L(s) = 1 | + 8·4-s + 24·16-s − 8·19-s − 48·41-s − 4·49-s − 48·59-s − 24·61-s − 16·71-s − 64·76-s − 2·81-s + 24·109-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s − 384·164-s + 167-s + 36·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯ |
L(s) = 1 | + 4·4-s + 6·16-s − 1.83·19-s − 7.49·41-s − 4/7·49-s − 6.24·59-s − 3.07·61-s − 1.89·71-s − 7.34·76-s − 2/9·81-s + 2.29·109-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s − 29.9·164-s + 0.0773·167-s + 2.76·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + ⋯ |
Λ(s)=(=((38⋅516⋅138)s/2ΓC(s)8L(s)Λ(2−s)
Λ(s)=(=((38⋅516⋅138)s/2ΓC(s+1/2)8L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.3291399315 |
L(21) |
≈ |
0.3291399315 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | (1+T4)2 |
| 5 | 1 |
| 13 | (1−18T2+p2T4)2 |
good | 2 | (1−pT2+p2T4)4 |
| 7 | (1+2T2+11T4+2p2T6+p4T8)2 |
| 11 | (1−p2T4+p4T8)2 |
| 17 | 1−738T4+260611T8−738p4T12+p8T16 |
| 19 | (1+4T+8T2−92T3−706T4−92pT5+8p2T6+4p3T7+p4T8)2 |
| 23 | 1−82T4−151437T8−82p4T12+p8T16 |
| 29 | (1−10T+pT2)4(1+10T+pT2)4 |
| 31 | (1+p2T4)4 |
| 37 | (1+90T2+3971T4+90p2T6+p4T8)2 |
| 41 | (1+24T+288T2+2448T3+17087T4+2448pT5+288p2T6+24p3T7+p4T8)2 |
| 43 | (1−42T2+p2T4)2(1+42T2+p2T4)2 |
| 47 | (1+64T2+2274T4+64p2T6+p4T8)2 |
| 53 | 1+1598T4−1400637T8+1598p4T12+p8T16 |
| 59 | (1+12T+72T2+12pT3+p2T4)4 |
| 61 | (1+6T+43T2+6pT3+p2T4)4 |
| 67 | (1−164T2+14294T4−164p2T6+p4T8)2 |
| 71 | (1+8T+32T2−160T3−7481T4−160pT5+32p2T6+8p3T7+p4T8)2 |
| 73 | (1−pT2)8 |
| 79 | (1+11T2+p2T4)4 |
| 83 | (1+208T2+21426T4+208p2T6+p4T8)2 |
| 89 | (1+12047T4+p4T8)2 |
| 97 | (1−362T2+51491T4−362p2T6+p4T8)2 |
show more | |
show less | |
L(s)=p∏ j=1∏16(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−4.40751536378015578937536694933, −4.26057583502248076429575993198, −3.93389289515505025387269162016, −3.84320049625471115333413552002, −3.58372266970314975514213571921, −3.55142847862123418462709648409, −3.36024782776231887111903217202, −3.20994416659107175825842625686, −3.17044178120927572523927738524, −2.97648994488580056963403815144, −2.94313949999248358892698566527, −2.79177242598209592354363272080, −2.62727269809712788902464924981, −2.61263839225020512700691530282, −2.15941482382976557238570574292, −1.96659787742113864749354811769, −1.92492565319593449004144839771, −1.85138091249805560905234243434, −1.82497702744534381826520074396, −1.70288741715018417600935607709, −1.45890451130054961601956984256, −1.21415500593990526747619915748, −1.18643012438184014092550364318, −0.16820852232885409235583198051, −0.12386141711356014105886337824,
0.12386141711356014105886337824, 0.16820852232885409235583198051, 1.18643012438184014092550364318, 1.21415500593990526747619915748, 1.45890451130054961601956984256, 1.70288741715018417600935607709, 1.82497702744534381826520074396, 1.85138091249805560905234243434, 1.92492565319593449004144839771, 1.96659787742113864749354811769, 2.15941482382976557238570574292, 2.61263839225020512700691530282, 2.62727269809712788902464924981, 2.79177242598209592354363272080, 2.94313949999248358892698566527, 2.97648994488580056963403815144, 3.17044178120927572523927738524, 3.20994416659107175825842625686, 3.36024782776231887111903217202, 3.55142847862123418462709648409, 3.58372266970314975514213571921, 3.84320049625471115333413552002, 3.93389289515505025387269162016, 4.26057583502248076429575993198, 4.40751536378015578937536694933
Plot not available for L-functions of degree greater than 10.