Properties

Label 975.2.i.n
Level 975975
Weight 22
Character orbit 975.i
Analytic conductor 7.7857.785
Analytic rank 00
Dimension 1212
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [975,2,Mod(451,975)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(975, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("975.451");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 975=35213 975 = 3 \cdot 5^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 975.i (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 7.785414197077.78541419707
Analytic rank: 00
Dimension: 1212
Relative dimension: 66 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q[x]/(x12+)\mathbb{Q}[x]/(x^{12} + \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x12+10x104x9+79x824x7+210x638x5+429x476x3+58x2+8x+4 x^{12} + 10x^{10} - 4x^{9} + 79x^{8} - 24x^{7} + 210x^{6} - 38x^{5} + 429x^{4} - 76x^{3} + 58x^{2} + 8x + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β111,\beta_1,\ldots,\beta_{11} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β3β1)q2+(β61)q3+(β9+β6)q4+β1q6+(β5+β1)q7+(β10β8+β2)q8+β6q9++(β11β10+β1)q99+O(q100) q + ( - \beta_{3} - \beta_1) q^{2} + ( - \beta_{6} - 1) q^{3} + ( - \beta_{9} + \beta_{6}) q^{4} + \beta_1 q^{6} + (\beta_{5} + \beta_1) q^{7} + (\beta_{10} - \beta_{8} + \cdots - \beta_{2}) q^{8} + \beta_{6} q^{9}+ \cdots + (\beta_{11} - \beta_{10} + \cdots - \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q6q38q4+q7+12q86q9q11+16q123q13+30q1420q16+8q17+3q192q213q22q236q24+9q26+12q27+3q28++2q99+O(q100) 12 q - 6 q^{3} - 8 q^{4} + q^{7} + 12 q^{8} - 6 q^{9} - q^{11} + 16 q^{12} - 3 q^{13} + 30 q^{14} - 20 q^{16} + 8 q^{17} + 3 q^{19} - 2 q^{21} - 3 q^{22} - q^{23} - 6 q^{24} + 9 q^{26} + 12 q^{27} + 3 q^{28}+ \cdots + 2 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x12+10x104x9+79x824x7+210x638x5+429x476x3+58x2+8x+4 x^{12} + 10x^{10} - 4x^{9} + 79x^{8} - 24x^{7} + 210x^{6} - 38x^{5} + 429x^{4} - 76x^{3} + 58x^{2} + 8x + 4 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (648578ν11379348ν10+6324948ν95331730ν8+51332742ν7++495704777)/169238865 ( 648578 \nu^{11} - 379348 \nu^{10} + 6324948 \nu^{9} - 5331730 \nu^{8} + 51332742 \nu^{7} + \cdots + 495704777 ) / 169238865 Copy content Toggle raw display
β3\beta_{3}== (6005909ν11+1297156ν10+59300394ν911373740ν8+463803351ν7++50701736)/338477730 ( 6005909 \nu^{11} + 1297156 \nu^{10} + 59300394 \nu^{9} - 11373740 \nu^{8} + 463803351 \nu^{7} + \cdots + 50701736 ) / 338477730 Copy content Toggle raw display
β4\beta_{4}== (25270874ν1146204489ν10+257990944ν9574457815ν8+4306765424)/1015433190 ( 25270874 \nu^{11} - 46204489 \nu^{10} + 257990944 \nu^{9} - 574457815 \nu^{8} + \cdots - 4306765424 ) / 1015433190 Copy content Toggle raw display
β5\beta_{5}== (11790614ν11+2847689ν10110190649ν9+81866840ν8++170447984)/338477730 ( - 11790614 \nu^{11} + 2847689 \nu^{10} - 110190649 \nu^{9} + 81866840 \nu^{8} + \cdots + 170447984 ) / 338477730 Copy content Toggle raw display
β6\beta_{6}== (12675434ν116005909ν10+125457184ν9110002130ν8+1012733026ν7+253212554)/338477730 ( 12675434 \nu^{11} - 6005909 \nu^{10} + 125457184 \nu^{9} - 110002130 \nu^{8} + 1012733026 \nu^{7} + \cdots - 253212554 ) / 338477730 Copy content Toggle raw display
β7\beta_{7}== (32118538ν11+13879607ν10+325731518ν9+10946045ν8+2523312407ν7++295482512)/338477730 ( 32118538 \nu^{11} + 13879607 \nu^{10} + 325731518 \nu^{9} + 10946045 \nu^{8} + 2523312407 \nu^{7} + \cdots + 295482512 ) / 338477730 Copy content Toggle raw display
β8\beta_{8}== (19994486ν11+4074691ν10202244509ν9+121094095ν8+301770310)/203086638 ( - 19994486 \nu^{11} + 4074691 \nu^{10} - 202244509 \nu^{9} + 121094095 \nu^{8} + \cdots - 301770310 ) / 203086638 Copy content Toggle raw display
β9\beta_{9}== (36729146ν1117259031ν10+363721656ν9319342930ν8+2935533594ν7+735614026)/338477730 ( 36729146 \nu^{11} - 17259031 \nu^{10} + 363721656 \nu^{9} - 319342930 \nu^{8} + 2935533594 \nu^{7} + \cdots - 735614026 ) / 338477730 Copy content Toggle raw display
β10\beta_{10}== (186169597ν111359973ν101862778767ν9+744086195ν8++704851072)/1015433190 ( - 186169597 \nu^{11} - 1359973 \nu^{10} - 1862778767 \nu^{9} + 744086195 \nu^{8} + \cdots + 704851072 ) / 1015433190 Copy content Toggle raw display
β11\beta_{11}== (212435956ν1171185556ν10+2118812021ν91564069745ν8+682424656)/1015433190 ( 212435956 \nu^{11} - 71185556 \nu^{10} + 2118812021 \nu^{9} - 1564069745 \nu^{8} + \cdots - 682424656 ) / 1015433190 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β93β6+β23 \beta_{9} - 3\beta_{6} + \beta_{2} - 3 Copy content Toggle raw display
ν3\nu^{3}== β10β8+5β3β2 \beta_{10} - \beta_{8} + 5\beta_{3} - \beta_{2} Copy content Toggle raw display
ν4\nu^{4}== β118β9+16β6β5+β4+2β1 \beta_{11} - 8\beta_{9} + 16\beta_{6} - \beta_{5} + \beta_{4} + 2\beta_1 Copy content Toggle raw display
ν5\nu^{5}== 11β119β10+12β9β73β6+β429β3+3 - 11 \beta_{11} - 9 \beta_{10} + 12 \beta_{9} - \beta_{7} - 3 \beta_{6} + \beta_{4} - 29 \beta_{3} + \cdots - 3 Copy content Toggle raw display
ν6\nu^{6}== 10β11+2β102β810β7+10β520β4+6β3++99 10 \beta_{11} + 2 \beta_{10} - 2 \beta_{8} - 10 \beta_{7} + 10 \beta_{5} - 20 \beta_{4} + 6 \beta_{3} + \cdots + 99 Copy content Toggle raw display
ν7\nu^{7}== 81β11111β9+69β8+50β6+8β5+12β4+280β1 81\beta_{11} - 111\beta_{9} + 69\beta_{8} + 50\beta_{6} + 8\beta_{5} + 12\beta_{4} + 280\beta_1 Copy content Toggle raw display
ν8\nu^{8}== 196β1134β10+464β9+77β7666β6+81β4+666 - 196 \beta_{11} - 34 \beta_{10} + 464 \beta_{9} + 77 \beta_{7} - 666 \beta_{6} + 81 \beta_{4} + \cdots - 666 Copy content Toggle raw display
ν9\nu^{9}== 115β11+507β10507β8+43β743β5230β4++571 115 \beta_{11} + 507 \beta_{10} - 507 \beta_{8} + 43 \beta_{7} - 43 \beta_{5} - 230 \beta_{4} + \cdots + 571 Copy content Toggle raw display
ν10\nu^{10}== 1022β113549β9+400β8+4701β6550β5+622β4+2756β1 1022\beta_{11} - 3549\beta_{9} + 400\beta_{8} + 4701\beta_{6} - 550\beta_{5} + 622\beta_{4} + 2756\beta_1 Copy content Toggle raw display
ν11\nu^{11}== 5743β113699β10+7877β9150β75602β6+1022β4+5602 - 5743 \beta_{11} - 3699 \beta_{10} + 7877 \beta_{9} - 150 \beta_{7} - 5602 \beta_{6} + 1022 \beta_{4} + \cdots - 5602 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/975Z)×\left(\mathbb{Z}/975\mathbb{Z}\right)^\times.

nn 301301 326326 352352
χ(n)\chi(n) β6\beta_{6} 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
451.1
−1.40603 2.43531i
−0.813080 1.40830i
−0.115825 0.200615i
0.215564 + 0.373368i
0.892010 + 1.54501i
1.22736 + 2.12585i
−1.40603 + 2.43531i
−0.813080 + 1.40830i
−0.115825 + 0.200615i
0.215564 0.373368i
0.892010 1.54501i
1.22736 2.12585i
−1.40603 + 2.43531i −0.500000 + 0.866025i −2.95384 5.11620i 0 −1.40603 2.43531i −0.333570 0.577759i 10.9886 −0.500000 0.866025i 0
451.2 −0.813080 + 1.40830i −0.500000 + 0.866025i −0.322200 0.558066i 0 −0.813080 1.40830i −1.54239 2.67150i −2.20443 −0.500000 0.866025i 0
451.3 −0.115825 + 0.200615i −0.500000 + 0.866025i 0.973169 + 1.68558i 0 −0.115825 0.200615i −0.580982 1.00629i −0.914171 −0.500000 0.866025i 0
451.4 0.215564 0.373368i −0.500000 + 0.866025i 0.907064 + 1.57108i 0 0.215564 + 0.373368i 2.03980 + 3.53303i 1.64438 −0.500000 0.866025i 0
451.5 0.892010 1.54501i −0.500000 + 0.866025i −0.591364 1.02427i 0 0.892010 + 1.54501i −1.17557 2.03615i 1.45803 −0.500000 0.866025i 0
451.6 1.22736 2.12585i −0.500000 + 0.866025i −2.01283 3.48633i 0 1.22736 + 2.12585i 2.09272 + 3.62470i −4.97244 −0.500000 0.866025i 0
601.1 −1.40603 2.43531i −0.500000 0.866025i −2.95384 + 5.11620i 0 −1.40603 + 2.43531i −0.333570 + 0.577759i 10.9886 −0.500000 + 0.866025i 0
601.2 −0.813080 1.40830i −0.500000 0.866025i −0.322200 + 0.558066i 0 −0.813080 + 1.40830i −1.54239 + 2.67150i −2.20443 −0.500000 + 0.866025i 0
601.3 −0.115825 0.200615i −0.500000 0.866025i 0.973169 1.68558i 0 −0.115825 + 0.200615i −0.580982 + 1.00629i −0.914171 −0.500000 + 0.866025i 0
601.4 0.215564 + 0.373368i −0.500000 0.866025i 0.907064 1.57108i 0 0.215564 0.373368i 2.03980 3.53303i 1.64438 −0.500000 + 0.866025i 0
601.5 0.892010 + 1.54501i −0.500000 0.866025i −0.591364 + 1.02427i 0 0.892010 1.54501i −1.17557 + 2.03615i 1.45803 −0.500000 + 0.866025i 0
601.6 1.22736 + 2.12585i −0.500000 0.866025i −2.01283 + 3.48633i 0 1.22736 2.12585i 2.09272 3.62470i −4.97244 −0.500000 + 0.866025i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 451.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 975.2.i.n 12
5.b even 2 1 975.2.i.p yes 12
5.c odd 4 2 975.2.bb.l 24
13.c even 3 1 inner 975.2.i.n 12
65.n even 6 1 975.2.i.p yes 12
65.q odd 12 2 975.2.bb.l 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
975.2.i.n 12 1.a even 1 1 trivial
975.2.i.n 12 13.c even 3 1 inner
975.2.i.p yes 12 5.b even 2 1
975.2.i.p yes 12 65.n even 6 1
975.2.bb.l 24 5.c odd 4 2
975.2.bb.l 24 65.q odd 12 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(975,[χ])S_{2}^{\mathrm{new}}(975, [\chi]):

T212+10T2104T29+79T2824T27+210T2638T25++4 T_{2}^{12} + 10 T_{2}^{10} - 4 T_{2}^{9} + 79 T_{2}^{8} - 24 T_{2}^{7} + 210 T_{2}^{6} - 38 T_{2}^{5} + \cdots + 4 Copy content Toggle raw display
T712T711+26T710+39T79+450T78+763T77+4693T76++9216 T_{7}^{12} - T_{7}^{11} + 26 T_{7}^{10} + 39 T_{7}^{9} + 450 T_{7}^{8} + 763 T_{7}^{7} + 4693 T_{7}^{6} + \cdots + 9216 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T12+10T10++4 T^{12} + 10 T^{10} + \cdots + 4 Copy content Toggle raw display
33 (T2+T+1)6 (T^{2} + T + 1)^{6} Copy content Toggle raw display
55 T12 T^{12} Copy content Toggle raw display
77 T12T11++9216 T^{12} - T^{11} + \cdots + 9216 Copy content Toggle raw display
1111 T12+T11++20502784 T^{12} + T^{11} + \cdots + 20502784 Copy content Toggle raw display
1313 T12+3T11++4826809 T^{12} + 3 T^{11} + \cdots + 4826809 Copy content Toggle raw display
1717 T128T11++861184 T^{12} - 8 T^{11} + \cdots + 861184 Copy content Toggle raw display
1919 T123T11++2696164 T^{12} - 3 T^{11} + \cdots + 2696164 Copy content Toggle raw display
2323 T12+T11++576 T^{12} + T^{11} + \cdots + 576 Copy content Toggle raw display
2929 T12+12T11++90326016 T^{12} + 12 T^{11} + \cdots + 90326016 Copy content Toggle raw display
3131 (T612T5+3648)2 (T^{6} - 12 T^{5} + \cdots - 3648)^{2} Copy content Toggle raw display
3737 T12++2347208704 T^{12} + \cdots + 2347208704 Copy content Toggle raw display
4141 T128T11++861184 T^{12} - 8 T^{11} + \cdots + 861184 Copy content Toggle raw display
4343 T12++149426176 T^{12} + \cdots + 149426176 Copy content Toggle raw display
4747 (T6+12T5++61696)2 (T^{6} + 12 T^{5} + \cdots + 61696)^{2} Copy content Toggle raw display
5353 (T6+8T5+20768)2 (T^{6} + 8 T^{5} + \cdots - 20768)^{2} Copy content Toggle raw display
5959 T122T11++262144 T^{12} - 2 T^{11} + \cdots + 262144 Copy content Toggle raw display
6161 T12++446392384 T^{12} + \cdots + 446392384 Copy content Toggle raw display
6767 T12++20694548736 T^{12} + \cdots + 20694548736 Copy content Toggle raw display
7171 T1223T11++256 T^{12} - 23 T^{11} + \cdots + 256 Copy content Toggle raw display
7373 (T6+6T5+17803)2 (T^{6} + 6 T^{5} + \cdots - 17803)^{2} Copy content Toggle raw display
7979 (T611T5+70818)2 (T^{6} - 11 T^{5} + \cdots - 70818)^{2} Copy content Toggle raw display
8383 (T6+17T5++116448)2 (T^{6} + 17 T^{5} + \cdots + 116448)^{2} Copy content Toggle raw display
8989 T12++1900692366336 T^{12} + \cdots + 1900692366336 Copy content Toggle raw display
9797 T12+19T11++11888704 T^{12} + 19 T^{11} + \cdots + 11888704 Copy content Toggle raw display
show more
show less