L(s) = 1 | + (−0.813 + 1.40i)2-s + (−0.5 + 0.866i)3-s + (−0.322 − 0.558i)4-s + (−0.813 − 1.40i)6-s + (−1.54 − 2.67i)7-s − 2.20·8-s + (−0.499 − 0.866i)9-s + (1.60 − 2.78i)11-s + 0.644·12-s + (1.88 − 3.07i)13-s + 5.01·14-s + (2.43 − 4.22i)16-s + (2.01 + 3.48i)17-s + 1.62·18-s + (3.66 + 6.34i)19-s + ⋯ |
L(s) = 1 | + (−0.574 + 0.995i)2-s + (−0.288 + 0.499i)3-s + (−0.161 − 0.279i)4-s + (−0.331 − 0.574i)6-s + (−0.582 − 1.00i)7-s − 0.779·8-s + (−0.166 − 0.288i)9-s + (0.484 − 0.838i)11-s + 0.186·12-s + (0.522 − 0.852i)13-s + 1.34·14-s + (0.609 − 1.05i)16-s + (0.487 + 0.844i)17-s + 0.383·18-s + (0.840 + 1.45i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.227 - 0.973i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.227 - 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.599950 + 0.755980i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.599950 + 0.755980i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.5 - 0.866i)T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (-1.88 + 3.07i)T \) |
good | 2 | \( 1 + (0.813 - 1.40i)T + (-1 - 1.73i)T^{2} \) |
| 7 | \( 1 + (1.54 + 2.67i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.60 + 2.78i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-2.01 - 3.48i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.66 - 6.34i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (3.77 - 6.54i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (2.07 - 3.58i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 6.70T + 31T^{2} \) |
| 37 | \( 1 + (2.38 - 4.13i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-2.01 + 3.48i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (0.560 + 0.971i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 8.97T + 47T^{2} \) |
| 53 | \( 1 - 10.0T + 53T^{2} \) |
| 59 | \( 1 + (-2.30 - 3.98i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (6.51 + 11.2i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.28 + 7.42i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-3.60 - 6.24i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 11.9T + 73T^{2} \) |
| 79 | \( 1 + 6.12T + 79T^{2} \) |
| 83 | \( 1 - 7.24T + 83T^{2} \) |
| 89 | \( 1 + (3.04 - 5.27i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (5.34 + 9.25i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.09174634412610896988791222957, −9.416818917326604801727038806910, −8.343202743784533675298623995249, −7.83531643834330492963951137537, −6.89192345248739009061760223404, −5.95594867245073293918104514336, −5.55470967656795747801387218568, −3.67877709986099843422290326715, −3.48175665404339414113588811360, −0.955117143927324254730013251651,
0.77397962645078541709236786322, 2.18591502973989022224033801254, 2.80593535314417681356980260167, 4.29197538892884274675009956619, 5.57260782418147252302397288458, 6.41538216299602069200083008095, 7.13159232447235800560482403795, 8.451325957506390989511290009735, 9.244552930924283878887337141071, 9.639579424207881931765847356073