Properties

Label 4-975e2-1.1-c5e2-0-0
Degree 44
Conductor 950625950625
Sign 11
Analytic cond. 24452.824452.8
Root an. cond. 12.504912.5049
Motivic weight 55
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 22

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s + 18·3-s + 4·4-s + 72·6-s − 72·7-s + 96·8-s + 243·9-s − 596·11-s + 72·12-s + 338·13-s − 288·14-s − 176·16-s + 268·17-s + 972·18-s + 1.12e3·19-s − 1.29e3·21-s − 2.38e3·22-s + 1.76e3·23-s + 1.72e3·24-s + 1.35e3·26-s + 2.91e3·27-s − 288·28-s − 7.61e3·29-s − 4.16e3·31-s − 5.44e3·32-s − 1.07e4·33-s + 1.07e3·34-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.15·3-s + 1/8·4-s + 0.816·6-s − 0.555·7-s + 0.530·8-s + 9-s − 1.48·11-s + 0.144·12-s + 0.554·13-s − 0.392·14-s − 0.171·16-s + 0.224·17-s + 0.707·18-s + 0.716·19-s − 0.641·21-s − 1.05·22-s + 0.696·23-s + 0.612·24-s + 0.392·26-s + 0.769·27-s − 0.0694·28-s − 1.68·29-s − 0.777·31-s − 0.939·32-s − 1.71·33-s + 0.159·34-s + ⋯

Functional equation

Λ(s)=(950625s/2ΓC(s)2L(s)=(Λ(6s)\begin{aligned}\Lambda(s)=\mathstrut & 950625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}
Λ(s)=(950625s/2ΓC(s+5/2)2L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 950625 ^{s/2} \, \Gamma_{\C}(s+5/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 44
Conductor: 950625950625    =    32541323^{2} \cdot 5^{4} \cdot 13^{2}
Sign: 11
Analytic conductor: 24452.824452.8
Root analytic conductor: 12.504912.5049
Motivic weight: 55
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 22
Selberg data: (4, 950625, ( :5/2,5/2), 1)(4,\ 950625,\ (\ :5/2, 5/2),\ 1)

Particular Values

L(3)L(3) == 00
L(12)L(\frac12) == 00
L(72)L(\frac{7}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad3C1C_1 (1p2T)2 ( 1 - p^{2} T )^{2}
5 1 1
13C1C_1 (1p2T)2 ( 1 - p^{2} T )^{2}
good2D4D_{4} 1p2T+3p2T2p7T3+p10T4 1 - p^{2} T + 3 p^{2} T^{2} - p^{7} T^{3} + p^{10} T^{4}
7D4D_{4} 1+72T+28134T2+72p5T3+p10T4 1 + 72 T + 28134 T^{2} + 72 p^{5} T^{3} + p^{10} T^{4}
11D4D_{4} 1+596T+312122T2+596p5T3+p10T4 1 + 596 T + 312122 T^{2} + 596 p^{5} T^{3} + p^{10} T^{4}
17D4D_{4} 1268T+2228454T2268p5T3+p10T4 1 - 268 T + 2228454 T^{2} - 268 p^{5} T^{3} + p^{10} T^{4}
19D4D_{4} 11128T+4971870T21128p5T3+p10T4 1 - 1128 T + 4971870 T^{2} - 1128 p^{5} T^{3} + p^{10} T^{4}
23D4D_{4} 11768T+12073598T21768p5T3+p10T4 1 - 1768 T + 12073598 T^{2} - 1768 p^{5} T^{3} + p^{10} T^{4}
29D4D_{4} 1+7612T+55112798T2+7612p5T3+p10T4 1 + 7612 T + 55112798 T^{2} + 7612 p^{5} T^{3} + p^{10} T^{4}
31D4D_{4} 1+4160T+24205318T2+4160p5T3+p10T4 1 + 4160 T + 24205318 T^{2} + 4160 p^{5} T^{3} + p^{10} T^{4}
37D4D_{4} 1+17468T+184139086T2+17468p5T3+p10T4 1 + 17468 T + 184139086 T^{2} + 17468 p^{5} T^{3} + p^{10} T^{4}
41D4D_{4} 1+28000T+412511706T2+28000p5T3+p10T4 1 + 28000 T + 412511706 T^{2} + 28000 p^{5} T^{3} + p^{10} T^{4}
43D4D_{4} 124328T+8556274pT224328p5T3+p10T4 1 - 24328 T + 8556274 p T^{2} - 24328 p^{5} T^{3} + p^{10} T^{4}
47D4D_{4} 118108T+278422754T218108p5T3+p10T4 1 - 18108 T + 278422754 T^{2} - 18108 p^{5} T^{3} + p^{10} T^{4}
53D4D_{4} 1+1420T+800695790T2+1420p5T3+p10T4 1 + 1420 T + 800695790 T^{2} + 1420 p^{5} T^{3} + p^{10} T^{4}
59D4D_{4} 16788T153114342T26788p5T3+p10T4 1 - 6788 T - 153114342 T^{2} - 6788 p^{5} T^{3} + p^{10} T^{4}
61D4D_{4} 1+37148T+1888667614T2+37148p5T3+p10T4 1 + 37148 T + 1888667614 T^{2} + 37148 p^{5} T^{3} + p^{10} T^{4}
67D4D_{4} 1+106112T+5372723950T2+106112p5T3+p10T4 1 + 106112 T + 5372723950 T^{2} + 106112 p^{5} T^{3} + p^{10} T^{4}
71D4D_{4} 1+30460T+2533993202T2+30460p5T3+p10T4 1 + 30460 T + 2533993202 T^{2} + 30460 p^{5} T^{3} + p^{10} T^{4}
73D4D_{4} 137620T+1766924310T237620p5T3+p10T4 1 - 37620 T + 1766924310 T^{2} - 37620 p^{5} T^{3} + p^{10} T^{4}
79D4D_{4} 1+2160T+3629418462T2+2160p5T3+p10T4 1 + 2160 T + 3629418462 T^{2} + 2160 p^{5} T^{3} + p^{10} T^{4}
83D4D_{4} 1+207004T+18578057034T2+207004p5T3+p10T4 1 + 207004 T + 18578057034 T^{2} + 207004 p^{5} T^{3} + p^{10} T^{4}
89D4D_{4} 1+74136T+5425645898T2+74136p5T3+p10T4 1 + 74136 T + 5425645898 T^{2} + 74136 p^{5} T^{3} + p^{10} T^{4}
97D4D_{4} 1121156T+20409714022T2121156p5T3+p10T4 1 - 121156 T + 20409714022 T^{2} - 121156 p^{5} T^{3} + p^{10} T^{4}
show more
show less
   L(s)=p j=14(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−8.853362523375411720096891327265, −8.847942062503719478108054968186, −8.257394393564681690120802121382, −7.60604456637800196065958990791, −7.43042402226182721456152049657, −7.13287786505171042571074995643, −6.66128351744578133972212491701, −5.84648695083420590029345385543, −5.46642461960274584302184171573, −5.25663775727685170421995918706, −4.40854047344103653240698593672, −4.34016549294829566938022938578, −3.36331666063448486618573521714, −3.31905322588906733435974949742, −2.95430473999340418697243901722, −2.05504434653879142442494511449, −1.80550904378984041155886197547, −1.19184181590593341847169516253, 0, 0, 1.19184181590593341847169516253, 1.80550904378984041155886197547, 2.05504434653879142442494511449, 2.95430473999340418697243901722, 3.31905322588906733435974949742, 3.36331666063448486618573521714, 4.34016549294829566938022938578, 4.40854047344103653240698593672, 5.25663775727685170421995918706, 5.46642461960274584302184171573, 5.84648695083420590029345385543, 6.66128351744578133972212491701, 7.13287786505171042571074995643, 7.43042402226182721456152049657, 7.60604456637800196065958990791, 8.257394393564681690120802121382, 8.847942062503719478108054968186, 8.853362523375411720096891327265

Graph of the ZZ-function along the critical line