L(s) = 1 | + 4·2-s + 18·3-s + 4·4-s + 72·6-s − 72·7-s + 96·8-s + 243·9-s − 596·11-s + 72·12-s + 338·13-s − 288·14-s − 176·16-s + 268·17-s + 972·18-s + 1.12e3·19-s − 1.29e3·21-s − 2.38e3·22-s + 1.76e3·23-s + 1.72e3·24-s + 1.35e3·26-s + 2.91e3·27-s − 288·28-s − 7.61e3·29-s − 4.16e3·31-s − 5.44e3·32-s − 1.07e4·33-s + 1.07e3·34-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1.15·3-s + 1/8·4-s + 0.816·6-s − 0.555·7-s + 0.530·8-s + 9-s − 1.48·11-s + 0.144·12-s + 0.554·13-s − 0.392·14-s − 0.171·16-s + 0.224·17-s + 0.707·18-s + 0.716·19-s − 0.641·21-s − 1.05·22-s + 0.696·23-s + 0.612·24-s + 0.392·26-s + 0.769·27-s − 0.0694·28-s − 1.68·29-s − 0.777·31-s − 0.939·32-s − 1.71·33-s + 0.159·34-s + ⋯ |
Λ(s)=(=(950625s/2ΓC(s)2L(s)Λ(6−s)
Λ(s)=(=(950625s/2ΓC(s+5/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
950625
= 32⋅54⋅132
|
Sign: |
1
|
Analytic conductor: |
24452.8 |
Root analytic conductor: |
12.5049 |
Motivic weight: |
5 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 950625, ( :5/2,5/2), 1)
|
Particular Values
L(3) |
= |
0 |
L(21) |
= |
0 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C1 | (1−p2T)2 |
| 5 | | 1 |
| 13 | C1 | (1−p2T)2 |
good | 2 | D4 | 1−p2T+3p2T2−p7T3+p10T4 |
| 7 | D4 | 1+72T+28134T2+72p5T3+p10T4 |
| 11 | D4 | 1+596T+312122T2+596p5T3+p10T4 |
| 17 | D4 | 1−268T+2228454T2−268p5T3+p10T4 |
| 19 | D4 | 1−1128T+4971870T2−1128p5T3+p10T4 |
| 23 | D4 | 1−1768T+12073598T2−1768p5T3+p10T4 |
| 29 | D4 | 1+7612T+55112798T2+7612p5T3+p10T4 |
| 31 | D4 | 1+4160T+24205318T2+4160p5T3+p10T4 |
| 37 | D4 | 1+17468T+184139086T2+17468p5T3+p10T4 |
| 41 | D4 | 1+28000T+412511706T2+28000p5T3+p10T4 |
| 43 | D4 | 1−24328T+8556274pT2−24328p5T3+p10T4 |
| 47 | D4 | 1−18108T+278422754T2−18108p5T3+p10T4 |
| 53 | D4 | 1+1420T+800695790T2+1420p5T3+p10T4 |
| 59 | D4 | 1−6788T−153114342T2−6788p5T3+p10T4 |
| 61 | D4 | 1+37148T+1888667614T2+37148p5T3+p10T4 |
| 67 | D4 | 1+106112T+5372723950T2+106112p5T3+p10T4 |
| 71 | D4 | 1+30460T+2533993202T2+30460p5T3+p10T4 |
| 73 | D4 | 1−37620T+1766924310T2−37620p5T3+p10T4 |
| 79 | D4 | 1+2160T+3629418462T2+2160p5T3+p10T4 |
| 83 | D4 | 1+207004T+18578057034T2+207004p5T3+p10T4 |
| 89 | D4 | 1+74136T+5425645898T2+74136p5T3+p10T4 |
| 97 | D4 | 1−121156T+20409714022T2−121156p5T3+p10T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.853362523375411720096891327265, −8.847942062503719478108054968186, −8.257394393564681690120802121382, −7.60604456637800196065958990791, −7.43042402226182721456152049657, −7.13287786505171042571074995643, −6.66128351744578133972212491701, −5.84648695083420590029345385543, −5.46642461960274584302184171573, −5.25663775727685170421995918706, −4.40854047344103653240698593672, −4.34016549294829566938022938578, −3.36331666063448486618573521714, −3.31905322588906733435974949742, −2.95430473999340418697243901722, −2.05504434653879142442494511449, −1.80550904378984041155886197547, −1.19184181590593341847169516253, 0, 0,
1.19184181590593341847169516253, 1.80550904378984041155886197547, 2.05504434653879142442494511449, 2.95430473999340418697243901722, 3.31905322588906733435974949742, 3.36331666063448486618573521714, 4.34016549294829566938022938578, 4.40854047344103653240698593672, 5.25663775727685170421995918706, 5.46642461960274584302184171573, 5.84648695083420590029345385543, 6.66128351744578133972212491701, 7.13287786505171042571074995643, 7.43042402226182721456152049657, 7.60604456637800196065958990791, 8.257394393564681690120802121382, 8.847942062503719478108054968186, 8.853362523375411720096891327265