L(s) = 1 | + (−0.813 + 1.40i)2-s + (−0.5 + 0.866i)3-s + (−0.322 − 0.558i)4-s + (−0.813 − 1.40i)6-s + (−1.54 − 2.67i)7-s − 2.20·8-s + (−0.499 − 0.866i)9-s + (1.60 − 2.78i)11-s + 0.644·12-s + (1.88 − 3.07i)13-s + 5.01·14-s + (2.43 − 4.22i)16-s + (2.01 + 3.48i)17-s + 1.62·18-s + (3.66 + 6.34i)19-s + ⋯ |
L(s) = 1 | + (−0.574 + 0.995i)2-s + (−0.288 + 0.499i)3-s + (−0.161 − 0.279i)4-s + (−0.331 − 0.574i)6-s + (−0.582 − 1.00i)7-s − 0.779·8-s + (−0.166 − 0.288i)9-s + (0.484 − 0.838i)11-s + 0.186·12-s + (0.522 − 0.852i)13-s + 1.34·14-s + (0.609 − 1.05i)16-s + (0.487 + 0.844i)17-s + 0.383·18-s + (0.840 + 1.45i)19-s + ⋯ |
Λ(s)=(=(975s/2ΓC(s)L(s)(−0.227−0.973i)Λ(2−s)
Λ(s)=(=(975s/2ΓC(s+1/2)L(s)(−0.227−0.973i)Λ(1−s)
Degree: |
2 |
Conductor: |
975
= 3⋅52⋅13
|
Sign: |
−0.227−0.973i
|
Analytic conductor: |
7.78541 |
Root analytic conductor: |
2.79023 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ975(451,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 975, ( :1/2), −0.227−0.973i)
|
Particular Values
L(1) |
≈ |
0.599950+0.755980i |
L(21) |
≈ |
0.599950+0.755980i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.5−0.866i)T |
| 5 | 1 |
| 13 | 1+(−1.88+3.07i)T |
good | 2 | 1+(0.813−1.40i)T+(−1−1.73i)T2 |
| 7 | 1+(1.54+2.67i)T+(−3.5+6.06i)T2 |
| 11 | 1+(−1.60+2.78i)T+(−5.5−9.52i)T2 |
| 17 | 1+(−2.01−3.48i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−3.66−6.34i)T+(−9.5+16.4i)T2 |
| 23 | 1+(3.77−6.54i)T+(−11.5−19.9i)T2 |
| 29 | 1+(2.07−3.58i)T+(−14.5−25.1i)T2 |
| 31 | 1−6.70T+31T2 |
| 37 | 1+(2.38−4.13i)T+(−18.5−32.0i)T2 |
| 41 | 1+(−2.01+3.48i)T+(−20.5−35.5i)T2 |
| 43 | 1+(0.560+0.971i)T+(−21.5+37.2i)T2 |
| 47 | 1−8.97T+47T2 |
| 53 | 1−10.0T+53T2 |
| 59 | 1+(−2.30−3.98i)T+(−29.5+51.0i)T2 |
| 61 | 1+(6.51+11.2i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−4.28+7.42i)T+(−33.5−58.0i)T2 |
| 71 | 1+(−3.60−6.24i)T+(−35.5+61.4i)T2 |
| 73 | 1−11.9T+73T2 |
| 79 | 1+6.12T+79T2 |
| 83 | 1−7.24T+83T2 |
| 89 | 1+(3.04−5.27i)T+(−44.5−77.0i)T2 |
| 97 | 1+(5.34+9.25i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.09174634412610896988791222957, −9.416818917326604801727038806910, −8.343202743784533675298623995249, −7.83531643834330492963951137537, −6.89192345248739009061760223404, −5.95594867245073293918104514336, −5.55470967656795747801387218568, −3.67877709986099843422290326715, −3.48175665404339414113588811360, −0.955117143927324254730013251651,
0.77397962645078541709236786322, 2.18591502973989022224033801254, 2.80593535314417681356980260167, 4.29197538892884274675009956619, 5.57260782418147252302397288458, 6.41538216299602069200083008095, 7.13159232447235800560482403795, 8.451325957506390989511290009735, 9.244552930924283878887337141071, 9.639579424207881931765847356073