L(s) = 1 | + (−0.115 − 0.200i)2-s + (−0.5 − 0.866i)3-s + (0.973 − 1.68i)4-s + (−0.115 + 0.200i)6-s + (−0.580 + 1.00i)7-s − 0.914·8-s + (−0.499 + 0.866i)9-s + (−1.76 − 3.05i)11-s − 1.94·12-s + (−3.59 + 0.297i)13-s + 0.269·14-s + (−1.84 − 3.18i)16-s + (−3.08 + 5.34i)17-s + 0.231·18-s + (−3.63 + 6.29i)19-s + ⋯ |
L(s) = 1 | + (−0.0819 − 0.141i)2-s + (−0.288 − 0.499i)3-s + (0.486 − 0.842i)4-s + (−0.0472 + 0.0819i)6-s + (−0.219 + 0.380i)7-s − 0.323·8-s + (−0.166 + 0.288i)9-s + (−0.531 − 0.920i)11-s − 0.561·12-s + (−0.996 + 0.0824i)13-s + 0.0719·14-s + (−0.460 − 0.796i)16-s + (−0.748 + 1.29i)17-s + 0.0546·18-s + (−0.834 + 1.44i)19-s + ⋯ |
Λ(s)=(=(975s/2ΓC(s)L(s)(−0.767−0.641i)Λ(2−s)
Λ(s)=(=(975s/2ΓC(s+1/2)L(s)(−0.767−0.641i)Λ(1−s)
Degree: |
2 |
Conductor: |
975
= 3⋅52⋅13
|
Sign: |
−0.767−0.641i
|
Analytic conductor: |
7.78541 |
Root analytic conductor: |
2.79023 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ975(601,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 975, ( :1/2), −0.767−0.641i)
|
Particular Values
L(1) |
≈ |
0.0811961+0.223679i |
L(21) |
≈ |
0.0811961+0.223679i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.5+0.866i)T |
| 5 | 1 |
| 13 | 1+(3.59−0.297i)T |
good | 2 | 1+(0.115+0.200i)T+(−1+1.73i)T2 |
| 7 | 1+(0.580−1.00i)T+(−3.5−6.06i)T2 |
| 11 | 1+(1.76+3.05i)T+(−5.5+9.52i)T2 |
| 17 | 1+(3.08−5.34i)T+(−8.5−14.7i)T2 |
| 19 | 1+(3.63−6.29i)T+(−9.5−16.4i)T2 |
| 23 | 1+(0.180+0.313i)T+(−11.5+19.9i)T2 |
| 29 | 1+(4.95+8.59i)T+(−14.5+25.1i)T2 |
| 31 | 1−8.83T+31T2 |
| 37 | 1+(1.85+3.21i)T+(−18.5+32.0i)T2 |
| 41 | 1+(3.08+5.34i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−1.59+2.76i)T+(−21.5−37.2i)T2 |
| 47 | 1+11.7T+47T2 |
| 53 | 1−3.46T+53T2 |
| 59 | 1+(2.74−4.75i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−0.361+0.626i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−2.56−4.44i)T+(−33.5+58.0i)T2 |
| 71 | 1+(−0.237+0.411i)T+(−35.5−61.4i)T2 |
| 73 | 1−3.75T+73T2 |
| 79 | 1+4.59T+79T2 |
| 83 | 1+8.41T+83T2 |
| 89 | 1+(−7.70−13.3i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−0.662+1.14i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.732627592420544845089197483767, −8.563015356672765163474350984088, −7.889003113867455062050755060551, −6.71483838765953644424125595062, −6.02457648945520579849916325234, −5.49918167453391357181823179994, −4.15133550425370072344721440607, −2.62392310482534199121332457204, −1.79194096687364081388391574887, −0.10436225394837667097878517923,
2.34447772205472033280282092731, 3.16958158876011045177931077731, 4.56862309270662781726831918029, 4.98676881525571720357368501420, 6.69876028223341360490224115767, 6.95154868737803947850484604635, 7.909870522009544868583968942744, 8.926889515071851260295911098726, 9.681042844586958191887890702762, 10.50218156131832270276822903586