L(s) = 1 | + (0.566 + 1.29i)2-s + (0.792 − 0.792i)3-s + (−1.35 + 1.46i)4-s + (−0.427 + 2.19i)5-s + (1.47 + 0.578i)6-s + (−2.67 − 0.928i)8-s + 1.74i·9-s + (−3.08 + 0.689i)10-s + 2.98i·11-s + (0.0868 + 2.24i)12-s + (−4.05 − 4.05i)13-s + (1.40 + 2.07i)15-s + (−0.309 − 3.98i)16-s + (−1.68 + 1.68i)17-s + (−2.25 + 0.987i)18-s + 2.51·19-s + ⋯ |
L(s) = 1 | + (0.400 + 0.916i)2-s + (0.457 − 0.457i)3-s + (−0.679 + 0.733i)4-s + (−0.191 + 0.981i)5-s + (0.602 + 0.236i)6-s + (−0.944 − 0.328i)8-s + 0.581i·9-s + (−0.975 + 0.218i)10-s + 0.899i·11-s + (0.0250 + 0.646i)12-s + (−1.12 − 1.12i)13-s + (0.361 + 0.536i)15-s + (−0.0774 − 0.996i)16-s + (−0.409 + 0.409i)17-s + (−0.532 + 0.232i)18-s + 0.576·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.996 + 0.0781i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.996 + 0.0781i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0507461 - 1.29593i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0507461 - 1.29593i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.566 - 1.29i)T \) |
| 5 | \( 1 + (0.427 - 2.19i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (-0.792 + 0.792i)T - 3iT^{2} \) |
| 11 | \( 1 - 2.98iT - 11T^{2} \) |
| 13 | \( 1 + (4.05 + 4.05i)T + 13iT^{2} \) |
| 17 | \( 1 + (1.68 - 1.68i)T - 17iT^{2} \) |
| 19 | \( 1 - 2.51T + 19T^{2} \) |
| 23 | \( 1 + (4.24 - 4.24i)T - 23iT^{2} \) |
| 29 | \( 1 + 2.55iT - 29T^{2} \) |
| 31 | \( 1 + 3.60iT - 31T^{2} \) |
| 37 | \( 1 + (3.37 - 3.37i)T - 37iT^{2} \) |
| 41 | \( 1 - 7.93T + 41T^{2} \) |
| 43 | \( 1 + (7.62 - 7.62i)T - 43iT^{2} \) |
| 47 | \( 1 + (-2.09 - 2.09i)T + 47iT^{2} \) |
| 53 | \( 1 + (-1.80 - 1.80i)T + 53iT^{2} \) |
| 59 | \( 1 + 2.09T + 59T^{2} \) |
| 61 | \( 1 - 1.90T + 61T^{2} \) |
| 67 | \( 1 + (-2.19 - 2.19i)T + 67iT^{2} \) |
| 71 | \( 1 - 8.09iT - 71T^{2} \) |
| 73 | \( 1 + (6.89 + 6.89i)T + 73iT^{2} \) |
| 79 | \( 1 - 8.06T + 79T^{2} \) |
| 83 | \( 1 + (5.99 - 5.99i)T - 83iT^{2} \) |
| 89 | \( 1 - 2.05iT - 89T^{2} \) |
| 97 | \( 1 + (6.63 - 6.63i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.14882507451474171544963660576, −9.645798249517228397041450142339, −8.302960617383561221460695186816, −7.57311416914847572379063103689, −7.37375935464770803031489583445, −6.29105404216472065627567736853, −5.33606274647357604086243932040, −4.34674760103215815846867199700, −3.15893025118583444692328531810, −2.27425719278006456878514297540,
0.47345582125362518125314857265, 2.02150358921523590130496215833, 3.24614625655133590079894831973, 4.15626929912051175038157092204, 4.82955919511337001483418454943, 5.80190045526627979957936189303, 6.97447759668994268224265150574, 8.407334515206537201719180557018, 8.965500630050285345290126184829, 9.529151177475322206247600675704