-0.696960\pi\)
−0.580033 + 0.814593i \(0.696960\pi\)
\(860\) 0 0
\(861\) 9.00000 + 15.5885i 0.306719 + 0.531253i
\(862\) 0 0
\(863\) −10.0000 −0.340404 −0.170202 0.985409i \(-0.554442\pi\)
−0.170202 + 0.985409i \(0.554442\pi\)
\(864\) 0 0
\(865\) −3.00000 + 5.19615i −0.102003 + 0.176674i
\(866\) 0 0
\(867\) −16.0000 + 27.7128i −0.543388 + 0.941176i
\(868\) 0 0
\(869\) −4.00000 6.92820i −0.135691 0.235023i
\(870\) 0 0
\(871\) 5.00000 + 5.19615i 0.169419 + 0.176065i
\(872\) 0 0
\(873\) 1.00000 + 1.73205i 0.0338449 + 0.0586210i
\(874\) 0 0
\(875\) 9.00000 15.5885i 0.304256 0.526986i
\(876\) 0 0
\(877\) −8.50000 + 14.7224i −0.287025 + 0.497141i −0.973098 0.230391i \(-0.925999\pi\)
0.686074 + 0.727532i \(0.259333\pi\)
\(878\) 0 0
\(879\) −9.00000 −0.303562
\(880\) 0 0
\(881\) −18.5000 32.0429i −0.623281 1.07955i −0.988871 0.148778i \(-0.952466\pi\)
0.365590 0.930776i \(-0.380867\pi\)
\(882\) 0 0
\(883\) −16.0000 −0.538443 −0.269221 0.963078i \(-0.586766\pi\)
−0.269221 + 0.963078i \(0.586766\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(888\) 0 0
\(889\) 40.0000 1.34156
\(890\) 0 0
\(891\) −1.00000 + 1.73205i −0.0335013 + 0.0580259i
\(892\) 0 0
\(893\) 18.0000 31.1769i 0.602347 1.04330i
\(894\) 0 0
\(895\) 1.00000 + 1.73205i 0.0334263 + 0.0578961i
\(896\) 0 0
\(897\) 6.00000 20.7846i 0.200334 0.693978i
\(898\) 0 0
\(899\) −2.00000 3.46410i −0.0667037 0.115534i
\(900\) 0 0
\(901\) −31.5000 + 54.5596i −1.04942 + 1.81764i
\(902\) 0 0
\(903\) −6.00000 + 10.3923i −0.199667 + 0.345834i
\(904\) 0 0
\(905\) 7.00000 0.232688
\(906\) 0 0
\(907\) 6.00000 + 10.3923i 0.199227 + 0.345071i 0.948278 0.317441i \(-0.102824\pi\)
−0.749051 + 0.662512i \(0.769490\pi\)
\(908\) 0 0
\(909\) 3.00000 0.0995037
\(910\) 0 0
\(911\) 40.0000 1.32526 0.662630 0.748947i \(-0.269440\pi\)
0.662630 + 0.748947i \(0.269440\pi\)
\(912\) 0 0
\(913\) −14.0000 24.2487i −0.463332 0.802515i
\(914\) 0 0
\(915\) −1.00000 −0.0330590
\(916\) 0 0
\(917\) 8.00000 13.8564i 0.264183 0.457579i
\(918\) 0 0
\(919\) 12.0000 20.7846i 0.395843 0.685621i −0.597365 0.801970i \(-0.703786\pi\)
0.993208 + 0.116348i \(0.0371189\pi\)
\(920\) 0 0
\(921\) 7.00000 + 12.1244i 0.230658 + 0.399511i
\(922\) 0 0
\(923\) −6.00000 + 20.7846i −0.197492 + 0.684134i
\(924\) 0 0
\(925\) 2.00000 + 3.46410i 0.0657596 + 0.113899i
\(926\) 0 0
\(927\) 3.00000 5.19615i 0.0985329 0.170664i
\(928\) 0 0
\(929\) 13.5000 23.3827i 0.442921 0.767161i −0.554984 0.831861i \(-0.687276\pi\)
0.997905 + 0.0646999i \(0.0206090\pi\)
\(930\) 0 0
\(931\) −18.0000 −0.589926
\(932\) 0 0
\(933\) 9.00000 + 15.5885i 0.294647 + 0.510343i
\(934\) 0 0
\(935\) 14.0000 0.457849
\(936\) 0 0
\(937\) −49.0000 −1.60076 −0.800380 0.599493i \(-0.795369\pi\)
−0.800380 + 0.599493i \(0.795369\pi\)
\(938\) 0 0
\(939\) −3.00000 5.19615i −0.0979013 0.169570i
\(940\) 0 0
\(941\) −38.0000 −1.23876 −0.619382 0.785090i \(-0.712617\pi\)
−0.619382 + 0.785090i \(0.712617\pi\)
\(942\) 0 0
\(943\) −27.0000 + 46.7654i −0.879241 + 1.52289i
\(944\) 0 0
\(945\) −1.00000 + 1.73205i −0.0325300 + 0.0563436i
\(946\) 0 0
\(947\) −24.0000 41.5692i −0.779895 1.35082i −0.932002 0.362454i \(-0.881939\pi\)
0.152106 0.988364i \(-0.451394\pi\)
\(948\) 0 0
\(949\) −38.5000 + 9.52628i −1.24976 + 0.309236i
\(950\) 0 0
\(951\) 12.5000 + 21.6506i 0.405340 + 0.702070i
\(952\) 0 0
\(953\) −3.00000 + 5.19615i −0.0971795 + 0.168320i −0.910516 0.413473i \(-0.864315\pi\)
0.813337 + 0.581793i \(0.197649\pi\)
\(954\) 0 0
\(955\) 2.00000 3.46410i 0.0647185 0.112096i
\(956\) 0 0
\(957\) −2.00000 −0.0646508
\(958\) 0 0
\(959\) −3.00000 5.19615i −0.0968751 0.167793i
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) 6.00000 0.193347
\(964\) 0 0
\(965\) −4.50000 7.79423i −0.144860 0.250905i
\(966\) 0 0
\(967\) −2.00000 −0.0643157 −0.0321578 0.999483i \(-0.510238\pi\)
−0.0321578 + 0.999483i \(0.510238\pi\)
\(968\) 0 0
\(969\) 21.0000 36.3731i 0.674617 1.16847i
\(970\) 0 0
\(971\) 18.0000 31.1769i 0.577647 1.00051i −0.418101 0.908401i \(-0.637304\pi\)
0.995748 0.0921142i \(-0.0293625\pi\)
\(972\) 0 0
\(973\) −12.0000 20.7846i −0.384702 0.666324i
\(974\) 0 0
\(975\) −10.0000 10.3923i −0.320256 0.332820i
\(976\) 0 0
\(977\) −16.5000 28.5788i −0.527882 0.914318i −0.999472 0.0325001i \(-0.989653\pi\)
0.471590 0.881818i \(-0.343680\pi\)
\(978\) 0 0
\(979\) 14.0000 24.2487i 0.447442 0.774992i
\(980\) 0 0
\(981\) 1.00000 1.73205i 0.0319275 0.0553001i
\(982\) 0 0
\(983\) −4.00000 −0.127580 −0.0637901 0.997963i \(-0.520319\pi\)
−0.0637901 + 0.997963i \(0.520319\pi\)
\(984\) 0 0
\(985\) 3.00000 + 5.19615i 0.0955879 + 0.165563i
\(986\) 0 0
\(987\) 12.0000 0.381964
\(988\) 0 0
\(989\) −36.0000 −1.14473
\(990\) 0 0
\(991\) −1.00000 1.73205i −0.0317660 0.0550204i 0.849705 0.527258i \(-0.176780\pi\)
−0.881471 + 0.472237i \(0.843446\pi\)
\(992\) 0 0
\(993\) 4.00000 0.126936
\(994\) 0 0
\(995\) −7.00000 + 12.1244i −0.221915 + 0.384368i
\(996\) 0 0
\(997\) 17.5000 30.3109i 0.554231 0.959955i −0.443732 0.896159i \(-0.646346\pi\)
0.997963 0.0637961i \(-0.0203207\pi\)
\(998\) 0 0
\(999\) −0.500000 0.866025i −0.0158193 0.0273998i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 624.2.q.c.289.1 2
3.2 odd 2 1872.2.t.j.289.1 2
4.3 odd 2 39.2.e.a.16.1 2
12.11 even 2 117.2.g.b.55.1 2
13.3 even 3 8112.2.a.w.1.1 1
13.9 even 3 inner 624.2.q.c.529.1 2
13.10 even 6 8112.2.a.bc.1.1 1
20.3 even 4 975.2.bb.d.874.1 4
20.7 even 4 975.2.bb.d.874.2 4
20.19 odd 2 975.2.i.f.601.1 2
39.35 odd 6 1872.2.t.j.1153.1 2
52.3 odd 6 507.2.a.c.1.1 1
52.7 even 12 507.2.j.d.316.1 4
52.11 even 12 507.2.b.b.337.2 2
52.15 even 12 507.2.b.b.337.1 2
52.19 even 12 507.2.j.d.316.2 4
52.23 odd 6 507.2.a.b.1.1 1
52.31 even 4 507.2.j.d.361.1 4
52.35 odd 6 39.2.e.a.22.1 yes 2
52.43 odd 6 507.2.e.c.22.1 2
52.47 even 4 507.2.j.d.361.2 4
52.51 odd 2 507.2.e.c.484.1 2
156.11 odd 12 1521.2.b.c.1351.1 2
156.23 even 6 1521.2.a.d.1.1 1
156.35 even 6 117.2.g.b.100.1 2
156.107 even 6 1521.2.a.a.1.1 1
156.119 odd 12 1521.2.b.c.1351.2 2
260.87 even 12 975.2.bb.d.724.1 4
260.139 odd 6 975.2.i.f.451.1 2
260.243 even 12 975.2.bb.d.724.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
39.2.e.a.16.1 2 4.3 odd 2
39.2.e.a.22.1 yes 2 52.35 odd 6
117.2.g.b.55.1 2 12.11 even 2
117.2.g.b.100.1 2 156.35 even 6
507.2.a.b.1.1 1 52.23 odd 6
507.2.a.c.1.1 1 52.3 odd 6
507.2.b.b.337.1 2 52.15 even 12
507.2.b.b.337.2 2 52.11 even 12
507.2.e.c.22.1 2 52.43 odd 6
507.2.e.c.484.1 2 52.51 odd 2
507.2.j.d.316.1 4 52.7 even 12
507.2.j.d.316.2 4 52.19 even 12
507.2.j.d.361.1 4 52.31 even 4
507.2.j.d.361.2 4 52.47 even 4
624.2.q.c.289.1 2 1.1 even 1 trivial
624.2.q.c.529.1 2 13.9 even 3 inner
975.2.i.f.451.1 2 260.139 odd 6
975.2.i.f.601.1 2 20.19 odd 2
975.2.bb.d.724.1 4 260.87 even 12
975.2.bb.d.724.2 4 260.243 even 12
975.2.bb.d.874.1 4 20.3 even 4
975.2.bb.d.874.2 4 20.7 even 4
1521.2.a.a.1.1 1 156.107 even 6
1521.2.a.d.1.1 1 156.23 even 6
1521.2.b.c.1351.1 2 156.11 odd 12
1521.2.b.c.1351.2 2 156.119 odd 12
1872.2.t.j.289.1 2 3.2 odd 2
1872.2.t.j.1153.1 2 39.35 odd 6
8112.2.a.w.1.1 1 13.3 even 3
8112.2.a.bc.1.1 1 13.10 even 6