Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [975,2,Mod(451,975)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(975, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 4]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("975.451");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 975.i (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
451.1 |
|
−1.40603 | + | 2.43531i | −0.500000 | + | 0.866025i | −2.95384 | − | 5.11620i | 0 | −1.40603 | − | 2.43531i | −0.333570 | − | 0.577759i | 10.9886 | −0.500000 | − | 0.866025i | 0 | ||||||||||||||||||||||||||||||||||||||||||
451.2 | −0.813080 | + | 1.40830i | −0.500000 | + | 0.866025i | −0.322200 | − | 0.558066i | 0 | −0.813080 | − | 1.40830i | −1.54239 | − | 2.67150i | −2.20443 | −0.500000 | − | 0.866025i | 0 | |||||||||||||||||||||||||||||||||||||||||||
451.3 | −0.115825 | + | 0.200615i | −0.500000 | + | 0.866025i | 0.973169 | + | 1.68558i | 0 | −0.115825 | − | 0.200615i | −0.580982 | − | 1.00629i | −0.914171 | −0.500000 | − | 0.866025i | 0 | |||||||||||||||||||||||||||||||||||||||||||
451.4 | 0.215564 | − | 0.373368i | −0.500000 | + | 0.866025i | 0.907064 | + | 1.57108i | 0 | 0.215564 | + | 0.373368i | 2.03980 | + | 3.53303i | 1.64438 | −0.500000 | − | 0.866025i | 0 | |||||||||||||||||||||||||||||||||||||||||||
451.5 | 0.892010 | − | 1.54501i | −0.500000 | + | 0.866025i | −0.591364 | − | 1.02427i | 0 | 0.892010 | + | 1.54501i | −1.17557 | − | 2.03615i | 1.45803 | −0.500000 | − | 0.866025i | 0 | |||||||||||||||||||||||||||||||||||||||||||
451.6 | 1.22736 | − | 2.12585i | −0.500000 | + | 0.866025i | −2.01283 | − | 3.48633i | 0 | 1.22736 | + | 2.12585i | 2.09272 | + | 3.62470i | −4.97244 | −0.500000 | − | 0.866025i | 0 | |||||||||||||||||||||||||||||||||||||||||||
601.1 | −1.40603 | − | 2.43531i | −0.500000 | − | 0.866025i | −2.95384 | + | 5.11620i | 0 | −1.40603 | + | 2.43531i | −0.333570 | + | 0.577759i | 10.9886 | −0.500000 | + | 0.866025i | 0 | |||||||||||||||||||||||||||||||||||||||||||
601.2 | −0.813080 | − | 1.40830i | −0.500000 | − | 0.866025i | −0.322200 | + | 0.558066i | 0 | −0.813080 | + | 1.40830i | −1.54239 | + | 2.67150i | −2.20443 | −0.500000 | + | 0.866025i | 0 | |||||||||||||||||||||||||||||||||||||||||||
601.3 | −0.115825 | − | 0.200615i | −0.500000 | − | 0.866025i | 0.973169 | − | 1.68558i | 0 | −0.115825 | + | 0.200615i | −0.580982 | + | 1.00629i | −0.914171 | −0.500000 | + | 0.866025i | 0 | |||||||||||||||||||||||||||||||||||||||||||
601.4 | 0.215564 | + | 0.373368i | −0.500000 | − | 0.866025i | 0.907064 | − | 1.57108i | 0 | 0.215564 | − | 0.373368i | 2.03980 | − | 3.53303i | 1.64438 | −0.500000 | + | 0.866025i | 0 | |||||||||||||||||||||||||||||||||||||||||||
601.5 | 0.892010 | + | 1.54501i | −0.500000 | − | 0.866025i | −0.591364 | + | 1.02427i | 0 | 0.892010 | − | 1.54501i | −1.17557 | + | 2.03615i | 1.45803 | −0.500000 | + | 0.866025i | 0 | |||||||||||||||||||||||||||||||||||||||||||
601.6 | 1.22736 | + | 2.12585i | −0.500000 | − | 0.866025i | −2.01283 | + | 3.48633i | 0 | 1.22736 | − | 2.12585i | 2.09272 | − | 3.62470i | −4.97244 | −0.500000 | + | 0.866025i | 0 | |||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 975.2.i.n | ✓ | 12 |
5.b | even | 2 | 1 | 975.2.i.p | yes | 12 | |
5.c | odd | 4 | 2 | 975.2.bb.l | 24 | ||
13.c | even | 3 | 1 | inner | 975.2.i.n | ✓ | 12 |
65.n | even | 6 | 1 | 975.2.i.p | yes | 12 | |
65.q | odd | 12 | 2 | 975.2.bb.l | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
975.2.i.n | ✓ | 12 | 1.a | even | 1 | 1 | trivial |
975.2.i.n | ✓ | 12 | 13.c | even | 3 | 1 | inner |
975.2.i.p | yes | 12 | 5.b | even | 2 | 1 | |
975.2.i.p | yes | 12 | 65.n | even | 6 | 1 | |
975.2.bb.l | 24 | 5.c | odd | 4 | 2 | ||
975.2.bb.l | 24 | 65.q | odd | 12 | 2 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|