L(s) = 1 | + (−0.115 − 0.200i)2-s + (−0.5 − 0.866i)3-s + (0.973 − 1.68i)4-s + (−0.115 + 0.200i)6-s + (−0.580 + 1.00i)7-s − 0.914·8-s + (−0.499 + 0.866i)9-s + (−1.76 − 3.05i)11-s − 1.94·12-s + (−3.59 + 0.297i)13-s + 0.269·14-s + (−1.84 − 3.18i)16-s + (−3.08 + 5.34i)17-s + 0.231·18-s + (−3.63 + 6.29i)19-s + ⋯ |
L(s) = 1 | + (−0.0819 − 0.141i)2-s + (−0.288 − 0.499i)3-s + (0.486 − 0.842i)4-s + (−0.0472 + 0.0819i)6-s + (−0.219 + 0.380i)7-s − 0.323·8-s + (−0.166 + 0.288i)9-s + (−0.531 − 0.920i)11-s − 0.561·12-s + (−0.996 + 0.0824i)13-s + 0.0719·14-s + (−0.460 − 0.796i)16-s + (−0.748 + 1.29i)17-s + 0.0546·18-s + (−0.834 + 1.44i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.767 - 0.641i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.767 - 0.641i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0811961 + 0.223679i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0811961 + 0.223679i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.5 + 0.866i)T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (3.59 - 0.297i)T \) |
good | 2 | \( 1 + (0.115 + 0.200i)T + (-1 + 1.73i)T^{2} \) |
| 7 | \( 1 + (0.580 - 1.00i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (1.76 + 3.05i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (3.08 - 5.34i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (3.63 - 6.29i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (0.180 + 0.313i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (4.95 + 8.59i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 8.83T + 31T^{2} \) |
| 37 | \( 1 + (1.85 + 3.21i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (3.08 + 5.34i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.59 + 2.76i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 11.7T + 47T^{2} \) |
| 53 | \( 1 - 3.46T + 53T^{2} \) |
| 59 | \( 1 + (2.74 - 4.75i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.361 + 0.626i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.56 - 4.44i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-0.237 + 0.411i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 3.75T + 73T^{2} \) |
| 79 | \( 1 + 4.59T + 79T^{2} \) |
| 83 | \( 1 + 8.41T + 83T^{2} \) |
| 89 | \( 1 + (-7.70 - 13.3i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-0.662 + 1.14i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.732627592420544845089197483767, −8.563015356672765163474350984088, −7.889003113867455062050755060551, −6.71483838765953644424125595062, −6.02457648945520579849916325234, −5.49918167453391357181823179994, −4.15133550425370072344721440607, −2.62392310482534199121332457204, −1.79194096687364081388391574887, −0.10436225394837667097878517923,
2.34447772205472033280282092731, 3.16958158876011045177931077731, 4.56862309270662781726831918029, 4.98676881525571720357368501420, 6.69876028223341360490224115767, 6.95154868737803947850484604635, 7.909870522009544868583968942744, 8.926889515071851260295911098726, 9.681042844586958191887890702762, 10.50218156131832270276822903586