Properties

Label 975.6.a.c
Level $975$
Weight $6$
Character orbit 975.a
Self dual yes
Analytic conductor $156.374$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [975,6,Mod(1,975)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(975, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("975.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 975.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(156.374224318\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{14}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 39)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{14}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta + 2) q^{2} + 9 q^{3} + (4 \beta + 28) q^{4} + (9 \beta + 18) q^{6} + ( - 11 \beta - 36) q^{7} + (4 \beta + 216) q^{8} + 81 q^{9} + ( - 42 \beta - 298) q^{11} + (36 \beta + 252) q^{12} + 169 q^{13}+ \cdots + ( - 3402 \beta - 24138) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} + 18 q^{3} + 56 q^{4} + 36 q^{6} - 72 q^{7} + 432 q^{8} + 162 q^{9} - 596 q^{11} + 504 q^{12} + 338 q^{13} - 1376 q^{14} - 480 q^{16} + 268 q^{17} + 324 q^{18} + 1128 q^{19} - 648 q^{21} - 5896 q^{22}+ \cdots - 48276 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−3.74166
3.74166
−5.48331 9.00000 −1.93326 0 −49.3498 46.3165 186.067 81.0000 0
1.2 9.48331 9.00000 57.9333 0 85.3498 −118.316 245.933 81.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( +1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 975.6.a.c 2
5.b even 2 1 39.6.a.b 2
15.d odd 2 1 117.6.a.b 2
20.d odd 2 1 624.6.a.k 2
65.d even 2 1 507.6.a.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
39.6.a.b 2 5.b even 2 1
117.6.a.b 2 15.d odd 2 1
507.6.a.c 2 65.d even 2 1
624.6.a.k 2 20.d odd 2 1
975.6.a.c 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(975))\):

\( T_{2}^{2} - 4T_{2} - 52 \) Copy content Toggle raw display
\( T_{7}^{2} + 72T_{7} - 5480 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 4T - 52 \) Copy content Toggle raw display
$3$ \( (T - 9)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 72T - 5480 \) Copy content Toggle raw display
$11$ \( T^{2} + 596T - 9980 \) Copy content Toggle raw display
$13$ \( (T - 169)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 268T - 611260 \) Copy content Toggle raw display
$19$ \( T^{2} - 1128T + 19672 \) Copy content Toggle raw display
$23$ \( T^{2} - 1768 T - 799088 \) Copy content Toggle raw display
$29$ \( T^{2} + 7612 T + 14090500 \) Copy content Toggle raw display
$31$ \( T^{2} + 4160 T - 33052984 \) Copy content Toggle raw display
$37$ \( T^{2} + 17468 T + 45451172 \) Copy content Toggle raw display
$41$ \( T^{2} + 28000 T + 180799304 \) Copy content Toggle raw display
$43$ \( T^{2} - 24328 T + 73902896 \) Copy content Toggle raw display
$47$ \( T^{2} - 18108 T - 180267260 \) Copy content Toggle raw display
$53$ \( T^{2} + 1420 T - 35695196 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 1582962940 \) Copy content Toggle raw display
$61$ \( T^{2} + 37148 T + 199475012 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 2672473736 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 1074465500 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 2379218876 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 2524694336 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 10699975748 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 5742473000 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 3235033508 \) Copy content Toggle raw display
show more
show less