L(s) = 1 | + (0.566 + 1.29i)2-s + (0.792 − 0.792i)3-s + (−1.35 + 1.46i)4-s + (−0.427 + 2.19i)5-s + (1.47 + 0.578i)6-s + (−2.67 − 0.928i)8-s + 1.74i·9-s + (−3.08 + 0.689i)10-s + 2.98i·11-s + (0.0868 + 2.24i)12-s + (−4.05 − 4.05i)13-s + (1.40 + 2.07i)15-s + (−0.309 − 3.98i)16-s + (−1.68 + 1.68i)17-s + (−2.25 + 0.987i)18-s + 2.51·19-s + ⋯ |
L(s) = 1 | + (0.400 + 0.916i)2-s + (0.457 − 0.457i)3-s + (−0.679 + 0.733i)4-s + (−0.191 + 0.981i)5-s + (0.602 + 0.236i)6-s + (−0.944 − 0.328i)8-s + 0.581i·9-s + (−0.975 + 0.218i)10-s + 0.899i·11-s + (0.0250 + 0.646i)12-s + (−1.12 − 1.12i)13-s + (0.361 + 0.536i)15-s + (−0.0774 − 0.996i)16-s + (−0.409 + 0.409i)17-s + (−0.532 + 0.232i)18-s + 0.576·19-s + ⋯ |
Λ(s)=(=(980s/2ΓC(s)L(s)(−0.996+0.0781i)Λ(2−s)
Λ(s)=(=(980s/2ΓC(s+1/2)L(s)(−0.996+0.0781i)Λ(1−s)
Degree: |
2 |
Conductor: |
980
= 22⋅5⋅72
|
Sign: |
−0.996+0.0781i
|
Analytic conductor: |
7.82533 |
Root analytic conductor: |
2.79738 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ980(883,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 980, ( :1/2), −0.996+0.0781i)
|
Particular Values
L(1) |
≈ |
0.0507461−1.29593i |
L(21) |
≈ |
0.0507461−1.29593i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.566−1.29i)T |
| 5 | 1+(0.427−2.19i)T |
| 7 | 1 |
good | 3 | 1+(−0.792+0.792i)T−3iT2 |
| 11 | 1−2.98iT−11T2 |
| 13 | 1+(4.05+4.05i)T+13iT2 |
| 17 | 1+(1.68−1.68i)T−17iT2 |
| 19 | 1−2.51T+19T2 |
| 23 | 1+(4.24−4.24i)T−23iT2 |
| 29 | 1+2.55iT−29T2 |
| 31 | 1+3.60iT−31T2 |
| 37 | 1+(3.37−3.37i)T−37iT2 |
| 41 | 1−7.93T+41T2 |
| 43 | 1+(7.62−7.62i)T−43iT2 |
| 47 | 1+(−2.09−2.09i)T+47iT2 |
| 53 | 1+(−1.80−1.80i)T+53iT2 |
| 59 | 1+2.09T+59T2 |
| 61 | 1−1.90T+61T2 |
| 67 | 1+(−2.19−2.19i)T+67iT2 |
| 71 | 1−8.09iT−71T2 |
| 73 | 1+(6.89+6.89i)T+73iT2 |
| 79 | 1−8.06T+79T2 |
| 83 | 1+(5.99−5.99i)T−83iT2 |
| 89 | 1−2.05iT−89T2 |
| 97 | 1+(6.63−6.63i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.14882507451474171544963660576, −9.645798249517228397041450142339, −8.302960617383561221460695186816, −7.57311416914847572379063103689, −7.37375935464770803031489583445, −6.29105404216472065627567736853, −5.33606274647357604086243932040, −4.34674760103215815846867199700, −3.15893025118583444692328531810, −2.27425719278006456878514297540,
0.47345582125362518125314857265, 2.02150358921523590130496215833, 3.24614625655133590079894831973, 4.15626929912051175038157092204, 4.82955919511337001483418454943, 5.80190045526627979957936189303, 6.97447759668994268224265150574, 8.407334515206537201719180557018, 8.965500630050285345290126184829, 9.529151177475322206247600675704