Properties

Label 980.2.k.j.883.13
Level $980$
Weight $2$
Character 980.883
Analytic conductor $7.825$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [980,2,Mod(687,980)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(980, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("980.687");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 883.13
Character \(\chi\) \(=\) 980.883
Dual form 980.2.k.j.687.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.566415 + 1.29583i) q^{2} +(0.792756 - 0.792756i) q^{3} +(-1.35835 + 1.46795i) q^{4} +(-0.427372 + 2.19485i) q^{5} +(1.47630 + 0.578247i) q^{6} +(-2.67161 - 0.928715i) q^{8} +1.74308i q^{9} +O(q^{10})\) \(q+(0.566415 + 1.29583i) q^{2} +(0.792756 - 0.792756i) q^{3} +(-1.35835 + 1.46795i) q^{4} +(-0.427372 + 2.19485i) q^{5} +(1.47630 + 0.578247i) q^{6} +(-2.67161 - 0.928715i) q^{8} +1.74308i q^{9} +(-3.08622 + 0.689394i) q^{10} +2.98364i q^{11} +(0.0868916 + 2.24057i) q^{12} +(-4.05418 - 4.05418i) q^{13} +(1.40118 + 2.07878i) q^{15} +(-0.309783 - 3.98799i) q^{16} +(-1.68722 + 1.68722i) q^{17} +(-2.25873 + 0.987305i) q^{18} +2.51388 q^{19} +(-2.64142 - 3.60873i) q^{20} +(-3.86629 + 1.68998i) q^{22} +(-4.24161 + 4.24161i) q^{23} +(-2.85418 + 1.38169i) q^{24} +(-4.63471 - 1.87603i) q^{25} +(2.95718 - 7.54987i) q^{26} +(3.76010 + 3.76010i) q^{27} -2.55433i q^{29} +(-1.90010 + 2.99314i) q^{30} -3.60553i q^{31} +(4.99228 - 2.66028i) q^{32} +(2.36530 + 2.36530i) q^{33} +(-3.14202 - 1.23068i) q^{34} +(-2.55876 - 2.36770i) q^{36} +(-3.37486 + 3.37486i) q^{37} +(1.42390 + 3.25756i) q^{38} -6.42795 q^{39} +(3.18016 - 5.46686i) q^{40} +7.93727 q^{41} +(-7.62646 + 7.62646i) q^{43} +(-4.37985 - 4.05282i) q^{44} +(-3.82579 - 0.744942i) q^{45} +(-7.89891 - 3.09389i) q^{46} +(2.09272 + 2.09272i) q^{47} +(-3.40708 - 2.91592i) q^{48} +(-0.194151 - 7.06840i) q^{50} +2.67511i q^{51} +(11.4583 - 0.444366i) q^{52} +(1.80994 + 1.80994i) q^{53} +(-2.74267 + 7.00223i) q^{54} +(-6.54863 - 1.27512i) q^{55} +(1.99289 - 1.99289i) q^{57} +(3.30997 - 1.44681i) q^{58} -2.09389 q^{59} +(-4.95484 - 0.766842i) q^{60} +1.90096 q^{61} +(4.67216 - 2.04223i) q^{62} +(6.27498 + 4.96233i) q^{64} +(10.6309 - 7.16566i) q^{65} +(-1.72528 + 4.40476i) q^{66} +(2.19990 + 2.19990i) q^{67} +(-0.184931 - 4.76859i) q^{68} +6.72512i q^{69} +8.09721i q^{71} +(1.61882 - 4.65682i) q^{72} +(-6.89558 - 6.89558i) q^{73} +(-6.28481 - 2.46167i) q^{74} +(-5.16142 + 2.18696i) q^{75} +(-3.41472 + 3.69026i) q^{76} +(-3.64089 - 8.32952i) q^{78} +8.06116 q^{79} +(8.88541 + 1.02443i) q^{80} +0.732452 q^{81} +(4.49579 + 10.2853i) q^{82} +(-5.99790 + 5.99790i) q^{83} +(-2.98212 - 4.42426i) q^{85} +(-14.2023 - 5.56285i) q^{86} +(-2.02496 - 2.02496i) q^{87} +(2.77095 - 7.97111i) q^{88} +2.05525i q^{89} +(-1.20167 - 5.37951i) q^{90} +(-0.464910 - 11.9881i) q^{92} +(-2.85831 - 2.85831i) q^{93} +(-1.52646 + 3.89715i) q^{94} +(-1.07436 + 5.51758i) q^{95} +(1.84871 - 6.06661i) q^{96} +(-6.63160 + 6.63160i) q^{97} -5.20071 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 2 q^{2} - 8 q^{5} + 8 q^{6} - 2 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 36 q - 2 q^{2} - 8 q^{5} + 8 q^{6} - 2 q^{8} + 2 q^{10} + 10 q^{12} + 28 q^{16} + 4 q^{17} + 20 q^{18} + 28 q^{20} - 8 q^{22} + 16 q^{25} - 4 q^{26} + 32 q^{30} + 38 q^{32} - 64 q^{33} + 8 q^{36} + 4 q^{37} + 12 q^{38} + 2 q^{40} + 20 q^{41} - 12 q^{45} + 28 q^{46} - 6 q^{48} - 14 q^{50} + 48 q^{52} + 24 q^{53} - 8 q^{57} - 30 q^{58} + 10 q^{60} - 20 q^{61} - 28 q^{62} - 4 q^{65} + 44 q^{66} - 12 q^{68} - 44 q^{72} - 12 q^{73} - 56 q^{76} + 32 q^{78} + 52 q^{80} + 52 q^{81} - 34 q^{82} + 8 q^{85} - 64 q^{86} - 16 q^{88} + 16 q^{90} + 22 q^{92} - 12 q^{93} - 48 q^{96} + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.566415 + 1.29583i 0.400516 + 0.916290i
\(3\) 0.792756 0.792756i 0.457698 0.457698i −0.440201 0.897899i \(-0.645093\pi\)
0.897899 + 0.440201i \(0.145093\pi\)
\(4\) −1.35835 + 1.46795i −0.679174 + 0.733977i
\(5\) −0.427372 + 2.19485i −0.191126 + 0.981565i
\(6\) 1.47630 + 0.578247i 0.602699 + 0.236068i
\(7\) 0 0
\(8\) −2.67161 0.928715i −0.944556 0.328350i
\(9\) 1.74308i 0.581026i
\(10\) −3.08622 + 0.689394i −0.975948 + 0.218005i
\(11\) 2.98364i 0.899601i 0.893129 + 0.449800i \(0.148505\pi\)
−0.893129 + 0.449800i \(0.851495\pi\)
\(12\) 0.0868916 + 2.24057i 0.0250834 + 0.646796i
\(13\) −4.05418 4.05418i −1.12443 1.12443i −0.991068 0.133359i \(-0.957424\pi\)
−0.133359 0.991068i \(-0.542576\pi\)
\(14\) 0 0
\(15\) 1.40118 + 2.07878i 0.361782 + 0.536738i
\(16\) −0.309783 3.98799i −0.0774456 0.996997i
\(17\) −1.68722 + 1.68722i −0.409211 + 0.409211i −0.881463 0.472252i \(-0.843441\pi\)
0.472252 + 0.881463i \(0.343441\pi\)
\(18\) −2.25873 + 0.987305i −0.532388 + 0.232710i
\(19\) 2.51388 0.576723 0.288362 0.957522i \(-0.406889\pi\)
0.288362 + 0.957522i \(0.406889\pi\)
\(20\) −2.64142 3.60873i −0.590639 0.806936i
\(21\) 0 0
\(22\) −3.86629 + 1.68998i −0.824295 + 0.360304i
\(23\) −4.24161 + 4.24161i −0.884436 + 0.884436i −0.993982 0.109545i \(-0.965060\pi\)
0.109545 + 0.993982i \(0.465060\pi\)
\(24\) −2.85418 + 1.38169i −0.582606 + 0.282036i
\(25\) −4.63471 1.87603i −0.926941 0.375206i
\(26\) 2.95718 7.54987i 0.579950 1.48065i
\(27\) 3.76010 + 3.76010i 0.723632 + 0.723632i
\(28\) 0 0
\(29\) 2.55433i 0.474327i −0.971470 0.237163i \(-0.923782\pi\)
0.971470 0.237163i \(-0.0762177\pi\)
\(30\) −1.90010 + 2.99314i −0.346908 + 0.546470i
\(31\) 3.60553i 0.647573i −0.946130 0.323787i \(-0.895044\pi\)
0.946130 0.323787i \(-0.104956\pi\)
\(32\) 4.99228 2.66028i 0.882520 0.470276i
\(33\) 2.36530 + 2.36530i 0.411745 + 0.411745i
\(34\) −3.14202 1.23068i −0.538851 0.211060i
\(35\) 0 0
\(36\) −2.55876 2.36770i −0.426460 0.394617i
\(37\) −3.37486 + 3.37486i −0.554823 + 0.554823i −0.927829 0.373006i \(-0.878327\pi\)
0.373006 + 0.927829i \(0.378327\pi\)
\(38\) 1.42390 + 3.25756i 0.230987 + 0.528446i
\(39\) −6.42795 −1.02930
\(40\) 3.18016 5.46686i 0.502827 0.864387i
\(41\) 7.93727 1.23959 0.619797 0.784763i \(-0.287215\pi\)
0.619797 + 0.784763i \(0.287215\pi\)
\(42\) 0 0
\(43\) −7.62646 + 7.62646i −1.16302 + 1.16302i −0.179215 + 0.983810i \(0.557356\pi\)
−0.983810 + 0.179215i \(0.942644\pi\)
\(44\) −4.37985 4.05282i −0.660287 0.610985i
\(45\) −3.82579 0.744942i −0.570315 0.111049i
\(46\) −7.89891 3.09389i −1.16463 0.456169i
\(47\) 2.09272 + 2.09272i 0.305254 + 0.305254i 0.843065 0.537811i \(-0.180749\pi\)
−0.537811 + 0.843065i \(0.680749\pi\)
\(48\) −3.40708 2.91592i −0.491770 0.420876i
\(49\) 0 0
\(50\) −0.194151 7.06840i −0.0274571 0.999623i
\(51\) 2.67511i 0.374590i
\(52\) 11.4583 0.444366i 1.58899 0.0616225i
\(53\) 1.80994 + 1.80994i 0.248615 + 0.248615i 0.820402 0.571787i \(-0.193750\pi\)
−0.571787 + 0.820402i \(0.693750\pi\)
\(54\) −2.74267 + 7.00223i −0.373230 + 0.952882i
\(55\) −6.54863 1.27512i −0.883017 0.171938i
\(56\) 0 0
\(57\) 1.99289 1.99289i 0.263965 0.263965i
\(58\) 3.30997 1.44681i 0.434621 0.189975i
\(59\) −2.09389 −0.272601 −0.136301 0.990668i \(-0.543521\pi\)
−0.136301 + 0.990668i \(0.543521\pi\)
\(60\) −4.95484 0.766842i −0.639667 0.0989988i
\(61\) 1.90096 0.243393 0.121696 0.992567i \(-0.461167\pi\)
0.121696 + 0.992567i \(0.461167\pi\)
\(62\) 4.67216 2.04223i 0.593365 0.259363i
\(63\) 0 0
\(64\) 6.27498 + 4.96233i 0.784372 + 0.620291i
\(65\) 10.6309 7.16566i 1.31861 0.888791i
\(66\) −1.72528 + 4.40476i −0.212367 + 0.542188i
\(67\) 2.19990 + 2.19990i 0.268761 + 0.268761i 0.828601 0.559840i \(-0.189137\pi\)
−0.559840 + 0.828601i \(0.689137\pi\)
\(68\) −0.184931 4.76859i −0.0224262 0.578277i
\(69\) 6.72512i 0.809609i
\(70\) 0 0
\(71\) 8.09721i 0.960962i 0.877005 + 0.480481i \(0.159538\pi\)
−0.877005 + 0.480481i \(0.840462\pi\)
\(72\) 1.61882 4.65682i 0.190780 0.548811i
\(73\) −6.89558 6.89558i −0.807067 0.807067i 0.177122 0.984189i \(-0.443321\pi\)
−0.984189 + 0.177122i \(0.943321\pi\)
\(74\) −6.28481 2.46167i −0.730595 0.286163i
\(75\) −5.16142 + 2.18696i −0.595990 + 0.252528i
\(76\) −3.41472 + 3.69026i −0.391695 + 0.423302i
\(77\) 0 0
\(78\) −3.64089 8.32952i −0.412249 0.943133i
\(79\) 8.06116 0.906952 0.453476 0.891269i \(-0.350184\pi\)
0.453476 + 0.891269i \(0.350184\pi\)
\(80\) 8.88541 + 1.02443i 0.993419 + 0.114535i
\(81\) 0.732452 0.0813835
\(82\) 4.49579 + 10.2853i 0.496477 + 1.13583i
\(83\) −5.99790 + 5.99790i −0.658356 + 0.658356i −0.954991 0.296635i \(-0.904135\pi\)
0.296635 + 0.954991i \(0.404135\pi\)
\(84\) 0 0
\(85\) −2.98212 4.42426i −0.323456 0.479878i
\(86\) −14.2023 5.56285i −1.53148 0.599858i
\(87\) −2.02496 2.02496i −0.217098 0.217098i
\(88\) 2.77095 7.97111i 0.295384 0.849723i
\(89\) 2.05525i 0.217856i 0.994050 + 0.108928i \(0.0347418\pi\)
−0.994050 + 0.108928i \(0.965258\pi\)
\(90\) −1.20167 5.37951i −0.126667 0.567051i
\(91\) 0 0
\(92\) −0.464910 11.9881i −0.0484702 1.24984i
\(93\) −2.85831 2.85831i −0.296393 0.296393i
\(94\) −1.52646 + 3.89715i −0.157442 + 0.401960i
\(95\) −1.07436 + 5.51758i −0.110227 + 0.566092i
\(96\) 1.84871 6.06661i 0.188683 0.619171i
\(97\) −6.63160 + 6.63160i −0.673337 + 0.673337i −0.958484 0.285147i \(-0.907958\pi\)
0.285147 + 0.958484i \(0.407958\pi\)
\(98\) 0 0
\(99\) −5.20071 −0.522691
\(100\) 9.04947 4.25524i 0.904947 0.425524i
\(101\) 7.46547 0.742842 0.371421 0.928465i \(-0.378871\pi\)
0.371421 + 0.928465i \(0.378871\pi\)
\(102\) −3.46648 + 1.51522i −0.343233 + 0.150029i
\(103\) 2.91433 2.91433i 0.287157 0.287157i −0.548798 0.835955i \(-0.684914\pi\)
0.835955 + 0.548798i \(0.184914\pi\)
\(104\) 7.06600 + 14.5964i 0.692878 + 1.43129i
\(105\) 0 0
\(106\) −1.32020 + 3.37056i −0.128229 + 0.327377i
\(107\) 7.36564 + 7.36564i 0.712063 + 0.712063i 0.966966 0.254904i \(-0.0820437\pi\)
−0.254904 + 0.966966i \(0.582044\pi\)
\(108\) −10.6272 + 0.412133i −1.02260 + 0.0396575i
\(109\) 10.2630i 0.983013i −0.870874 0.491507i \(-0.836446\pi\)
0.870874 0.491507i \(-0.163554\pi\)
\(110\) −2.05690 9.20815i −0.196118 0.877963i
\(111\) 5.35088i 0.507883i
\(112\) 0 0
\(113\) 7.35551 + 7.35551i 0.691948 + 0.691948i 0.962660 0.270712i \(-0.0872592\pi\)
−0.270712 + 0.962660i \(0.587259\pi\)
\(114\) 3.71125 + 1.45364i 0.347591 + 0.136146i
\(115\) −7.49694 11.1224i −0.699093 1.03717i
\(116\) 3.74964 + 3.46967i 0.348145 + 0.322150i
\(117\) 7.06674 7.06674i 0.653321 0.653321i
\(118\) −1.18601 2.71332i −0.109181 0.249782i
\(119\) 0 0
\(120\) −1.81280 6.85497i −0.165485 0.625771i
\(121\) 2.09791 0.190719
\(122\) 1.07673 + 2.46332i 0.0974826 + 0.223018i
\(123\) 6.29231 6.29231i 0.567359 0.567359i
\(124\) 5.29276 + 4.89757i 0.475304 + 0.439815i
\(125\) 6.09835 9.37071i 0.545453 0.838142i
\(126\) 0 0
\(127\) 13.3832 + 13.3832i 1.18756 + 1.18756i 0.977739 + 0.209826i \(0.0672898\pi\)
0.209826 + 0.977739i \(0.432710\pi\)
\(128\) −2.87609 + 10.9420i −0.254213 + 0.967148i
\(129\) 12.0918i 1.06463i
\(130\) 15.3070 + 9.71715i 1.34251 + 0.852250i
\(131\) 15.3563i 1.34169i 0.741598 + 0.670845i \(0.234068\pi\)
−0.741598 + 0.670845i \(0.765932\pi\)
\(132\) −6.68504 + 0.259253i −0.581858 + 0.0225651i
\(133\) 0 0
\(134\) −1.60464 + 4.09675i −0.138620 + 0.353905i
\(135\) −9.85981 + 6.64589i −0.848597 + 0.571987i
\(136\) 6.07454 2.94064i 0.520887 0.252158i
\(137\) 3.33190 3.33190i 0.284663 0.284663i −0.550302 0.834965i \(-0.685488\pi\)
0.834965 + 0.550302i \(0.185488\pi\)
\(138\) −8.71460 + 3.80921i −0.741836 + 0.324261i
\(139\) 10.3065 0.874185 0.437093 0.899417i \(-0.356008\pi\)
0.437093 + 0.899417i \(0.356008\pi\)
\(140\) 0 0
\(141\) 3.31802 0.279428
\(142\) −10.4926 + 4.58638i −0.880519 + 0.384880i
\(143\) 12.0962 12.0962i 1.01154 1.01154i
\(144\) 6.95137 0.539975i 0.579281 0.0449979i
\(145\) 5.60636 + 1.09165i 0.465583 + 0.0906564i
\(146\) 5.02973 12.8413i 0.416264 1.06275i
\(147\) 0 0
\(148\) −0.369908 9.53837i −0.0304063 0.784049i
\(149\) 9.67244i 0.792398i −0.918165 0.396199i \(-0.870329\pi\)
0.918165 0.396199i \(-0.129671\pi\)
\(150\) −5.75743 5.44960i −0.470092 0.444958i
\(151\) 1.10382i 0.0898272i 0.998991 + 0.0449136i \(0.0143013\pi\)
−0.998991 + 0.0449136i \(0.985699\pi\)
\(152\) −6.71610 2.33468i −0.544748 0.189367i
\(153\) −2.94095 2.94095i −0.237762 0.237762i
\(154\) 0 0
\(155\) 7.91360 + 1.54090i 0.635635 + 0.123768i
\(156\) 8.73139 9.43593i 0.699070 0.755479i
\(157\) 6.14377 6.14377i 0.490326 0.490326i −0.418083 0.908409i \(-0.637298\pi\)
0.908409 + 0.418083i \(0.137298\pi\)
\(158\) 4.56597 + 10.4459i 0.363249 + 0.831031i
\(159\) 2.86968 0.227581
\(160\) 3.70535 + 12.0942i 0.292933 + 0.956133i
\(161\) 0 0
\(162\) 0.414872 + 0.949133i 0.0325954 + 0.0745709i
\(163\) 0.762126 0.762126i 0.0596944 0.0596944i −0.676629 0.736324i \(-0.736560\pi\)
0.736324 + 0.676629i \(0.236560\pi\)
\(164\) −10.7816 + 11.6516i −0.841899 + 0.909833i
\(165\) −6.20232 + 4.18060i −0.482850 + 0.325459i
\(166\) −11.1696 4.37496i −0.866926 0.339563i
\(167\) −2.18132 2.18132i −0.168796 0.168796i 0.617654 0.786450i \(-0.288083\pi\)
−0.786450 + 0.617654i \(0.788083\pi\)
\(168\) 0 0
\(169\) 19.8727i 1.52867i
\(170\) 4.04397 6.37028i 0.310158 0.488579i
\(171\) 4.38188i 0.335091i
\(172\) −0.835914 21.5547i −0.0637378 1.64353i
\(173\) −16.6803 16.6803i −1.26818 1.26818i −0.947026 0.321157i \(-0.895928\pi\)
−0.321157 0.947026i \(-0.604072\pi\)
\(174\) 1.47703 3.77097i 0.111974 0.285876i
\(175\) 0 0
\(176\) 11.8987 0.924279i 0.896899 0.0696701i
\(177\) −1.65994 + 1.65994i −0.124769 + 0.124769i
\(178\) −2.66326 + 1.16413i −0.199619 + 0.0872549i
\(179\) 7.06310 0.527921 0.263960 0.964534i \(-0.414971\pi\)
0.263960 + 0.964534i \(0.414971\pi\)
\(180\) 6.29029 4.60419i 0.468851 0.343176i
\(181\) 2.37419 0.176472 0.0882360 0.996100i \(-0.471877\pi\)
0.0882360 + 0.996100i \(0.471877\pi\)
\(182\) 0 0
\(183\) 1.50699 1.50699i 0.111400 0.111400i
\(184\) 15.2712 7.39267i 1.12580 0.544995i
\(185\) −5.96498 8.84962i −0.438554 0.650637i
\(186\) 2.08489 5.32287i 0.152872 0.390292i
\(187\) −5.03405 5.03405i −0.368126 0.368126i
\(188\) −5.91465 + 0.229376i −0.431370 + 0.0167290i
\(189\) 0 0
\(190\) −7.75838 + 1.73305i −0.562852 + 0.125729i
\(191\) 6.31582i 0.456997i −0.973544 0.228498i \(-0.926618\pi\)
0.973544 0.228498i \(-0.0733816\pi\)
\(192\) 8.90843 1.04061i 0.642911 0.0750996i
\(193\) 14.9354 + 14.9354i 1.07508 + 1.07508i 0.996943 + 0.0781335i \(0.0248961\pi\)
0.0781335 + 0.996943i \(0.475104\pi\)
\(194\) −12.3497 4.83718i −0.886653 0.347289i
\(195\) 2.74712 14.1084i 0.196726 1.01032i
\(196\) 0 0
\(197\) −1.01354 + 1.01354i −0.0722120 + 0.0722120i −0.742290 0.670078i \(-0.766260\pi\)
0.670078 + 0.742290i \(0.266260\pi\)
\(198\) −2.94576 6.73923i −0.209346 0.478936i
\(199\) 9.51476 0.674484 0.337242 0.941418i \(-0.390506\pi\)
0.337242 + 0.941418i \(0.390506\pi\)
\(200\) 10.6398 + 9.31634i 0.752349 + 0.658765i
\(201\) 3.48797 0.246022
\(202\) 4.22855 + 9.67397i 0.297520 + 0.680658i
\(203\) 0 0
\(204\) −3.92693 3.63372i −0.274940 0.254412i
\(205\) −3.39216 + 17.4211i −0.236919 + 1.21674i
\(206\) 5.42720 + 2.12575i 0.378131 + 0.148108i
\(207\) −7.39345 7.39345i −0.513880 0.513880i
\(208\) −14.9121 + 17.4239i −1.03397 + 1.20813i
\(209\) 7.50050i 0.518821i
\(210\) 0 0
\(211\) 26.9476i 1.85515i −0.373634 0.927576i \(-0.621888\pi\)
0.373634 0.927576i \(-0.378112\pi\)
\(212\) −5.11545 + 0.198382i −0.351330 + 0.0136250i
\(213\) 6.41911 + 6.41911i 0.439830 + 0.439830i
\(214\) −5.37260 + 13.7166i −0.367263 + 0.937648i
\(215\) −13.4796 19.9983i −0.919300 1.36387i
\(216\) −6.55345 13.5376i −0.445906 0.921116i
\(217\) 0 0
\(218\) 13.2990 5.81310i 0.900725 0.393712i
\(219\) −10.9330 −0.738785
\(220\) 10.7671 7.88103i 0.725920 0.531339i
\(221\) 13.6806 0.920255
\(222\) −6.93382 + 3.03082i −0.465368 + 0.203415i
\(223\) 2.22624 2.22624i 0.149080 0.149080i −0.628627 0.777707i \(-0.716383\pi\)
0.777707 + 0.628627i \(0.216383\pi\)
\(224\) 0 0
\(225\) 3.27007 8.07865i 0.218004 0.538577i
\(226\) −5.36521 + 13.6978i −0.356889 + 0.911161i
\(227\) 5.70319 + 5.70319i 0.378534 + 0.378534i 0.870573 0.492039i \(-0.163748\pi\)
−0.492039 + 0.870573i \(0.663748\pi\)
\(228\) 0.218435 + 5.63252i 0.0144662 + 0.373022i
\(229\) 2.43296i 0.160775i 0.996764 + 0.0803873i \(0.0256157\pi\)
−0.996764 + 0.0803873i \(0.974384\pi\)
\(230\) 10.1664 16.0147i 0.670352 1.05598i
\(231\) 0 0
\(232\) −2.37224 + 6.82416i −0.155745 + 0.448028i
\(233\) 7.40225 + 7.40225i 0.484937 + 0.484937i 0.906704 0.421767i \(-0.138590\pi\)
−0.421767 + 0.906704i \(0.638590\pi\)
\(234\) 13.1600 + 5.15458i 0.860297 + 0.336966i
\(235\) −5.48756 + 3.69882i −0.357969 + 0.241285i
\(236\) 2.84423 3.07373i 0.185144 0.200083i
\(237\) 6.39053 6.39053i 0.415110 0.415110i
\(238\) 0 0
\(239\) −12.9050 −0.834754 −0.417377 0.908733i \(-0.637051\pi\)
−0.417377 + 0.908733i \(0.637051\pi\)
\(240\) 7.85608 6.23184i 0.507108 0.402264i
\(241\) −2.71390 −0.174817 −0.0874087 0.996173i \(-0.527859\pi\)
−0.0874087 + 0.996173i \(0.527859\pi\)
\(242\) 1.18829 + 2.71853i 0.0763859 + 0.174754i
\(243\) −10.6996 + 10.6996i −0.686383 + 0.686383i
\(244\) −2.58216 + 2.79052i −0.165306 + 0.178645i
\(245\) 0 0
\(246\) 11.7178 + 4.58970i 0.747101 + 0.292629i
\(247\) −10.1917 10.1917i −0.648483 0.648483i
\(248\) −3.34851 + 9.63257i −0.212631 + 0.611669i
\(249\) 9.50975i 0.602656i
\(250\) 15.5970 + 2.59470i 0.986443 + 0.164103i
\(251\) 3.15358i 0.199052i −0.995035 0.0995262i \(-0.968267\pi\)
0.995035 0.0995262i \(-0.0317327\pi\)
\(252\) 0 0
\(253\) −12.6554 12.6554i −0.795640 0.795640i
\(254\) −9.76188 + 24.9227i −0.612515 + 1.56379i
\(255\) −5.87145 1.14326i −0.367684 0.0715940i
\(256\) −15.8081 + 2.47082i −0.988004 + 0.154426i
\(257\) −11.6435 + 11.6435i −0.726299 + 0.726299i −0.969881 0.243581i \(-0.921678\pi\)
0.243581 + 0.969881i \(0.421678\pi\)
\(258\) −15.6690 + 6.84900i −0.975507 + 0.426400i
\(259\) 0 0
\(260\) −3.92165 + 25.3392i −0.243211 + 1.57147i
\(261\) 4.45239 0.275596
\(262\) −19.8992 + 8.69806i −1.22938 + 0.537368i
\(263\) 20.6399 20.6399i 1.27271 1.27271i 0.328054 0.944659i \(-0.393607\pi\)
0.944659 0.328054i \(-0.106393\pi\)
\(264\) −4.12246 8.51583i −0.253720 0.524113i
\(265\) −4.74607 + 3.19903i −0.291549 + 0.196515i
\(266\) 0 0
\(267\) 1.62931 + 1.62931i 0.0997123 + 0.0997123i
\(268\) −6.21758 + 0.241124i −0.379799 + 0.0147290i
\(269\) 6.11072i 0.372577i −0.982495 0.186288i \(-0.940354\pi\)
0.982495 0.186288i \(-0.0596459\pi\)
\(270\) −14.1967 9.01230i −0.863982 0.548471i
\(271\) 22.0200i 1.33762i 0.743434 + 0.668810i \(0.233196\pi\)
−0.743434 + 0.668810i \(0.766804\pi\)
\(272\) 7.25128 + 6.20594i 0.439673 + 0.376290i
\(273\) 0 0
\(274\) 6.20480 + 2.43033i 0.374846 + 0.146822i
\(275\) 5.59740 13.8283i 0.337536 0.833877i
\(276\) −9.87217 9.13505i −0.594235 0.549865i
\(277\) −11.6364 + 11.6364i −0.699165 + 0.699165i −0.964230 0.265066i \(-0.914606\pi\)
0.265066 + 0.964230i \(0.414606\pi\)
\(278\) 5.83775 + 13.3555i 0.350125 + 0.801007i
\(279\) 6.28472 0.376257
\(280\) 0 0
\(281\) 6.79274 0.405221 0.202610 0.979259i \(-0.435057\pi\)
0.202610 + 0.979259i \(0.435057\pi\)
\(282\) 1.87938 + 4.29959i 0.111915 + 0.256037i
\(283\) −9.22409 + 9.22409i −0.548315 + 0.548315i −0.925953 0.377638i \(-0.876736\pi\)
0.377638 + 0.925953i \(0.376736\pi\)
\(284\) −11.8863 10.9988i −0.705324 0.652660i
\(285\) 3.52239 + 5.22580i 0.208648 + 0.309550i
\(286\) 22.5261 + 8.82314i 1.33200 + 0.521723i
\(287\) 0 0
\(288\) 4.63707 + 8.70194i 0.273242 + 0.512767i
\(289\) 11.3066i 0.665093i
\(290\) 1.76094 + 7.88321i 0.103406 + 0.462918i
\(291\) 10.5145i 0.616369i
\(292\) 19.4890 0.755804i 1.14051 0.0442301i
\(293\) 1.28839 + 1.28839i 0.0752688 + 0.0752688i 0.743739 0.668470i \(-0.233051\pi\)
−0.668470 + 0.743739i \(0.733051\pi\)
\(294\) 0 0
\(295\) 0.894869 4.59577i 0.0521013 0.267576i
\(296\) 12.1506 5.88202i 0.706238 0.341885i
\(297\) −11.2188 + 11.2188i −0.650980 + 0.650980i
\(298\) 12.5338 5.47862i 0.726066 0.317368i
\(299\) 34.3925 1.98897
\(300\) 3.80066 10.5474i 0.219431 0.608953i
\(301\) 0 0
\(302\) −1.43036 + 0.625218i −0.0823078 + 0.0359772i
\(303\) 5.91829 5.91829i 0.339997 0.339997i
\(304\) −0.778756 10.0253i −0.0446647 0.574991i
\(305\) −0.812415 + 4.17231i −0.0465188 + 0.238906i
\(306\) 2.14517 5.47678i 0.122631 0.313086i
\(307\) 11.6465 + 11.6465i 0.664701 + 0.664701i 0.956484 0.291783i \(-0.0942486\pi\)
−0.291783 + 0.956484i \(0.594249\pi\)
\(308\) 0 0
\(309\) 4.62070i 0.262863i
\(310\) 2.48563 + 11.1275i 0.141174 + 0.631997i
\(311\) 30.1836i 1.71156i 0.517343 + 0.855778i \(0.326921\pi\)
−0.517343 + 0.855778i \(0.673079\pi\)
\(312\) 17.1729 + 5.96973i 0.972227 + 0.337969i
\(313\) −15.6006 15.6006i −0.881800 0.881800i 0.111918 0.993717i \(-0.464301\pi\)
−0.993717 + 0.111918i \(0.964301\pi\)
\(314\) 11.4412 + 4.48135i 0.645664 + 0.252897i
\(315\) 0 0
\(316\) −10.9499 + 11.8334i −0.615978 + 0.665682i
\(317\) −1.02494 + 1.02494i −0.0575664 + 0.0575664i −0.735304 0.677738i \(-0.762961\pi\)
0.677738 + 0.735304i \(0.262961\pi\)
\(318\) 1.62543 + 3.71862i 0.0911498 + 0.208530i
\(319\) 7.62119 0.426705
\(320\) −13.5733 + 11.6519i −0.758770 + 0.651358i
\(321\) 11.6783 0.651819
\(322\) 0 0
\(323\) −4.24147 + 4.24147i −0.236001 + 0.236001i
\(324\) −0.994924 + 1.07521i −0.0552736 + 0.0597337i
\(325\) 11.1842 + 26.3957i 0.620386 + 1.46417i
\(326\) 1.41927 + 0.555906i 0.0786059 + 0.0307888i
\(327\) −8.13602 8.13602i −0.449923 0.449923i
\(328\) −21.2053 7.37146i −1.17087 0.407021i
\(329\) 0 0
\(330\) −8.93044 5.66920i −0.491604 0.312079i
\(331\) 28.3761i 1.55969i 0.625971 + 0.779846i \(0.284703\pi\)
−0.625971 + 0.779846i \(0.715297\pi\)
\(332\) −0.657412 16.9519i −0.0360802 0.930356i
\(333\) −5.88264 5.88264i −0.322367 0.322367i
\(334\) 1.59109 4.06216i 0.0870605 0.222271i
\(335\) −5.76862 + 3.88827i −0.315173 + 0.212439i
\(336\) 0 0
\(337\) −11.7829 + 11.7829i −0.641857 + 0.641857i −0.951012 0.309155i \(-0.899954\pi\)
0.309155 + 0.951012i \(0.399954\pi\)
\(338\) −25.7517 + 11.2562i −1.40071 + 0.612257i
\(339\) 11.6622 0.633406
\(340\) 10.5454 + 1.63207i 0.571903 + 0.0885113i
\(341\) 10.7576 0.582557
\(342\) −5.67817 + 2.48197i −0.307041 + 0.134209i
\(343\) 0 0
\(344\) 27.4577 13.2921i 1.48042 0.716662i
\(345\) −14.7606 2.87413i −0.794684 0.154738i
\(346\) 12.1669 31.0629i 0.654096 1.66995i
\(347\) −11.2886 11.2886i −0.606002 0.606002i 0.335896 0.941899i \(-0.390961\pi\)
−0.941899 + 0.335896i \(0.890961\pi\)
\(348\) 5.72314 0.221950i 0.306793 0.0118977i
\(349\) 7.52656i 0.402888i −0.979500 0.201444i \(-0.935437\pi\)
0.979500 0.201444i \(-0.0645633\pi\)
\(350\) 0 0
\(351\) 30.4882i 1.62734i
\(352\) 7.93732 + 14.8952i 0.423060 + 0.793915i
\(353\) −3.96442 3.96442i −0.211005 0.211005i 0.593689 0.804694i \(-0.297671\pi\)
−0.804694 + 0.593689i \(0.797671\pi\)
\(354\) −3.09122 1.21079i −0.164296 0.0643525i
\(355\) −17.7721 3.46052i −0.943247 0.183665i
\(356\) −3.01702 2.79175i −0.159902 0.147962i
\(357\) 0 0
\(358\) 4.00064 + 9.15257i 0.211441 + 0.483728i
\(359\) 36.4285 1.92262 0.961311 0.275464i \(-0.0888315\pi\)
0.961311 + 0.275464i \(0.0888315\pi\)
\(360\) 9.52916 + 5.54326i 0.502231 + 0.292155i
\(361\) −12.6804 −0.667390
\(362\) 1.34478 + 3.07654i 0.0706799 + 0.161699i
\(363\) 1.66313 1.66313i 0.0872915 0.0872915i
\(364\) 0 0
\(365\) 18.0817 12.1878i 0.946440 0.637937i
\(366\) 2.80639 + 1.09922i 0.146692 + 0.0574573i
\(367\) −23.1194 23.1194i −1.20682 1.20682i −0.972051 0.234769i \(-0.924567\pi\)
−0.234769 0.972051i \(-0.575433\pi\)
\(368\) 18.2294 + 15.6015i 0.950276 + 0.813284i
\(369\) 13.8353i 0.720235i
\(370\) 8.08894 12.7422i 0.420524 0.662433i
\(371\) 0 0
\(372\) 8.07844 0.313291i 0.418848 0.0162434i
\(373\) −18.4926 18.4926i −0.957512 0.957512i 0.0416212 0.999133i \(-0.486748\pi\)
−0.999133 + 0.0416212i \(0.986748\pi\)
\(374\) 3.67191 9.37464i 0.189870 0.484751i
\(375\) −2.59418 12.2632i −0.133963 0.633268i
\(376\) −3.64738 7.53445i −0.188099 0.388560i
\(377\) −10.3557 + 10.3557i −0.533346 + 0.533346i
\(378\) 0 0
\(379\) 20.3769 1.04669 0.523344 0.852121i \(-0.324684\pi\)
0.523344 + 0.852121i \(0.324684\pi\)
\(380\) −6.64020 9.07191i −0.340635 0.465379i
\(381\) 21.2192 1.08709
\(382\) 8.18423 3.57738i 0.418742 0.183035i
\(383\) 18.0549 18.0549i 0.922564 0.922564i −0.0746461 0.997210i \(-0.523783\pi\)
0.997210 + 0.0746461i \(0.0237827\pi\)
\(384\) 6.39433 + 10.9544i 0.326309 + 0.559014i
\(385\) 0 0
\(386\) −10.8941 + 27.8134i −0.554496 + 1.41567i
\(387\) −13.2935 13.2935i −0.675747 0.675747i
\(388\) −0.726869 18.7429i −0.0369012 0.951526i
\(389\) 18.0492i 0.915129i −0.889176 0.457564i \(-0.848722\pi\)
0.889176 0.457564i \(-0.151278\pi\)
\(390\) 19.8380 4.43138i 1.00454 0.224392i
\(391\) 14.3130i 0.723842i
\(392\) 0 0
\(393\) 12.1738 + 12.1738i 0.614088 + 0.614088i
\(394\) −1.88747 0.739294i −0.0950892 0.0372451i
\(395\) −3.44511 + 17.6930i −0.173343 + 0.890233i
\(396\) 7.06437 7.63441i 0.354998 0.383643i
\(397\) −21.2747 + 21.2747i −1.06774 + 1.06774i −0.0702120 + 0.997532i \(0.522368\pi\)
−0.997532 + 0.0702120i \(0.977632\pi\)
\(398\) 5.38931 + 12.3295i 0.270141 + 0.618022i
\(399\) 0 0
\(400\) −6.04584 + 19.0643i −0.302292 + 0.953215i
\(401\) 4.89560 0.244475 0.122237 0.992501i \(-0.460993\pi\)
0.122237 + 0.992501i \(0.460993\pi\)
\(402\) 1.97564 + 4.51981i 0.0985358 + 0.225428i
\(403\) −14.6175 + 14.6175i −0.728149 + 0.728149i
\(404\) −10.1407 + 10.9590i −0.504519 + 0.545229i
\(405\) −0.313029 + 1.60762i −0.0155546 + 0.0798833i
\(406\) 0 0
\(407\) −10.0694 10.0694i −0.499119 0.499119i
\(408\) 2.48441 7.14683i 0.122997 0.353821i
\(409\) 33.5439i 1.65864i −0.558774 0.829320i \(-0.688728\pi\)
0.558774 0.829320i \(-0.311272\pi\)
\(410\) −24.4961 + 5.47190i −1.20978 + 0.270238i
\(411\) 5.28276i 0.260579i
\(412\) 0.319431 + 8.23678i 0.0157372 + 0.405797i
\(413\) 0 0
\(414\) 5.39289 13.7684i 0.265046 0.676680i
\(415\) −10.6011 15.7278i −0.520390 0.772048i
\(416\) −31.0249 9.45436i −1.52112 0.463538i
\(417\) 8.17053 8.17053i 0.400112 0.400112i
\(418\) −9.71937 + 4.24840i −0.475390 + 0.207796i
\(419\) −36.3735 −1.77696 −0.888481 0.458914i \(-0.848239\pi\)
−0.888481 + 0.458914i \(0.848239\pi\)
\(420\) 0 0
\(421\) −33.2473 −1.62038 −0.810188 0.586170i \(-0.800635\pi\)
−0.810188 + 0.586170i \(0.800635\pi\)
\(422\) 34.9196 15.2636i 1.69986 0.743018i
\(423\) −3.64776 + 3.64776i −0.177360 + 0.177360i
\(424\) −3.15454 6.51638i −0.153198 0.316463i
\(425\) 10.9850 4.65449i 0.532853 0.225776i
\(426\) −4.68219 + 11.9539i −0.226853 + 0.579171i
\(427\) 0 0
\(428\) −20.8175 + 0.807325i −1.00625 + 0.0390235i
\(429\) 19.1787i 0.925955i
\(430\) 18.2793 28.7946i 0.881505 1.38860i
\(431\) 31.1145i 1.49873i 0.662154 + 0.749367i \(0.269642\pi\)
−0.662154 + 0.749367i \(0.730358\pi\)
\(432\) 13.8304 16.1600i 0.665416 0.777501i
\(433\) −7.14603 7.14603i −0.343416 0.343416i 0.514234 0.857650i \(-0.328076\pi\)
−0.857650 + 0.514234i \(0.828076\pi\)
\(434\) 0 0
\(435\) 5.30988 3.57906i 0.254589 0.171603i
\(436\) 15.0656 + 13.9407i 0.721509 + 0.667637i
\(437\) −10.6629 + 10.6629i −0.510075 + 0.510075i
\(438\) −6.19263 14.1673i −0.295895 0.676941i
\(439\) 0.557131 0.0265904 0.0132952 0.999912i \(-0.495768\pi\)
0.0132952 + 0.999912i \(0.495768\pi\)
\(440\) 16.3111 + 9.48844i 0.777603 + 0.452344i
\(441\) 0 0
\(442\) 7.74889 + 17.7277i 0.368577 + 0.843221i
\(443\) 17.2462 17.2462i 0.819391 0.819391i −0.166629 0.986020i \(-0.553288\pi\)
0.986020 + 0.166629i \(0.0532882\pi\)
\(444\) −7.85485 7.26835i −0.372774 0.344941i
\(445\) −4.51096 0.878357i −0.213840 0.0416381i
\(446\) 4.14581 + 1.62385i 0.196310 + 0.0768917i
\(447\) −7.66789 7.66789i −0.362679 0.362679i
\(448\) 0 0
\(449\) 8.64441i 0.407955i −0.978976 0.203978i \(-0.934613\pi\)
0.978976 0.203978i \(-0.0653870\pi\)
\(450\) 12.3208 0.338420i 0.580807 0.0159533i
\(451\) 23.6819i 1.11514i
\(452\) −20.7889 + 0.806215i −0.977828 + 0.0379212i
\(453\) 0.875056 + 0.875056i 0.0411137 + 0.0411137i
\(454\) −4.15999 + 10.6207i −0.195238 + 0.498456i
\(455\) 0 0
\(456\) −7.17505 + 3.47340i −0.336003 + 0.162657i
\(457\) 1.93285 1.93285i 0.0904150 0.0904150i −0.660453 0.750868i \(-0.729636\pi\)
0.750868 + 0.660453i \(0.229636\pi\)
\(458\) −3.15270 + 1.37807i −0.147316 + 0.0643928i
\(459\) −12.6882 −0.592236
\(460\) 26.5107 + 4.10296i 1.23607 + 0.191301i
\(461\) −38.5986 −1.79772 −0.898858 0.438239i \(-0.855602\pi\)
−0.898858 + 0.438239i \(0.855602\pi\)
\(462\) 0 0
\(463\) −13.5055 + 13.5055i −0.627652 + 0.627652i −0.947477 0.319824i \(-0.896376\pi\)
0.319824 + 0.947477i \(0.396376\pi\)
\(464\) −10.1866 + 0.791286i −0.472902 + 0.0367345i
\(465\) 7.49511 5.05199i 0.347577 0.234280i
\(466\) −5.39931 + 13.7848i −0.250118 + 0.638568i
\(467\) −9.44901 9.44901i −0.437248 0.437248i 0.453837 0.891085i \(-0.350055\pi\)
−0.891085 + 0.453837i \(0.850055\pi\)
\(468\) 0.774565 + 19.9728i 0.0358043 + 0.923241i
\(469\) 0 0
\(470\) −7.90128 5.01587i −0.364459 0.231365i
\(471\) 9.74101i 0.448842i
\(472\) 5.59405 + 1.94463i 0.257487 + 0.0895087i
\(473\) −22.7546 22.7546i −1.04626 1.04626i
\(474\) 11.9007 + 4.66135i 0.546619 + 0.214103i
\(475\) −11.6511 4.71612i −0.534589 0.216390i
\(476\) 0 0
\(477\) −3.15487 + 3.15487i −0.144452 + 0.144452i
\(478\) −7.30958 16.7227i −0.334332 0.764877i
\(479\) 7.83260 0.357881 0.178940 0.983860i \(-0.442733\pi\)
0.178940 + 0.983860i \(0.442733\pi\)
\(480\) 12.5252 + 6.65033i 0.571695 + 0.303545i
\(481\) 27.3646 1.24772
\(482\) −1.53719 3.51675i −0.0700172 0.160183i
\(483\) 0 0
\(484\) −2.84968 + 3.07963i −0.129531 + 0.139983i
\(485\) −11.7212 17.3895i −0.532231 0.789616i
\(486\) −19.9254 7.80448i −0.903833 0.354018i
\(487\) −1.72517 1.72517i −0.0781749 0.0781749i 0.666938 0.745113i \(-0.267605\pi\)
−0.745113 + 0.666938i \(0.767605\pi\)
\(488\) −5.07861 1.76545i −0.229898 0.0799181i
\(489\) 1.20836i 0.0546439i
\(490\) 0 0
\(491\) 33.5206i 1.51276i −0.654130 0.756382i \(-0.726965\pi\)
0.654130 0.756382i \(-0.273035\pi\)
\(492\) 0.689682 + 17.7840i 0.0310932 + 0.801764i
\(493\) 4.30971 + 4.30971i 0.194100 + 0.194100i
\(494\) 7.43398 18.9795i 0.334471 0.853926i
\(495\) 2.22264 11.4148i 0.0999001 0.513055i
\(496\) −14.3788 + 1.11693i −0.645628 + 0.0501517i
\(497\) 0 0
\(498\) −12.3230 + 5.38646i −0.552207 + 0.241373i
\(499\) −20.6924 −0.926319 −0.463159 0.886275i \(-0.653284\pi\)
−0.463159 + 0.886275i \(0.653284\pi\)
\(500\) 5.47210 + 21.6808i 0.244720 + 0.969594i
\(501\) −3.45851 −0.154515
\(502\) 4.08651 1.78624i 0.182390 0.0797237i
\(503\) −4.35918 + 4.35918i −0.194366 + 0.194366i −0.797580 0.603214i \(-0.793887\pi\)
0.603214 + 0.797580i \(0.293887\pi\)
\(504\) 0 0
\(505\) −3.19053 + 16.3856i −0.141977 + 0.729148i
\(506\) 9.23105 23.5675i 0.410370 1.04770i
\(507\) 15.7542 + 15.7542i 0.699669 + 0.699669i
\(508\) −37.8249 + 1.46689i −1.67821 + 0.0650827i
\(509\) 30.5865i 1.35572i −0.735189 0.677862i \(-0.762907\pi\)
0.735189 0.677862i \(-0.237093\pi\)
\(510\) −1.84420 8.25596i −0.0816626 0.365580i
\(511\) 0 0
\(512\) −12.1557 19.0851i −0.537211 0.843448i
\(513\) 9.45244 + 9.45244i 0.417335 + 0.417335i
\(514\) −21.6830 8.49291i −0.956395 0.374606i
\(515\) 5.15101 + 7.64201i 0.226980 + 0.336747i
\(516\) −17.7503 16.4249i −0.781412 0.723067i
\(517\) −6.24391 + 6.24391i −0.274607 + 0.274607i
\(518\) 0 0
\(519\) −26.4469 −1.16089
\(520\) −35.0566 + 9.27071i −1.53733 + 0.406548i
\(521\) −9.36545 −0.410308 −0.205154 0.978730i \(-0.565770\pi\)
−0.205154 + 0.978730i \(0.565770\pi\)
\(522\) 2.52190 + 5.76954i 0.110381 + 0.252526i
\(523\) 23.1360 23.1360i 1.01167 1.01167i 0.0117350 0.999931i \(-0.496265\pi\)
0.999931 0.0117350i \(-0.00373545\pi\)
\(524\) −22.5424 20.8592i −0.984770 0.911240i
\(525\) 0 0
\(526\) 38.4366 + 15.0551i 1.67592 + 0.656432i
\(527\) 6.08333 + 6.08333i 0.264994 + 0.264994i
\(528\) 8.70004 10.1655i 0.378621 0.442396i
\(529\) 12.9825i 0.564455i
\(530\) −6.83364 4.33811i −0.296834 0.188436i
\(531\) 3.64981i 0.158388i
\(532\) 0 0
\(533\) −32.1791 32.1791i −1.39383 1.39383i
\(534\) −1.18844 + 3.03418i −0.0514290 + 0.131302i
\(535\) −19.3143 + 13.0186i −0.835030 + 0.562842i
\(536\) −3.83419 7.92035i −0.165612 0.342107i
\(537\) 5.59931 5.59931i 0.241628 0.241628i
\(538\) 7.91844 3.46120i 0.341388 0.149223i
\(539\) 0 0
\(540\) 3.63719 23.5012i 0.156520 1.01133i
\(541\) −5.46190 −0.234825 −0.117413 0.993083i \(-0.537460\pi\)
−0.117413 + 0.993083i \(0.537460\pi\)
\(542\) −28.5342 + 12.4725i −1.22565 + 0.535738i
\(543\) 1.88215 1.88215i 0.0807708 0.0807708i
\(544\) −3.93460 + 12.9116i −0.168695 + 0.553579i
\(545\) 22.5256 + 4.38610i 0.964892 + 0.187880i
\(546\) 0 0
\(547\) −4.64823 4.64823i −0.198744 0.198744i 0.600718 0.799461i \(-0.294882\pi\)
−0.799461 + 0.600718i \(0.794882\pi\)
\(548\) 0.365199 + 9.41694i 0.0156005 + 0.402272i
\(549\) 3.31351i 0.141417i
\(550\) 21.0896 0.579277i 0.899261 0.0247004i
\(551\) 6.42127i 0.273555i
\(552\) 6.24572 17.9669i 0.265835 0.764721i
\(553\) 0 0
\(554\) −21.6699 8.48777i −0.920664 0.360611i
\(555\) −11.7444 2.28681i −0.498520 0.0970698i
\(556\) −13.9998 + 15.1295i −0.593724 + 0.641632i
\(557\) 8.82237 8.82237i 0.373816 0.373816i −0.495049 0.868865i \(-0.664850\pi\)
0.868865 + 0.495049i \(0.164850\pi\)
\(558\) 3.55976 + 8.14393i 0.150697 + 0.344760i
\(559\) 61.8381 2.61547
\(560\) 0 0
\(561\) −7.98155 −0.336981
\(562\) 3.84751 + 8.80223i 0.162297 + 0.371300i
\(563\) 13.4268 13.4268i 0.565873 0.565873i −0.365097 0.930970i \(-0.618964\pi\)
0.930970 + 0.365097i \(0.118964\pi\)
\(564\) −4.50703 + 4.87071i −0.189780 + 0.205094i
\(565\) −19.2878 + 13.0007i −0.811442 + 0.546943i
\(566\) −17.1775 6.72818i −0.722025 0.282807i
\(567\) 0 0
\(568\) 7.52000 21.6326i 0.315532 0.907682i
\(569\) 22.5548i 0.945547i 0.881184 + 0.472773i \(0.156747\pi\)
−0.881184 + 0.472773i \(0.843253\pi\)
\(570\) −4.77661 + 7.52438i −0.200070 + 0.315162i
\(571\) 26.3826i 1.10408i −0.833819 0.552038i \(-0.813850\pi\)
0.833819 0.552038i \(-0.186150\pi\)
\(572\) 1.32583 + 34.1875i 0.0554357 + 1.42945i
\(573\) −5.00690 5.00690i −0.209166 0.209166i
\(574\) 0 0
\(575\) 27.6160 11.7012i 1.15167 0.487975i
\(576\) −8.64972 + 10.9378i −0.360405 + 0.455740i
\(577\) 22.5576 22.5576i 0.939086 0.939086i −0.0591623 0.998248i \(-0.518843\pi\)
0.998248 + 0.0591623i \(0.0188430\pi\)
\(578\) −14.6514 + 6.40422i −0.609418 + 0.266380i
\(579\) 23.6803 0.984120
\(580\) −9.21787 + 6.74704i −0.382751 + 0.280156i
\(581\) 0 0
\(582\) −13.6250 + 5.95556i −0.564773 + 0.246866i
\(583\) −5.40021 + 5.40021i −0.223654 + 0.223654i
\(584\) 12.0183 + 24.8263i 0.497319 + 1.02732i
\(585\) 12.4903 + 18.5306i 0.516410 + 0.766144i
\(586\) −0.939774 + 2.39931i −0.0388217 + 0.0991144i
\(587\) −14.8860 14.8860i −0.614410 0.614410i 0.329682 0.944092i \(-0.393058\pi\)
−0.944092 + 0.329682i \(0.893058\pi\)
\(588\) 0 0
\(589\) 9.06388i 0.373471i
\(590\) 6.46220 1.44351i 0.266044 0.0594285i
\(591\) 1.60699i 0.0661026i
\(592\) 14.5044 + 12.4134i 0.596126 + 0.510188i
\(593\) 23.3225 + 23.3225i 0.957741 + 0.957741i 0.999143 0.0414014i \(-0.0131822\pi\)
−0.0414014 + 0.999143i \(0.513182\pi\)
\(594\) −20.8921 8.18314i −0.857214 0.335758i
\(595\) 0 0
\(596\) 14.1987 + 13.1385i 0.581602 + 0.538176i
\(597\) 7.54288 7.54288i 0.308710 0.308710i
\(598\) 19.4804 + 44.5668i 0.796613 + 1.82247i
\(599\) 17.5846 0.718486 0.359243 0.933244i \(-0.383035\pi\)
0.359243 + 0.933244i \(0.383035\pi\)
\(600\) 15.8204 1.04919i 0.645864 0.0428331i
\(601\) 17.7704 0.724871 0.362436 0.932009i \(-0.381945\pi\)
0.362436 + 0.932009i \(0.381945\pi\)
\(602\) 0 0
\(603\) −3.83460 + 3.83460i −0.156157 + 0.156157i
\(604\) −1.62035 1.49937i −0.0659312 0.0610083i
\(605\) −0.896586 + 4.60458i −0.0364514 + 0.187203i
\(606\) 11.0213 + 4.31689i 0.447710 + 0.175362i
\(607\) 6.82673 + 6.82673i 0.277088 + 0.277088i 0.831946 0.554857i \(-0.187227\pi\)
−0.554857 + 0.831946i \(0.687227\pi\)
\(608\) 12.5500 6.68762i 0.508970 0.271219i
\(609\) 0 0
\(610\) −5.86677 + 1.31051i −0.237538 + 0.0530609i
\(611\) 16.9685i 0.686471i
\(612\) 8.31203 0.322349i 0.335994 0.0130302i
\(613\) 6.15701 + 6.15701i 0.248679 + 0.248679i 0.820429 0.571749i \(-0.193735\pi\)
−0.571749 + 0.820429i \(0.693735\pi\)
\(614\) −8.49513 + 21.6886i −0.342836 + 0.875283i
\(615\) 11.1215 + 16.4998i 0.448463 + 0.665337i
\(616\) 0 0
\(617\) 21.0055 21.0055i 0.845648 0.845648i −0.143938 0.989587i \(-0.545977\pi\)
0.989587 + 0.143938i \(0.0459767\pi\)
\(618\) 5.98764 2.61724i 0.240858 0.105281i
\(619\) 14.0231 0.563634 0.281817 0.959468i \(-0.409063\pi\)
0.281817 + 0.959468i \(0.409063\pi\)
\(620\) −13.0114 + 9.52372i −0.522550 + 0.382482i
\(621\) −31.8977 −1.28001
\(622\) −39.1128 + 17.0965i −1.56828 + 0.685505i
\(623\) 0 0
\(624\) 1.99127 + 25.6346i 0.0797144 + 1.02620i
\(625\) 17.9610 + 17.3897i 0.718440 + 0.695588i
\(626\) 11.3793 29.0522i 0.454809 1.16116i
\(627\) 5.94607 + 5.94607i 0.237463 + 0.237463i
\(628\) 0.673400 + 17.3641i 0.0268716 + 0.692905i
\(629\) 11.3883i 0.454080i
\(630\) 0 0
\(631\) 25.9447i 1.03284i 0.856334 + 0.516422i \(0.172736\pi\)
−0.856334 + 0.516422i \(0.827264\pi\)
\(632\) −21.5363 7.48653i −0.856667 0.297798i
\(633\) −21.3629 21.3629i −0.849099 0.849099i
\(634\) −1.90869 0.747606i −0.0758038 0.0296912i
\(635\) −35.0936 + 23.6544i −1.39265 + 0.938697i
\(636\) −3.89803 + 4.21257i −0.154567 + 0.167039i
\(637\) 0 0
\(638\) 4.31676 + 9.87576i 0.170902 + 0.390985i
\(639\) −14.1141 −0.558343
\(640\) −22.7869 10.9889i −0.900733 0.434374i
\(641\) 5.01605 0.198122 0.0990610 0.995081i \(-0.468416\pi\)
0.0990610 + 0.995081i \(0.468416\pi\)
\(642\) 6.61476 + 15.1331i 0.261064 + 0.597255i
\(643\) −5.68565 + 5.68565i −0.224220 + 0.224220i −0.810273 0.586053i \(-0.800681\pi\)
0.586053 + 0.810273i \(0.300681\pi\)
\(644\) 0 0
\(645\) −26.5397 5.16771i −1.04500 0.203478i
\(646\) −7.89865 3.09379i −0.310768 0.121723i
\(647\) 13.7954 + 13.7954i 0.542352 + 0.542352i 0.924218 0.381865i \(-0.124718\pi\)
−0.381865 + 0.924218i \(0.624718\pi\)
\(648\) −1.95682 0.680239i −0.0768713 0.0267223i
\(649\) 6.24741i 0.245232i
\(650\) −27.8694 + 29.4437i −1.09313 + 1.15488i
\(651\) 0 0
\(652\) 0.0835344 + 2.15400i 0.00327146 + 0.0843572i
\(653\) −18.9938 18.9938i −0.743283 0.743283i 0.229925 0.973208i \(-0.426152\pi\)
−0.973208 + 0.229925i \(0.926152\pi\)
\(654\) 5.93453 15.1513i 0.232058 0.592461i
\(655\) −33.7048 6.56287i −1.31696 0.256432i
\(656\) −2.45883 31.6537i −0.0960011 1.23587i
\(657\) 12.0195 12.0195i 0.468926 0.468926i
\(658\) 0 0
\(659\) −2.47864 −0.0965543 −0.0482771 0.998834i \(-0.515373\pi\)
−0.0482771 + 0.998834i \(0.515373\pi\)
\(660\) 2.28798 14.7834i 0.0890594 0.575445i
\(661\) −12.0854 −0.470068 −0.235034 0.971987i \(-0.575520\pi\)
−0.235034 + 0.971987i \(0.575520\pi\)
\(662\) −36.7706 + 16.0727i −1.42913 + 0.624682i
\(663\) 10.8454 10.8454i 0.421199 0.421199i
\(664\) 21.5944 10.4537i 0.838025 0.405682i
\(665\) 0 0
\(666\) 4.29088 10.9549i 0.166268 0.424494i
\(667\) 10.8345 + 10.8345i 0.419512 + 0.419512i
\(668\) 6.16508 0.239088i 0.238534 0.00925060i
\(669\) 3.52973i 0.136467i
\(670\) −8.30597 5.27277i −0.320887 0.203705i
\(671\) 5.67177i 0.218956i
\(672\) 0 0
\(673\) 34.0874 + 34.0874i 1.31397 + 1.31397i 0.918461 + 0.395511i \(0.129432\pi\)
0.395511 + 0.918461i \(0.370568\pi\)
\(674\) −21.9427 8.59464i −0.845201 0.331053i
\(675\) −10.3729 24.4810i −0.399253 0.942275i
\(676\) −29.1723 26.9941i −1.12201 1.03823i
\(677\) 23.9032 23.9032i 0.918675 0.918675i −0.0782577 0.996933i \(-0.524936\pi\)
0.996933 + 0.0782577i \(0.0249357\pi\)
\(678\) 6.60567 + 15.1123i 0.253689 + 0.580384i
\(679\) 0 0
\(680\) 3.85817 + 14.5894i 0.147954 + 0.559479i
\(681\) 9.04247 0.346508
\(682\) 6.09327 + 13.9400i 0.233323 + 0.533791i
\(683\) 5.29866 5.29866i 0.202747 0.202747i −0.598429 0.801176i \(-0.704208\pi\)
0.801176 + 0.598429i \(0.204208\pi\)
\(684\) −6.43241 5.95212i −0.245949 0.227585i
\(685\) 5.88904 + 8.73696i 0.225009 + 0.333822i
\(686\) 0 0
\(687\) 1.92874 + 1.92874i 0.0735862 + 0.0735862i
\(688\) 32.7768 + 28.0517i 1.24960 + 1.06946i
\(689\) 14.6757i 0.559098i
\(690\) −4.63625 20.7552i −0.176499 0.790136i
\(691\) 19.0813i 0.725888i 0.931811 + 0.362944i \(0.118228\pi\)
−0.931811 + 0.362944i \(0.881772\pi\)
\(692\) 47.1437 1.82828i 1.79213 0.0695009i
\(693\) 0 0
\(694\) 8.23405 21.0221i 0.312560 0.797987i
\(695\) −4.40470 + 22.6212i −0.167080 + 0.858070i
\(696\) 3.52928 + 7.29050i 0.133777 + 0.276346i
\(697\) −13.3919 + 13.3919i −0.507255 + 0.507255i
\(698\) 9.75314 4.26316i 0.369162 0.161363i
\(699\) 11.7363 0.443909
\(700\) 0 0
\(701\) −30.0384 −1.13454 −0.567268 0.823533i \(-0.692000\pi\)
−0.567268 + 0.823533i \(0.692000\pi\)
\(702\) 39.5076 17.2690i 1.49112 0.651776i
\(703\) −8.48399 + 8.48399i −0.319980 + 0.319980i
\(704\) −14.8058 + 18.7223i −0.558014 + 0.705622i
\(705\) −1.41803 + 7.28256i −0.0534061 + 0.274277i
\(706\) 2.89170 7.38272i 0.108831 0.277852i
\(707\) 0 0
\(708\) −0.181941 4.69150i −0.00683777 0.176317i
\(709\) 27.3678i 1.02782i 0.857845 + 0.513909i \(0.171803\pi\)
−0.857845 + 0.513909i \(0.828197\pi\)
\(710\) −5.58216 24.9897i −0.209495 0.937848i
\(711\) 14.0512i 0.526962i
\(712\) 1.90874 5.49083i 0.0715332 0.205777i
\(713\) 15.2933 + 15.2933i 0.572737 + 0.572737i
\(714\) 0 0
\(715\) 21.3797 + 31.7189i 0.799557 + 1.18622i
\(716\) −9.59414 + 10.3683i −0.358550 + 0.387482i
\(717\) −10.2305 + 10.2305i −0.382065 + 0.382065i
\(718\) 20.6337 + 47.2051i 0.770041 + 1.76168i
\(719\) −43.5045 −1.62245 −0.811223 0.584737i \(-0.801198\pi\)
−0.811223 + 0.584737i \(0.801198\pi\)
\(720\) −1.78566 + 15.4880i −0.0665475 + 0.577202i
\(721\) 0 0
\(722\) −7.18238 16.4317i −0.267300 0.611523i
\(723\) −2.15146 + 2.15146i −0.0800135 + 0.0800135i
\(724\) −3.22497 + 3.48520i −0.119855 + 0.129526i
\(725\) −4.79200 + 11.8386i −0.177970 + 0.439673i
\(726\) 3.09715 + 1.21311i 0.114946 + 0.0450227i
\(727\) −14.9542 14.9542i −0.554620 0.554620i 0.373151 0.927771i \(-0.378277\pi\)
−0.927771 + 0.373151i \(0.878277\pi\)
\(728\) 0 0
\(729\) 19.1618i 0.709695i
\(730\) 26.0350 + 16.5275i 0.963600 + 0.611710i
\(731\) 25.7350i 0.951845i
\(732\) 0.165177 + 4.25922i 0.00610512 + 0.157425i
\(733\) 22.4679 + 22.4679i 0.829871 + 0.829871i 0.987499 0.157627i \(-0.0503845\pi\)
−0.157627 + 0.987499i \(0.550384\pi\)
\(734\) 16.8636 43.0539i 0.622446 1.58915i
\(735\) 0 0
\(736\) −9.89144 + 32.4592i −0.364603 + 1.19646i
\(737\) −6.56371 + 6.56371i −0.241777 + 0.241777i
\(738\) −17.9281 + 7.83651i −0.659944 + 0.288466i
\(739\) 0.990905 0.0364510 0.0182255 0.999834i \(-0.494198\pi\)
0.0182255 + 0.999834i \(0.494198\pi\)
\(740\) 21.0934 + 3.26454i 0.775407 + 0.120007i
\(741\) −16.1591 −0.593619
\(742\) 0 0
\(743\) 9.00016 9.00016i 0.330184 0.330184i −0.522472 0.852656i \(-0.674990\pi\)
0.852656 + 0.522472i \(0.174990\pi\)
\(744\) 4.98172 + 10.2908i 0.182639 + 0.377280i
\(745\) 21.2295 + 4.13373i 0.777790 + 0.151448i
\(746\) 13.4888 34.4378i 0.493860 1.26086i
\(747\) −10.4548 10.4548i −0.382521 0.382521i
\(748\) 14.2278 0.551767i 0.520218 0.0201746i
\(749\) 0 0
\(750\) 14.4216 10.3077i 0.526603 0.376383i
\(751\) 13.0803i 0.477307i 0.971105 + 0.238653i \(0.0767060\pi\)
−0.971105 + 0.238653i \(0.923294\pi\)
\(752\) 7.69743 8.99401i 0.280697 0.327978i
\(753\) −2.50002 2.50002i −0.0911058 0.0911058i
\(754\) −19.2848 7.55360i −0.702313 0.275086i
\(755\) −2.42271 0.471740i −0.0881713 0.0171684i
\(756\) 0 0
\(757\) 3.92981 3.92981i 0.142831 0.142831i −0.632076 0.774907i \(-0.717797\pi\)
0.774907 + 0.632076i \(0.217797\pi\)
\(758\) 11.5418 + 26.4049i 0.419216 + 0.959070i
\(759\) −20.0653 −0.728325
\(760\) 7.99453 13.7430i 0.289992 0.498512i
\(761\) 22.3234 0.809223 0.404612 0.914489i \(-0.367407\pi\)
0.404612 + 0.914489i \(0.367407\pi\)
\(762\) 12.0189 + 27.4964i 0.435397 + 0.996091i
\(763\) 0 0
\(764\) 9.27134 + 8.57908i 0.335425 + 0.310380i
\(765\) 7.71182 5.19806i 0.278822 0.187936i
\(766\) 33.6227 + 13.1695i 1.21484 + 0.475834i
\(767\) 8.48900 + 8.48900i 0.306520 + 0.306520i
\(768\) −10.5732 + 14.4907i −0.381527 + 0.522888i
\(769\) 27.9731i 1.00873i −0.863489 0.504367i \(-0.831726\pi\)
0.863489 0.504367i \(-0.168274\pi\)
\(770\) 0 0
\(771\) 18.4608i 0.664851i
\(772\) −42.2121 + 1.63703i −1.51925 + 0.0589179i
\(773\) 31.4887 + 31.4887i 1.13257 + 1.13257i 0.989748 + 0.142823i \(0.0456180\pi\)
0.142823 + 0.989748i \(0.454382\pi\)
\(774\) 9.69648 24.7558i 0.348533 0.889828i
\(775\) −6.76410 + 16.7106i −0.242974 + 0.600262i
\(776\) 23.8759 11.5582i 0.857094 0.414914i
\(777\) 0 0
\(778\) 23.3886 10.2233i 0.838523 0.366524i
\(779\) 19.9533 0.714902
\(780\) 16.9789 + 23.1967i 0.607941 + 0.830575i
\(781\) −24.1591 −0.864482
\(782\) 18.5473 8.10713i 0.663249 0.289910i
\(783\) 9.60453 9.60453i 0.343238 0.343238i
\(784\) 0 0
\(785\) 10.8590 + 16.1103i 0.387573 + 0.575001i
\(786\) −8.87976 + 22.6706i −0.316731 + 0.808635i
\(787\) −28.6159 28.6159i −1.02005 1.02005i −0.999795 0.0202524i \(-0.993553\pi\)
−0.0202524 0.999795i \(-0.506447\pi\)
\(788\) −0.111092 2.86458i −0.00395747 0.102047i
\(789\) 32.7248i 1.16504i
\(790\) −24.8785 + 5.55731i −0.885137 + 0.197720i
\(791\) 0 0
\(792\) 13.8943 + 4.82998i 0.493711 + 0.171626i
\(793\) −7.70682 7.70682i −0.273677 0.273677i
\(794\) −39.6186 15.5180i −1.40601 0.550714i
\(795\) −1.22642 + 6.29852i −0.0434967 + 0.223385i
\(796\) −12.9244 + 13.9672i −0.458092 + 0.495056i
\(797\) −3.10654 + 3.10654i −0.110039 + 0.110039i −0.759983 0.649943i \(-0.774793\pi\)
0.649943 + 0.759983i \(0.274793\pi\)
\(798\) 0 0
\(799\) −7.06174 −0.249826
\(800\) −28.1285 + 2.96394i −0.994494 + 0.104791i
\(801\) −3.58246 −0.126580
\(802\) 2.77294 + 6.34387i 0.0979161 + 0.224010i
\(803\) 20.5739 20.5739i 0.726038 0.726038i
\(804\) −4.73787 + 5.12018i −0.167092 + 0.180575i
\(805\) 0 0
\(806\) −27.2213 10.6622i −0.958830 0.375560i
\(807\) −4.84430 4.84430i −0.170528 0.170528i
\(808\) −19.9448 6.93330i −0.701656 0.243912i
\(809\) 30.6474i 1.07751i 0.842464 + 0.538753i \(0.181104\pi\)
−0.842464 + 0.538753i \(0.818896\pi\)
\(810\) −2.26051 + 0.504948i −0.0794261 + 0.0177420i
\(811\) 47.0428i 1.65190i 0.563747 + 0.825948i \(0.309359\pi\)
−0.563747 + 0.825948i \(0.690641\pi\)
\(812\) 0 0
\(813\) 17.4565 + 17.4565i 0.612225 + 0.612225i
\(814\) 7.34473 18.7516i 0.257433 0.657243i
\(815\) 1.34704 + 1.99846i 0.0471847 + 0.0700031i
\(816\) 10.6683 0.828701i 0.373465 0.0290103i
\(817\) −19.1720 + 19.1720i −0.670744 + 0.670744i
\(818\) 43.4672 18.9998i 1.51979 0.664312i
\(819\) 0 0
\(820\) −20.9656 28.6434i −0.732152 1.00027i
\(821\) −0.830802 −0.0289952 −0.0144976 0.999895i \(-0.504615\pi\)
−0.0144976 + 0.999895i \(0.504615\pi\)
\(822\) 6.84555 2.99223i 0.238766 0.104366i
\(823\) 0.163598 0.163598i 0.00570267 0.00570267i −0.704250 0.709952i \(-0.748716\pi\)
0.709952 + 0.704250i \(0.248716\pi\)
\(824\) −10.4925 + 5.07936i −0.365525 + 0.176948i
\(825\) −6.52508 15.3998i −0.227174 0.536153i
\(826\) 0 0
\(827\) 0.00150949 + 0.00150949i 5.24902e−5 + 5.24902e-5i 0.707133 0.707081i \(-0.249988\pi\)
−0.707081 + 0.707133i \(0.749988\pi\)
\(828\) 20.8961 0.810374i 0.726191 0.0281624i
\(829\) 42.5293i 1.47710i 0.674197 + 0.738551i \(0.264490\pi\)
−0.674197 + 0.738551i \(0.735510\pi\)
\(830\) 14.3759 22.6458i 0.498995 0.786046i
\(831\) 18.4497i 0.640012i
\(832\) −5.32172 45.5580i −0.184497 1.57944i
\(833\) 0 0
\(834\) 15.2155 + 5.95970i 0.526870 + 0.206368i
\(835\) 5.71991 3.85543i 0.197946 0.133423i
\(836\) −11.0104 10.1883i −0.380803 0.352370i
\(837\) 13.5572 13.5572i 0.468604 0.468604i
\(838\) −20.6025 47.1339i −0.711702 1.62821i
\(839\) −49.4733 −1.70801 −0.854004 0.520267i \(-0.825832\pi\)
−0.854004 + 0.520267i \(0.825832\pi\)
\(840\) 0 0
\(841\) 22.4754 0.775014
\(842\) −18.8318 43.0829i −0.648986 1.48473i
\(843\) 5.38498 5.38498i 0.185469 0.185469i
\(844\) 39.5579 + 36.6043i 1.36164 + 1.25997i
\(845\) −43.6176 8.49304i −1.50049 0.292170i
\(846\) −6.79303 2.66073i −0.233549 0.0914778i
\(847\) 0 0
\(848\) 6.65734 7.77872i 0.228614 0.267122i
\(849\) 14.6249i 0.501925i
\(850\) 12.2535 + 11.5984i 0.420292 + 0.397821i
\(851\) 28.6297i 0.981412i
\(852\) −18.1423 + 0.703579i −0.621546 + 0.0241042i
\(853\) −9.16674 9.16674i −0.313863 0.313863i 0.532541 0.846404i \(-0.321237\pi\)
−0.846404 + 0.532541i \(0.821237\pi\)
\(854\) 0 0
\(855\) −9.61757 1.87269i −0.328914 0.0640448i
\(856\) −12.8375 26.5187i −0.438777 0.906389i
\(857\) −15.8929 + 15.8929i −0.542890 + 0.542890i −0.924375 0.381485i \(-0.875413\pi\)
0.381485 + 0.924375i \(0.375413\pi\)
\(858\) 24.8523 10.8631i 0.848443 0.370860i
\(859\) 8.11716 0.276954 0.138477 0.990366i \(-0.455779\pi\)
0.138477 + 0.990366i \(0.455779\pi\)
\(860\) 47.6665 + 7.37717i 1.62541 + 0.251559i
\(861\) 0 0
\(862\) −40.3191 + 17.6237i −1.37328 + 0.600267i
\(863\) −0.344094 + 0.344094i −0.0117131 + 0.0117131i −0.712939 0.701226i \(-0.752636\pi\)
0.701226 + 0.712939i \(0.252636\pi\)
\(864\) 28.7744 + 8.76857i 0.978926 + 0.298313i
\(865\) 43.7395 29.4821i 1.48719 1.00242i
\(866\) 5.21242 13.3077i 0.177125 0.452213i
\(867\) 8.96335 + 8.96335i 0.304411 + 0.304411i
\(868\) 0 0
\(869\) 24.0516i 0.815895i
\(870\) 7.64545 + 4.85347i 0.259205 + 0.164548i
\(871\) 17.8376i 0.604403i
\(872\) −9.53137 + 27.4186i −0.322773 + 0.928511i
\(873\) −11.5594 11.5594i −0.391226 0.391226i
\(874\) −19.8569 7.77766i −0.671670 0.263083i
\(875\) 0 0
\(876\) 14.8508 16.0492i 0.501763 0.542251i
\(877\) 12.6409 12.6409i 0.426854 0.426854i −0.460701 0.887555i \(-0.652402\pi\)
0.887555 + 0.460701i \(0.152402\pi\)
\(878\) 0.315567 + 0.721946i 0.0106499 + 0.0243645i
\(879\) 2.04276 0.0689007
\(880\) −3.05652 + 26.5109i −0.103035 + 0.893681i
\(881\) 5.27459 0.177705 0.0888527 0.996045i \(-0.471680\pi\)
0.0888527 + 0.996045i \(0.471680\pi\)
\(882\) 0 0
\(883\) −5.20270 + 5.20270i −0.175085 + 0.175085i −0.789209 0.614124i \(-0.789509\pi\)
0.614124 + 0.789209i \(0.289509\pi\)
\(884\) −18.5830 + 20.0825i −0.625013 + 0.675447i
\(885\) −2.93391 4.35273i −0.0986222 0.146315i
\(886\) 32.1166 + 12.5796i 1.07898 + 0.422620i
\(887\) 31.6135 + 31.6135i 1.06148 + 1.06148i 0.997982 + 0.0634967i \(0.0202252\pi\)
0.0634967 + 0.997982i \(0.479775\pi\)
\(888\) 4.96944 14.2954i 0.166764 0.479724i
\(889\) 0 0
\(890\) −1.41688 6.34295i −0.0474938 0.212616i
\(891\) 2.18537i 0.0732127i
\(892\) 0.244012 + 6.29204i 0.00817012 + 0.210673i
\(893\) 5.26083 + 5.26083i 0.176047 + 0.176047i
\(894\) 5.59307 14.2795i 0.187060 0.477577i
\(895\) −3.01857 + 15.5024i −0.100900 + 0.518189i
\(896\) 0 0
\(897\) 27.2648 27.2648i 0.910346 0.910346i
\(898\) 11.2017 4.89633i 0.373805 0.163393i
\(899\) −9.20972 −0.307161
\(900\) 7.41720 + 15.7739i 0.247240 + 0.525798i
\(901\) −6.10754 −0.203472
\(902\) −30.6877 + 13.4138i −1.02179 + 0.446631i
\(903\) 0 0
\(904\) −12.8199 26.4822i −0.426382 0.880785i
\(905\) −1.01466 + 5.21098i −0.0337285 + 0.173219i
\(906\) −0.638278 + 1.62957i −0.0212054 + 0.0541388i
\(907\) −6.91939 6.91939i −0.229755 0.229755i 0.582836 0.812590i \(-0.301943\pi\)
−0.812590 + 0.582836i \(0.801943\pi\)
\(908\) −16.1189 + 0.625110i −0.534926 + 0.0207450i
\(909\) 13.0129i 0.431610i
\(910\) 0 0
\(911\) 5.81294i 0.192591i 0.995353 + 0.0962957i \(0.0306994\pi\)
−0.995353 + 0.0962957i \(0.969301\pi\)
\(912\) −8.56499 7.33026i −0.283615 0.242729i
\(913\) −17.8956 17.8956i −0.592257 0.592257i
\(914\) 3.59944 + 1.40985i 0.119059 + 0.0466337i
\(915\) 2.66358 + 3.95167i 0.0880551 + 0.130638i
\(916\) −3.57148 3.30481i −0.118005 0.109194i
\(917\) 0 0
\(918\) −7.18681 16.4418i −0.237200 0.542660i
\(919\) −21.3375 −0.703861 −0.351930 0.936026i \(-0.614475\pi\)
−0.351930 + 0.936026i \(0.614475\pi\)
\(920\) 9.69931 + 36.6773i 0.319777 + 1.20921i
\(921\) 18.4657 0.608465
\(922\) −21.8628 50.0172i −0.720014 1.64723i
\(923\) 32.8275 32.8275i 1.08053 1.08053i
\(924\) 0 0
\(925\) 21.9728 9.31014i 0.722462 0.306115i
\(926\) −25.1505 9.85108i −0.826496 0.323727i
\(927\) 5.07990 + 5.07990i 0.166846 + 0.166846i
\(928\) −6.79523 12.7519i −0.223064 0.418603i
\(929\) 14.5405i 0.477059i 0.971135 + 0.238529i \(0.0766653\pi\)
−0.971135 + 0.238529i \(0.923335\pi\)
\(930\) 10.7919 + 6.85086i 0.353879 + 0.224649i
\(931\) 0 0
\(932\) −20.9210 + 0.811338i −0.685290 + 0.0265763i
\(933\) 23.9282 + 23.9282i 0.783375 + 0.783375i
\(934\) 6.89224 17.5964i 0.225521 0.575771i
\(935\) 13.2004 8.89756i 0.431699 0.290981i
\(936\) −25.4426 + 12.3166i −0.831616 + 0.402580i
\(937\) −5.05360 + 5.05360i −0.165094 + 0.165094i −0.784819 0.619725i \(-0.787244\pi\)
0.619725 + 0.784819i \(0.287244\pi\)
\(938\) 0 0
\(939\) −24.7350 −0.807195
\(940\) 2.02431 13.0798i 0.0660256 0.426615i
\(941\) 2.89484 0.0943690 0.0471845 0.998886i \(-0.484975\pi\)
0.0471845 + 0.998886i \(0.484975\pi\)
\(942\) 12.6227 5.51746i 0.411270 0.179768i
\(943\) −33.6668 + 33.6668i −1.09634 + 1.09634i
\(944\) 0.648650 + 8.35040i 0.0211118 + 0.271782i
\(945\) 0 0
\(946\) 16.5975 42.3746i 0.539632 1.37772i
\(947\) 23.8463 + 23.8463i 0.774902 + 0.774902i 0.978959 0.204057i \(-0.0654128\pi\)
−0.204057 + 0.978959i \(0.565413\pi\)
\(948\) 0.700447 + 18.0616i 0.0227495 + 0.586613i
\(949\) 55.9118i 1.81497i
\(950\) −0.488072 17.7691i −0.0158352 0.576506i
\(951\) 1.62505i 0.0526960i
\(952\) 0 0
\(953\) 23.9098 + 23.9098i 0.774513 + 0.774513i 0.978892 0.204379i \(-0.0655173\pi\)
−0.204379 + 0.978892i \(0.565517\pi\)
\(954\) −5.87514 2.30121i −0.190215 0.0745043i
\(955\) 13.8623 + 2.69920i 0.448572 + 0.0873442i
\(956\) 17.5295 18.9439i 0.566943 0.612691i
\(957\) 6.04174 6.04174i 0.195302 0.195302i
\(958\) 4.43650 + 10.1497i 0.143337 + 0.327922i
\(959\) 0 0
\(960\) −1.52323 + 19.9974i −0.0491621 + 0.645413i
\(961\) 18.0001 0.580649
\(962\) 15.4997 + 35.4598i 0.499730 + 1.14327i
\(963\) −12.8389 + 12.8389i −0.413727 + 0.413727i
\(964\) 3.68641 3.98388i 0.118731 0.128312i
\(965\) −39.1640 + 26.3980i −1.26073 + 0.849782i
\(966\) 0 0
\(967\) 2.13618 + 2.13618i 0.0686949 + 0.0686949i 0.740620 0.671925i \(-0.234532\pi\)
−0.671925 + 0.740620i \(0.734532\pi\)
\(968\) −5.60478 1.94836i −0.180144 0.0626225i
\(969\) 6.72489i 0.216035i
\(970\) 15.8948 25.0383i 0.510350 0.803932i
\(971\) 16.5693i 0.531734i 0.964010 + 0.265867i \(0.0856582\pi\)
−0.964010 + 0.265867i \(0.914342\pi\)
\(972\) −1.17276 30.2404i −0.0376162 0.969963i
\(973\) 0 0
\(974\) 1.25836 3.21269i 0.0403206 0.102941i
\(975\) 29.7916 + 12.0590i 0.954096 + 0.386198i
\(976\) −0.588883 7.58099i −0.0188497 0.242662i
\(977\) −0.221322 + 0.221322i −0.00708071 + 0.00708071i −0.710638 0.703558i \(-0.751594\pi\)
0.703558 + 0.710638i \(0.251594\pi\)
\(978\) 1.56583 0.684433i 0.0500697 0.0218858i
\(979\) −6.13213 −0.195984
\(980\) 0 0
\(981\) 17.8891 0.571156
\(982\) 43.4370 18.9866i 1.38613 0.605886i
\(983\) 40.8154 40.8154i 1.30181 1.30181i 0.374636 0.927172i \(-0.377768\pi\)
0.927172 0.374636i \(-0.122232\pi\)
\(984\) −22.6544 + 10.9668i −0.722195 + 0.349610i
\(985\) −1.79141 2.65774i −0.0570792 0.0846825i
\(986\) −3.14357 + 8.02574i −0.100112 + 0.255592i
\(987\) 0 0
\(988\) 28.8049 1.11708i 0.916405 0.0355391i
\(989\) 64.6969i 2.05724i
\(990\) 16.0505 3.58534i 0.510119 0.113949i
\(991\) 21.9695i 0.697885i 0.937144 + 0.348942i \(0.113459\pi\)
−0.937144 + 0.348942i \(0.886541\pi\)
\(992\) −9.59174 17.9999i −0.304538 0.571496i
\(993\) 22.4953 + 22.4953i 0.713868 + 0.713868i
\(994\) 0 0
\(995\) −4.06634 + 20.8834i −0.128912 + 0.662050i
\(996\) −13.9599 12.9175i −0.442336 0.409308i
\(997\) 5.96367 5.96367i 0.188871 0.188871i −0.606337 0.795208i \(-0.707362\pi\)
0.795208 + 0.606337i \(0.207362\pi\)
\(998\) −11.7205 26.8138i −0.371005 0.848776i
\(999\) −25.3796 −0.802976
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 980.2.k.j.883.13 36
4.3 odd 2 inner 980.2.k.j.883.3 36
5.2 odd 4 inner 980.2.k.j.687.3 36
7.2 even 3 980.2.x.m.263.13 72
7.3 odd 6 140.2.w.b.23.2 72
7.4 even 3 980.2.x.m.863.2 72
7.5 odd 6 140.2.w.b.123.13 yes 72
7.6 odd 2 980.2.k.k.883.13 36
20.7 even 4 inner 980.2.k.j.687.13 36
28.3 even 6 140.2.w.b.23.14 yes 72
28.11 odd 6 980.2.x.m.863.14 72
28.19 even 6 140.2.w.b.123.10 yes 72
28.23 odd 6 980.2.x.m.263.10 72
28.27 even 2 980.2.k.k.883.3 36
35.2 odd 12 980.2.x.m.67.14 72
35.3 even 12 700.2.be.e.107.9 72
35.12 even 12 140.2.w.b.67.14 yes 72
35.17 even 12 140.2.w.b.107.10 yes 72
35.19 odd 6 700.2.be.e.543.6 72
35.24 odd 6 700.2.be.e.443.17 72
35.27 even 4 980.2.k.k.687.3 36
35.32 odd 12 980.2.x.m.667.10 72
35.33 even 12 700.2.be.e.207.5 72
140.3 odd 12 700.2.be.e.107.6 72
140.19 even 6 700.2.be.e.543.9 72
140.27 odd 4 980.2.k.k.687.13 36
140.47 odd 12 140.2.w.b.67.2 yes 72
140.59 even 6 700.2.be.e.443.5 72
140.67 even 12 980.2.x.m.667.13 72
140.87 odd 12 140.2.w.b.107.13 yes 72
140.103 odd 12 700.2.be.e.207.17 72
140.107 even 12 980.2.x.m.67.2 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.w.b.23.2 72 7.3 odd 6
140.2.w.b.23.14 yes 72 28.3 even 6
140.2.w.b.67.2 yes 72 140.47 odd 12
140.2.w.b.67.14 yes 72 35.12 even 12
140.2.w.b.107.10 yes 72 35.17 even 12
140.2.w.b.107.13 yes 72 140.87 odd 12
140.2.w.b.123.10 yes 72 28.19 even 6
140.2.w.b.123.13 yes 72 7.5 odd 6
700.2.be.e.107.6 72 140.3 odd 12
700.2.be.e.107.9 72 35.3 even 12
700.2.be.e.207.5 72 35.33 even 12
700.2.be.e.207.17 72 140.103 odd 12
700.2.be.e.443.5 72 140.59 even 6
700.2.be.e.443.17 72 35.24 odd 6
700.2.be.e.543.6 72 35.19 odd 6
700.2.be.e.543.9 72 140.19 even 6
980.2.k.j.687.3 36 5.2 odd 4 inner
980.2.k.j.687.13 36 20.7 even 4 inner
980.2.k.j.883.3 36 4.3 odd 2 inner
980.2.k.j.883.13 36 1.1 even 1 trivial
980.2.k.k.687.3 36 35.27 even 4
980.2.k.k.687.13 36 140.27 odd 4
980.2.k.k.883.3 36 28.27 even 2
980.2.k.k.883.13 36 7.6 odd 2
980.2.x.m.67.2 72 140.107 even 12
980.2.x.m.67.14 72 35.2 odd 12
980.2.x.m.263.10 72 28.23 odd 6
980.2.x.m.263.13 72 7.2 even 3
980.2.x.m.667.10 72 35.32 odd 12
980.2.x.m.667.13 72 140.67 even 12
980.2.x.m.863.2 72 7.4 even 3
980.2.x.m.863.14 72 28.11 odd 6