Properties

Label 975.2.k.c
Level $975$
Weight $2$
Character orbit 975.k
Analytic conductor $7.785$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [975,2,Mod(307,975)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(975, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("975.307");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.959512576.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 7x^{4} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{5} + \beta_1) q^{2} + \beta_1 q^{3} + ( - \beta_{2} - 1) q^{6} + ( - \beta_{6} + \beta_{5} - \beta_1) q^{7} + (2 \beta_{5} + 2 \beta_1) q^{8} - \beta_{2} q^{9} - \beta_{7} q^{11} + ( - \beta_{6} - \beta_{5} - \beta_1) q^{13}+ \cdots - \beta_{4} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{6} - 32 q^{16} - 8 q^{19} - 8 q^{21} - 16 q^{24} + 16 q^{26} + 8 q^{34} + 8 q^{39} - 48 q^{41} + 24 q^{46} + 48 q^{49} - 8 q^{54} - 48 q^{59} - 24 q^{61} - 64 q^{64} + 24 q^{69} - 16 q^{71} - 8 q^{81}+ \cdots + 88 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 7x^{4} + 81 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{5} + \nu ) / 15 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{6} + 16\nu^{2} ) / 45 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 2\nu^{4} + 7 ) / 5 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{5} + 31\nu ) / 15 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -2\nu^{7} + 13\nu^{3} ) / 135 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -\nu^{6} + 2\nu^{2} ) / 9 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 8\nu^{7} + 83\nu^{3} ) / 135 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{4} - \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{6} + 5\beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{7} + 4\beta_{5} \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 5\beta_{3} - 7 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -\beta_{4} + 31\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -8\beta_{6} + 5\beta_{2} \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 13\beta_{7} - 83\beta_{5} ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(\beta_{2}\) \(1\) \(\beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
307.1
−1.52616 0.819051i
0.819051 + 1.52616i
1.52616 + 0.819051i
−0.819051 1.52616i
1.52616 0.819051i
−0.819051 + 1.52616i
−1.52616 + 0.819051i
0.819051 1.52616i
1.41421i 0.707107 0.707107i 0 0 −1.00000 1.00000i −4.73084 2.82843i 1.00000i 0
307.2 1.41421i 0.707107 0.707107i 0 0 −1.00000 1.00000i 1.90241 2.82843i 1.00000i 0
307.3 1.41421i −0.707107 + 0.707107i 0 0 −1.00000 1.00000i −1.90241 2.82843i 1.00000i 0
307.4 1.41421i −0.707107 + 0.707107i 0 0 −1.00000 1.00000i 4.73084 2.82843i 1.00000i 0
343.1 1.41421i −0.707107 0.707107i 0 0 −1.00000 + 1.00000i −1.90241 2.82843i 1.00000i 0
343.2 1.41421i −0.707107 0.707107i 0 0 −1.00000 + 1.00000i 4.73084 2.82843i 1.00000i 0
343.3 1.41421i 0.707107 + 0.707107i 0 0 −1.00000 + 1.00000i −4.73084 2.82843i 1.00000i 0
343.4 1.41421i 0.707107 + 0.707107i 0 0 −1.00000 + 1.00000i 1.90241 2.82843i 1.00000i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 307.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
65.f even 4 1 inner
65.k even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 975.2.k.c 8
5.b even 2 1 inner 975.2.k.c 8
5.c odd 4 2 975.2.t.c yes 8
13.d odd 4 1 975.2.t.c yes 8
65.f even 4 1 inner 975.2.k.c 8
65.g odd 4 1 975.2.t.c yes 8
65.k even 4 1 inner 975.2.k.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
975.2.k.c 8 1.a even 1 1 trivial
975.2.k.c 8 5.b even 2 1 inner
975.2.k.c 8 65.f even 4 1 inner
975.2.k.c 8 65.k even 4 1 inner
975.2.t.c yes 8 5.c odd 4 2
975.2.t.c yes 8 13.d odd 4 1
975.2.t.c yes 8 65.g odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(975, [\chi])\):

\( T_{2}^{2} + 2 \) Copy content Toggle raw display
\( T_{7}^{4} - 26T_{7}^{2} + 81 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 2)^{4} \) Copy content Toggle raw display
$3$ \( (T^{4} + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( (T^{4} - 26 T^{2} + 81)^{2} \) Copy content Toggle raw display
$11$ \( (T^{4} + 121)^{2} \) Copy content Toggle raw display
$13$ \( (T^{4} - 18 T^{2} + 169)^{2} \) Copy content Toggle raw display
$17$ \( T^{8} + 1234 T^{4} + 194481 \) Copy content Toggle raw display
$19$ \( (T^{4} + 4 T^{3} + \cdots + 1764)^{2} \) Copy content Toggle raw display
$23$ \( T^{8} + 3506 T^{4} + 28561 \) Copy content Toggle raw display
$29$ \( (T^{2} + 16)^{4} \) Copy content Toggle raw display
$31$ \( T^{8} \) Copy content Toggle raw display
$37$ \( (T^{4} - 58 T^{2} + 49)^{2} \) Copy content Toggle raw display
$41$ \( (T^{4} + 24 T^{3} + \cdots + 3721)^{2} \) Copy content Toggle raw display
$43$ \( T^{8} + 26056 T^{4} + 3111696 \) Copy content Toggle raw display
$47$ \( (T^{4} - 124 T^{2} + 676)^{2} \) Copy content Toggle raw display
$53$ \( T^{8} + 3506 T^{4} + 28561 \) Copy content Toggle raw display
$59$ \( (T^{2} + 12 T + 72)^{4} \) Copy content Toggle raw display
$61$ \( (T^{2} + 6 T - 79)^{4} \) Copy content Toggle raw display
$67$ \( (T^{4} + 104 T^{2} + 1296)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} + 8 T^{3} + \cdots + 8281)^{2} \) Copy content Toggle raw display
$73$ \( T^{8} \) Copy content Toggle raw display
$79$ \( (T^{2} + 169)^{4} \) Copy content Toggle raw display
$83$ \( (T^{4} - 124 T^{2} + 676)^{2} \) Copy content Toggle raw display
$89$ \( (T^{4} + 121)^{2} \) Copy content Toggle raw display
$97$ \( (T^{4} + 26 T^{2} + 81)^{2} \) Copy content Toggle raw display
show more
show less