Properties

Label 980.2.k.k.687.13
Level $980$
Weight $2$
Character 980.687
Analytic conductor $7.825$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [980,2,Mod(687,980)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(980, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("980.687");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 687.13
Character \(\chi\) \(=\) 980.687
Dual form 980.2.k.k.883.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.566415 - 1.29583i) q^{2} +(-0.792756 - 0.792756i) q^{3} +(-1.35835 - 1.46795i) q^{4} +(0.427372 + 2.19485i) q^{5} +(-1.47630 + 0.578247i) q^{6} +(-2.67161 + 0.928715i) q^{8} -1.74308i q^{9} +(3.08622 + 0.689394i) q^{10} -2.98364i q^{11} +(-0.0868916 + 2.24057i) q^{12} +(4.05418 - 4.05418i) q^{13} +(1.40118 - 2.07878i) q^{15} +(-0.309783 + 3.98799i) q^{16} +(1.68722 + 1.68722i) q^{17} +(-2.25873 - 0.987305i) q^{18} -2.51388 q^{19} +(2.64142 - 3.60873i) q^{20} +(-3.86629 - 1.68998i) q^{22} +(-4.24161 - 4.24161i) q^{23} +(2.85418 + 1.38169i) q^{24} +(-4.63471 + 1.87603i) q^{25} +(-2.95718 - 7.54987i) q^{26} +(-3.76010 + 3.76010i) q^{27} +2.55433i q^{29} +(-1.90010 - 2.99314i) q^{30} -3.60553i q^{31} +(4.99228 + 2.66028i) q^{32} +(-2.36530 + 2.36530i) q^{33} +(3.14202 - 1.23068i) q^{34} +(-2.55876 + 2.36770i) q^{36} +(-3.37486 - 3.37486i) q^{37} +(-1.42390 + 3.25756i) q^{38} -6.42795 q^{39} +(-3.18016 - 5.46686i) q^{40} -7.93727 q^{41} +(-7.62646 - 7.62646i) q^{43} +(-4.37985 + 4.05282i) q^{44} +(3.82579 - 0.744942i) q^{45} +(-7.89891 + 3.09389i) q^{46} +(-2.09272 + 2.09272i) q^{47} +(3.40708 - 2.91592i) q^{48} +(-0.194151 + 7.06840i) q^{50} -2.67511i q^{51} +(-11.4583 - 0.444366i) q^{52} +(1.80994 - 1.80994i) q^{53} +(2.74267 + 7.00223i) q^{54} +(6.54863 - 1.27512i) q^{55} +(1.99289 + 1.99289i) q^{57} +(3.30997 + 1.44681i) q^{58} +2.09389 q^{59} +(-4.95484 + 0.766842i) q^{60} -1.90096 q^{61} +(-4.67216 - 2.04223i) q^{62} +(6.27498 - 4.96233i) q^{64} +(10.6309 + 7.16566i) q^{65} +(1.72528 + 4.40476i) q^{66} +(2.19990 - 2.19990i) q^{67} +(0.184931 - 4.76859i) q^{68} +6.72512i q^{69} -8.09721i q^{71} +(1.61882 + 4.65682i) q^{72} +(6.89558 - 6.89558i) q^{73} +(-6.28481 + 2.46167i) q^{74} +(5.16142 + 2.18696i) q^{75} +(3.41472 + 3.69026i) q^{76} +(-3.64089 + 8.32952i) q^{78} +8.06116 q^{79} +(-8.88541 + 1.02443i) q^{80} +0.732452 q^{81} +(-4.49579 + 10.2853i) q^{82} +(5.99790 + 5.99790i) q^{83} +(-2.98212 + 4.42426i) q^{85} +(-14.2023 + 5.56285i) q^{86} +(2.02496 - 2.02496i) q^{87} +(2.77095 + 7.97111i) q^{88} +2.05525i q^{89} +(1.20167 - 5.37951i) q^{90} +(-0.464910 + 11.9881i) q^{92} +(-2.85831 + 2.85831i) q^{93} +(1.52646 + 3.89715i) q^{94} +(-1.07436 - 5.51758i) q^{95} +(-1.84871 - 6.06661i) q^{96} +(6.63160 + 6.63160i) q^{97} -5.20071 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 2 q^{2} + 8 q^{5} - 8 q^{6} - 2 q^{8} - 2 q^{10} - 10 q^{12} + 28 q^{16} - 4 q^{17} + 20 q^{18} - 28 q^{20} - 8 q^{22} + 16 q^{25} + 4 q^{26} + 32 q^{30} + 38 q^{32} + 64 q^{33} + 8 q^{36} + 4 q^{37}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.566415 1.29583i 0.400516 0.916290i
\(3\) −0.792756 0.792756i −0.457698 0.457698i 0.440201 0.897899i \(-0.354907\pi\)
−0.897899 + 0.440201i \(0.854907\pi\)
\(4\) −1.35835 1.46795i −0.679174 0.733977i
\(5\) 0.427372 + 2.19485i 0.191126 + 0.981565i
\(6\) −1.47630 + 0.578247i −0.602699 + 0.236068i
\(7\) 0 0
\(8\) −2.67161 + 0.928715i −0.944556 + 0.328350i
\(9\) 1.74308i 0.581026i
\(10\) 3.08622 + 0.689394i 0.975948 + 0.218005i
\(11\) 2.98364i 0.899601i −0.893129 0.449800i \(-0.851495\pi\)
0.893129 0.449800i \(-0.148505\pi\)
\(12\) −0.0868916 + 2.24057i −0.0250834 + 0.646796i
\(13\) 4.05418 4.05418i 1.12443 1.12443i 0.133359 0.991068i \(-0.457424\pi\)
0.991068 0.133359i \(-0.0425763\pi\)
\(14\) 0 0
\(15\) 1.40118 2.07878i 0.361782 0.536738i
\(16\) −0.309783 + 3.98799i −0.0774456 + 0.996997i
\(17\) 1.68722 + 1.68722i 0.409211 + 0.409211i 0.881463 0.472252i \(-0.156559\pi\)
−0.472252 + 0.881463i \(0.656559\pi\)
\(18\) −2.25873 0.987305i −0.532388 0.232710i
\(19\) −2.51388 −0.576723 −0.288362 0.957522i \(-0.593111\pi\)
−0.288362 + 0.957522i \(0.593111\pi\)
\(20\) 2.64142 3.60873i 0.590639 0.806936i
\(21\) 0 0
\(22\) −3.86629 1.68998i −0.824295 0.360304i
\(23\) −4.24161 4.24161i −0.884436 0.884436i 0.109545 0.993982i \(-0.465060\pi\)
−0.993982 + 0.109545i \(0.965060\pi\)
\(24\) 2.85418 + 1.38169i 0.582606 + 0.282036i
\(25\) −4.63471 + 1.87603i −0.926941 + 0.375206i
\(26\) −2.95718 7.54987i −0.579950 1.48065i
\(27\) −3.76010 + 3.76010i −0.723632 + 0.723632i
\(28\) 0 0
\(29\) 2.55433i 0.474327i 0.971470 + 0.237163i \(0.0762177\pi\)
−0.971470 + 0.237163i \(0.923782\pi\)
\(30\) −1.90010 2.99314i −0.346908 0.546470i
\(31\) 3.60553i 0.647573i −0.946130 0.323787i \(-0.895044\pi\)
0.946130 0.323787i \(-0.104956\pi\)
\(32\) 4.99228 + 2.66028i 0.882520 + 0.470276i
\(33\) −2.36530 + 2.36530i −0.411745 + 0.411745i
\(34\) 3.14202 1.23068i 0.538851 0.211060i
\(35\) 0 0
\(36\) −2.55876 + 2.36770i −0.426460 + 0.394617i
\(37\) −3.37486 3.37486i −0.554823 0.554823i 0.373006 0.927829i \(-0.378327\pi\)
−0.927829 + 0.373006i \(0.878327\pi\)
\(38\) −1.42390 + 3.25756i −0.230987 + 0.528446i
\(39\) −6.42795 −1.02930
\(40\) −3.18016 5.46686i −0.502827 0.864387i
\(41\) −7.93727 −1.23959 −0.619797 0.784763i \(-0.712785\pi\)
−0.619797 + 0.784763i \(0.712785\pi\)
\(42\) 0 0
\(43\) −7.62646 7.62646i −1.16302 1.16302i −0.983810 0.179215i \(-0.942644\pi\)
−0.179215 0.983810i \(-0.557356\pi\)
\(44\) −4.37985 + 4.05282i −0.660287 + 0.610985i
\(45\) 3.82579 0.744942i 0.570315 0.111049i
\(46\) −7.89891 + 3.09389i −1.16463 + 0.456169i
\(47\) −2.09272 + 2.09272i −0.305254 + 0.305254i −0.843065 0.537811i \(-0.819251\pi\)
0.537811 + 0.843065i \(0.319251\pi\)
\(48\) 3.40708 2.91592i 0.491770 0.420876i
\(49\) 0 0
\(50\) −0.194151 + 7.06840i −0.0274571 + 0.999623i
\(51\) 2.67511i 0.374590i
\(52\) −11.4583 0.444366i −1.58899 0.0616225i
\(53\) 1.80994 1.80994i 0.248615 0.248615i −0.571787 0.820402i \(-0.693750\pi\)
0.820402 + 0.571787i \(0.193750\pi\)
\(54\) 2.74267 + 7.00223i 0.373230 + 0.952882i
\(55\) 6.54863 1.27512i 0.883017 0.171938i
\(56\) 0 0
\(57\) 1.99289 + 1.99289i 0.263965 + 0.263965i
\(58\) 3.30997 + 1.44681i 0.434621 + 0.189975i
\(59\) 2.09389 0.272601 0.136301 0.990668i \(-0.456479\pi\)
0.136301 + 0.990668i \(0.456479\pi\)
\(60\) −4.95484 + 0.766842i −0.639667 + 0.0989988i
\(61\) −1.90096 −0.243393 −0.121696 0.992567i \(-0.538833\pi\)
−0.121696 + 0.992567i \(0.538833\pi\)
\(62\) −4.67216 2.04223i −0.593365 0.259363i
\(63\) 0 0
\(64\) 6.27498 4.96233i 0.784372 0.620291i
\(65\) 10.6309 + 7.16566i 1.31861 + 0.888791i
\(66\) 1.72528 + 4.40476i 0.212367 + 0.542188i
\(67\) 2.19990 2.19990i 0.268761 0.268761i −0.559840 0.828601i \(-0.689137\pi\)
0.828601 + 0.559840i \(0.189137\pi\)
\(68\) 0.184931 4.76859i 0.0224262 0.578277i
\(69\) 6.72512i 0.809609i
\(70\) 0 0
\(71\) 8.09721i 0.960962i −0.877005 0.480481i \(-0.840462\pi\)
0.877005 0.480481i \(-0.159538\pi\)
\(72\) 1.61882 + 4.65682i 0.190780 + 0.548811i
\(73\) 6.89558 6.89558i 0.807067 0.807067i −0.177122 0.984189i \(-0.556679\pi\)
0.984189 + 0.177122i \(0.0566788\pi\)
\(74\) −6.28481 + 2.46167i −0.730595 + 0.286163i
\(75\) 5.16142 + 2.18696i 0.595990 + 0.252528i
\(76\) 3.41472 + 3.69026i 0.391695 + 0.423302i
\(77\) 0 0
\(78\) −3.64089 + 8.32952i −0.412249 + 0.943133i
\(79\) 8.06116 0.906952 0.453476 0.891269i \(-0.350184\pi\)
0.453476 + 0.891269i \(0.350184\pi\)
\(80\) −8.88541 + 1.02443i −0.993419 + 0.114535i
\(81\) 0.732452 0.0813835
\(82\) −4.49579 + 10.2853i −0.496477 + 1.13583i
\(83\) 5.99790 + 5.99790i 0.658356 + 0.658356i 0.954991 0.296635i \(-0.0958646\pi\)
−0.296635 + 0.954991i \(0.595865\pi\)
\(84\) 0 0
\(85\) −2.98212 + 4.42426i −0.323456 + 0.479878i
\(86\) −14.2023 + 5.56285i −1.53148 + 0.599858i
\(87\) 2.02496 2.02496i 0.217098 0.217098i
\(88\) 2.77095 + 7.97111i 0.295384 + 0.849723i
\(89\) 2.05525i 0.217856i 0.994050 + 0.108928i \(0.0347418\pi\)
−0.994050 + 0.108928i \(0.965258\pi\)
\(90\) 1.20167 5.37951i 0.126667 0.567051i
\(91\) 0 0
\(92\) −0.464910 + 11.9881i −0.0484702 + 1.24984i
\(93\) −2.85831 + 2.85831i −0.296393 + 0.296393i
\(94\) 1.52646 + 3.89715i 0.157442 + 0.401960i
\(95\) −1.07436 5.51758i −0.110227 0.566092i
\(96\) −1.84871 6.06661i −0.188683 0.619171i
\(97\) 6.63160 + 6.63160i 0.673337 + 0.673337i 0.958484 0.285147i \(-0.0920425\pi\)
−0.285147 + 0.958484i \(0.592042\pi\)
\(98\) 0 0
\(99\) −5.20071 −0.522691
\(100\) 9.04947 + 4.25524i 0.904947 + 0.425524i
\(101\) −7.46547 −0.742842 −0.371421 0.928465i \(-0.621129\pi\)
−0.371421 + 0.928465i \(0.621129\pi\)
\(102\) −3.46648 1.51522i −0.343233 0.150029i
\(103\) −2.91433 2.91433i −0.287157 0.287157i 0.548798 0.835955i \(-0.315086\pi\)
−0.835955 + 0.548798i \(0.815086\pi\)
\(104\) −7.06600 + 14.5964i −0.692878 + 1.43129i
\(105\) 0 0
\(106\) −1.32020 3.37056i −0.128229 0.327377i
\(107\) 7.36564 7.36564i 0.712063 0.712063i −0.254904 0.966966i \(-0.582044\pi\)
0.966966 + 0.254904i \(0.0820437\pi\)
\(108\) 10.6272 + 0.412133i 1.02260 + 0.0396575i
\(109\) 10.2630i 0.983013i 0.870874 + 0.491507i \(0.163554\pi\)
−0.870874 + 0.491507i \(0.836446\pi\)
\(110\) 2.05690 9.20815i 0.196118 0.877963i
\(111\) 5.35088i 0.507883i
\(112\) 0 0
\(113\) 7.35551 7.35551i 0.691948 0.691948i −0.270712 0.962660i \(-0.587259\pi\)
0.962660 + 0.270712i \(0.0872592\pi\)
\(114\) 3.71125 1.45364i 0.347591 0.136146i
\(115\) 7.49694 11.1224i 0.699093 1.03717i
\(116\) 3.74964 3.46967i 0.348145 0.322150i
\(117\) −7.06674 7.06674i −0.653321 0.653321i
\(118\) 1.18601 2.71332i 0.109181 0.249782i
\(119\) 0 0
\(120\) −1.81280 + 6.85497i −0.165485 + 0.625771i
\(121\) 2.09791 0.190719
\(122\) −1.07673 + 2.46332i −0.0974826 + 0.223018i
\(123\) 6.29231 + 6.29231i 0.567359 + 0.567359i
\(124\) −5.29276 + 4.89757i −0.475304 + 0.439815i
\(125\) −6.09835 9.37071i −0.545453 0.838142i
\(126\) 0 0
\(127\) 13.3832 13.3832i 1.18756 1.18756i 0.209826 0.977739i \(-0.432710\pi\)
0.977739 0.209826i \(-0.0672898\pi\)
\(128\) −2.87609 10.9420i −0.254213 0.967148i
\(129\) 12.0918i 1.06463i
\(130\) 15.3070 9.71715i 1.34251 0.852250i
\(131\) 15.3563i 1.34169i 0.741598 + 0.670845i \(0.234068\pi\)
−0.741598 + 0.670845i \(0.765932\pi\)
\(132\) 6.68504 + 0.259253i 0.581858 + 0.0225651i
\(133\) 0 0
\(134\) −1.60464 4.09675i −0.138620 0.353905i
\(135\) −9.85981 6.64589i −0.848597 0.571987i
\(136\) −6.07454 2.94064i −0.520887 0.252158i
\(137\) 3.33190 + 3.33190i 0.284663 + 0.284663i 0.834965 0.550302i \(-0.185488\pi\)
−0.550302 + 0.834965i \(0.685488\pi\)
\(138\) 8.71460 + 3.80921i 0.741836 + 0.324261i
\(139\) −10.3065 −0.874185 −0.437093 0.899417i \(-0.643992\pi\)
−0.437093 + 0.899417i \(0.643992\pi\)
\(140\) 0 0
\(141\) 3.31802 0.279428
\(142\) −10.4926 4.58638i −0.880519 0.384880i
\(143\) −12.0962 12.0962i −1.01154 1.01154i
\(144\) 6.95137 + 0.539975i 0.579281 + 0.0449979i
\(145\) −5.60636 + 1.09165i −0.465583 + 0.0906564i
\(146\) −5.02973 12.8413i −0.416264 1.06275i
\(147\) 0 0
\(148\) −0.369908 + 9.53837i −0.0304063 + 0.784049i
\(149\) 9.67244i 0.792398i 0.918165 + 0.396199i \(0.129671\pi\)
−0.918165 + 0.396199i \(0.870329\pi\)
\(150\) 5.75743 5.44960i 0.470092 0.444958i
\(151\) 1.10382i 0.0898272i −0.998991 0.0449136i \(-0.985699\pi\)
0.998991 0.0449136i \(-0.0143013\pi\)
\(152\) 6.71610 2.33468i 0.544748 0.189367i
\(153\) 2.94095 2.94095i 0.237762 0.237762i
\(154\) 0 0
\(155\) 7.91360 1.54090i 0.635635 0.123768i
\(156\) 8.73139 + 9.43593i 0.699070 + 0.755479i
\(157\) −6.14377 6.14377i −0.490326 0.490326i 0.418083 0.908409i \(-0.362702\pi\)
−0.908409 + 0.418083i \(0.862702\pi\)
\(158\) 4.56597 10.4459i 0.363249 0.831031i
\(159\) −2.86968 −0.227581
\(160\) −3.70535 + 12.0942i −0.292933 + 0.956133i
\(161\) 0 0
\(162\) 0.414872 0.949133i 0.0325954 0.0745709i
\(163\) 0.762126 + 0.762126i 0.0596944 + 0.0596944i 0.736324 0.676629i \(-0.236560\pi\)
−0.676629 + 0.736324i \(0.736560\pi\)
\(164\) 10.7816 + 11.6516i 0.841899 + 0.909833i
\(165\) −6.20232 4.18060i −0.482850 0.325459i
\(166\) 11.1696 4.37496i 0.866926 0.339563i
\(167\) 2.18132 2.18132i 0.168796 0.168796i −0.617654 0.786450i \(-0.711917\pi\)
0.786450 + 0.617654i \(0.211917\pi\)
\(168\) 0 0
\(169\) 19.8727i 1.52867i
\(170\) 4.04397 + 6.37028i 0.310158 + 0.488579i
\(171\) 4.38188i 0.335091i
\(172\) −0.835914 + 21.5547i −0.0637378 + 1.64353i
\(173\) 16.6803 16.6803i 1.26818 1.26818i 0.321157 0.947026i \(-0.395928\pi\)
0.947026 0.321157i \(-0.104072\pi\)
\(174\) −1.47703 3.77097i −0.111974 0.285876i
\(175\) 0 0
\(176\) 11.8987 + 0.924279i 0.896899 + 0.0696701i
\(177\) −1.65994 1.65994i −0.124769 0.124769i
\(178\) 2.66326 + 1.16413i 0.199619 + 0.0872549i
\(179\) 7.06310 0.527921 0.263960 0.964534i \(-0.414971\pi\)
0.263960 + 0.964534i \(0.414971\pi\)
\(180\) −6.29029 4.60419i −0.468851 0.343176i
\(181\) −2.37419 −0.176472 −0.0882360 0.996100i \(-0.528123\pi\)
−0.0882360 + 0.996100i \(0.528123\pi\)
\(182\) 0 0
\(183\) 1.50699 + 1.50699i 0.111400 + 0.111400i
\(184\) 15.2712 + 7.39267i 1.12580 + 0.544995i
\(185\) 5.96498 8.84962i 0.438554 0.650637i
\(186\) 2.08489 + 5.32287i 0.152872 + 0.390292i
\(187\) 5.03405 5.03405i 0.368126 0.368126i
\(188\) 5.91465 + 0.229376i 0.431370 + 0.0167290i
\(189\) 0 0
\(190\) −7.75838 1.73305i −0.562852 0.125729i
\(191\) 6.31582i 0.456997i 0.973544 + 0.228498i \(0.0733816\pi\)
−0.973544 + 0.228498i \(0.926618\pi\)
\(192\) −8.90843 1.04061i −0.642911 0.0750996i
\(193\) 14.9354 14.9354i 1.07508 1.07508i 0.0781335 0.996943i \(-0.475104\pi\)
0.996943 0.0781335i \(-0.0248961\pi\)
\(194\) 12.3497 4.83718i 0.886653 0.347289i
\(195\) −2.74712 14.1084i −0.196726 1.01032i
\(196\) 0 0
\(197\) −1.01354 1.01354i −0.0722120 0.0722120i 0.670078 0.742290i \(-0.266260\pi\)
−0.742290 + 0.670078i \(0.766260\pi\)
\(198\) −2.94576 + 6.73923i −0.209346 + 0.478936i
\(199\) −9.51476 −0.674484 −0.337242 0.941418i \(-0.609494\pi\)
−0.337242 + 0.941418i \(0.609494\pi\)
\(200\) 10.6398 9.31634i 0.752349 0.658765i
\(201\) −3.48797 −0.246022
\(202\) −4.22855 + 9.67397i −0.297520 + 0.680658i
\(203\) 0 0
\(204\) −3.92693 + 3.63372i −0.274940 + 0.254412i
\(205\) −3.39216 17.4211i −0.236919 1.21674i
\(206\) −5.42720 + 2.12575i −0.378131 + 0.148108i
\(207\) −7.39345 + 7.39345i −0.513880 + 0.513880i
\(208\) 14.9121 + 17.4239i 1.03397 + 1.20813i
\(209\) 7.50050i 0.518821i
\(210\) 0 0
\(211\) 26.9476i 1.85515i 0.373634 + 0.927576i \(0.378112\pi\)
−0.373634 + 0.927576i \(0.621888\pi\)
\(212\) −5.11545 0.198382i −0.351330 0.0136250i
\(213\) −6.41911 + 6.41911i −0.439830 + 0.439830i
\(214\) −5.37260 13.7166i −0.367263 0.937648i
\(215\) 13.4796 19.9983i 0.919300 1.36387i
\(216\) 6.55345 13.5376i 0.445906 0.921116i
\(217\) 0 0
\(218\) 13.2990 + 5.81310i 0.900725 + 0.393712i
\(219\) −10.9330 −0.738785
\(220\) −10.7671 7.88103i −0.725920 0.531339i
\(221\) 13.6806 0.920255
\(222\) 6.93382 + 3.03082i 0.465368 + 0.203415i
\(223\) −2.22624 2.22624i −0.149080 0.149080i 0.628627 0.777707i \(-0.283617\pi\)
−0.777707 + 0.628627i \(0.783617\pi\)
\(224\) 0 0
\(225\) 3.27007 + 8.07865i 0.218004 + 0.538577i
\(226\) −5.36521 13.6978i −0.356889 0.911161i
\(227\) −5.70319 + 5.70319i −0.378534 + 0.378534i −0.870573 0.492039i \(-0.836252\pi\)
0.492039 + 0.870573i \(0.336252\pi\)
\(228\) 0.218435 5.63252i 0.0144662 0.373022i
\(229\) 2.43296i 0.160775i 0.996764 + 0.0803873i \(0.0256157\pi\)
−0.996764 + 0.0803873i \(0.974384\pi\)
\(230\) −10.1664 16.0147i −0.670352 1.05598i
\(231\) 0 0
\(232\) −2.37224 6.82416i −0.155745 0.448028i
\(233\) 7.40225 7.40225i 0.484937 0.484937i −0.421767 0.906704i \(-0.638590\pi\)
0.906704 + 0.421767i \(0.138590\pi\)
\(234\) −13.1600 + 5.15458i −0.860297 + 0.336966i
\(235\) −5.48756 3.69882i −0.357969 0.241285i
\(236\) −2.84423 3.07373i −0.185144 0.200083i
\(237\) −6.39053 6.39053i −0.415110 0.415110i
\(238\) 0 0
\(239\) −12.9050 −0.834754 −0.417377 0.908733i \(-0.637051\pi\)
−0.417377 + 0.908733i \(0.637051\pi\)
\(240\) 7.85608 + 6.23184i 0.507108 + 0.402264i
\(241\) 2.71390 0.174817 0.0874087 0.996173i \(-0.472141\pi\)
0.0874087 + 0.996173i \(0.472141\pi\)
\(242\) 1.18829 2.71853i 0.0763859 0.174754i
\(243\) 10.6996 + 10.6996i 0.686383 + 0.686383i
\(244\) 2.58216 + 2.79052i 0.165306 + 0.178645i
\(245\) 0 0
\(246\) 11.7178 4.58970i 0.747101 0.292629i
\(247\) −10.1917 + 10.1917i −0.648483 + 0.648483i
\(248\) 3.34851 + 9.63257i 0.212631 + 0.611669i
\(249\) 9.50975i 0.602656i
\(250\) −15.5970 + 2.59470i −0.986443 + 0.164103i
\(251\) 3.15358i 0.199052i −0.995035 0.0995262i \(-0.968267\pi\)
0.995035 0.0995262i \(-0.0317327\pi\)
\(252\) 0 0
\(253\) −12.6554 + 12.6554i −0.795640 + 0.795640i
\(254\) −9.76188 24.9227i −0.612515 1.56379i
\(255\) 5.87145 1.14326i 0.367684 0.0715940i
\(256\) −15.8081 2.47082i −0.988004 0.154426i
\(257\) 11.6435 + 11.6435i 0.726299 + 0.726299i 0.969881 0.243581i \(-0.0783222\pi\)
−0.243581 + 0.969881i \(0.578322\pi\)
\(258\) 15.6690 + 6.84900i 0.975507 + 0.426400i
\(259\) 0 0
\(260\) −3.92165 25.3392i −0.243211 1.57147i
\(261\) 4.45239 0.275596
\(262\) 19.8992 + 8.69806i 1.22938 + 0.537368i
\(263\) 20.6399 + 20.6399i 1.27271 + 1.27271i 0.944659 + 0.328054i \(0.106393\pi\)
0.328054 + 0.944659i \(0.393607\pi\)
\(264\) 4.12246 8.51583i 0.253720 0.524113i
\(265\) 4.74607 + 3.19903i 0.291549 + 0.196515i
\(266\) 0 0
\(267\) 1.62931 1.62931i 0.0997123 0.0997123i
\(268\) −6.21758 0.241124i −0.379799 0.0147290i
\(269\) 6.11072i 0.372577i −0.982495 0.186288i \(-0.940354\pi\)
0.982495 0.186288i \(-0.0596459\pi\)
\(270\) −14.1967 + 9.01230i −0.863982 + 0.548471i
\(271\) 22.0200i 1.33762i 0.743434 + 0.668810i \(0.233196\pi\)
−0.743434 + 0.668810i \(0.766804\pi\)
\(272\) −7.25128 + 6.20594i −0.439673 + 0.376290i
\(273\) 0 0
\(274\) 6.20480 2.43033i 0.374846 0.146822i
\(275\) 5.59740 + 13.8283i 0.337536 + 0.833877i
\(276\) 9.87217 9.13505i 0.594235 0.549865i
\(277\) −11.6364 11.6364i −0.699165 0.699165i 0.265066 0.964230i \(-0.414606\pi\)
−0.964230 + 0.265066i \(0.914606\pi\)
\(278\) −5.83775 + 13.3555i −0.350125 + 0.801007i
\(279\) −6.28472 −0.376257
\(280\) 0 0
\(281\) 6.79274 0.405221 0.202610 0.979259i \(-0.435057\pi\)
0.202610 + 0.979259i \(0.435057\pi\)
\(282\) 1.87938 4.29959i 0.111915 0.256037i
\(283\) 9.22409 + 9.22409i 0.548315 + 0.548315i 0.925953 0.377638i \(-0.123264\pi\)
−0.377638 + 0.925953i \(0.623264\pi\)
\(284\) −11.8863 + 10.9988i −0.705324 + 0.652660i
\(285\) −3.52239 + 5.22580i −0.208648 + 0.309550i
\(286\) −22.5261 + 8.82314i −1.33200 + 0.521723i
\(287\) 0 0
\(288\) 4.63707 8.70194i 0.273242 0.512767i
\(289\) 11.3066i 0.665093i
\(290\) −1.76094 + 7.88321i −0.103406 + 0.462918i
\(291\) 10.5145i 0.616369i
\(292\) −19.4890 0.755804i −1.14051 0.0442301i
\(293\) −1.28839 + 1.28839i −0.0752688 + 0.0752688i −0.743739 0.668470i \(-0.766949\pi\)
0.668470 + 0.743739i \(0.266949\pi\)
\(294\) 0 0
\(295\) 0.894869 + 4.59577i 0.0521013 + 0.267576i
\(296\) 12.1506 + 5.88202i 0.706238 + 0.341885i
\(297\) 11.2188 + 11.2188i 0.650980 + 0.650980i
\(298\) 12.5338 + 5.47862i 0.726066 + 0.317368i
\(299\) −34.3925 −1.98897
\(300\) −3.80066 10.5474i −0.219431 0.608953i
\(301\) 0 0
\(302\) −1.43036 0.625218i −0.0823078 0.0359772i
\(303\) 5.91829 + 5.91829i 0.339997 + 0.339997i
\(304\) 0.778756 10.0253i 0.0446647 0.574991i
\(305\) −0.812415 4.17231i −0.0465188 0.238906i
\(306\) −2.14517 5.47678i −0.122631 0.313086i
\(307\) −11.6465 + 11.6465i −0.664701 + 0.664701i −0.956484 0.291783i \(-0.905751\pi\)
0.291783 + 0.956484i \(0.405751\pi\)
\(308\) 0 0
\(309\) 4.62070i 0.262863i
\(310\) 2.48563 11.1275i 0.141174 0.631997i
\(311\) 30.1836i 1.71156i 0.517343 + 0.855778i \(0.326921\pi\)
−0.517343 + 0.855778i \(0.673079\pi\)
\(312\) 17.1729 5.96973i 0.972227 0.337969i
\(313\) 15.6006 15.6006i 0.881800 0.881800i −0.111918 0.993717i \(-0.535699\pi\)
0.993717 + 0.111918i \(0.0356993\pi\)
\(314\) −11.4412 + 4.48135i −0.645664 + 0.252897i
\(315\) 0 0
\(316\) −10.9499 11.8334i −0.615978 0.665682i
\(317\) −1.02494 1.02494i −0.0575664 0.0575664i 0.677738 0.735304i \(-0.262961\pi\)
−0.735304 + 0.677738i \(0.762961\pi\)
\(318\) −1.62543 + 3.71862i −0.0911498 + 0.208530i
\(319\) 7.62119 0.426705
\(320\) 13.5733 + 11.6519i 0.758770 + 0.651358i
\(321\) −11.6783 −0.651819
\(322\) 0 0
\(323\) −4.24147 4.24147i −0.236001 0.236001i
\(324\) −0.994924 1.07521i −0.0552736 0.0597337i
\(325\) −11.1842 + 26.3957i −0.620386 + 1.46417i
\(326\) 1.41927 0.555906i 0.0786059 0.0307888i
\(327\) 8.13602 8.13602i 0.449923 0.449923i
\(328\) 21.2053 7.37146i 1.17087 0.407021i
\(329\) 0 0
\(330\) −8.93044 + 5.66920i −0.491604 + 0.312079i
\(331\) 28.3761i 1.55969i −0.625971 0.779846i \(-0.715297\pi\)
0.625971 0.779846i \(-0.284703\pi\)
\(332\) 0.657412 16.9519i 0.0360802 0.930356i
\(333\) −5.88264 + 5.88264i −0.322367 + 0.322367i
\(334\) −1.59109 4.06216i −0.0870605 0.222271i
\(335\) 5.76862 + 3.88827i 0.315173 + 0.212439i
\(336\) 0 0
\(337\) −11.7829 11.7829i −0.641857 0.641857i 0.309155 0.951012i \(-0.399954\pi\)
−0.951012 + 0.309155i \(0.899954\pi\)
\(338\) −25.7517 11.2562i −1.40071 0.612257i
\(339\) −11.6622 −0.633406
\(340\) 10.5454 1.63207i 0.571903 0.0885113i
\(341\) −10.7576 −0.582557
\(342\) 5.67817 + 2.48197i 0.307041 + 0.134209i
\(343\) 0 0
\(344\) 27.4577 + 13.2921i 1.48042 + 0.716662i
\(345\) −14.7606 + 2.87413i −0.794684 + 0.154738i
\(346\) −12.1669 31.0629i −0.654096 1.66995i
\(347\) −11.2886 + 11.2886i −0.606002 + 0.606002i −0.941899 0.335896i \(-0.890961\pi\)
0.335896 + 0.941899i \(0.390961\pi\)
\(348\) −5.72314 0.221950i −0.306793 0.0118977i
\(349\) 7.52656i 0.402888i −0.979500 0.201444i \(-0.935437\pi\)
0.979500 0.201444i \(-0.0645633\pi\)
\(350\) 0 0
\(351\) 30.4882i 1.62734i
\(352\) 7.93732 14.8952i 0.423060 0.793915i
\(353\) 3.96442 3.96442i 0.211005 0.211005i −0.593689 0.804694i \(-0.702329\pi\)
0.804694 + 0.593689i \(0.202329\pi\)
\(354\) −3.09122 + 1.21079i −0.164296 + 0.0643525i
\(355\) 17.7721 3.46052i 0.943247 0.183665i
\(356\) 3.01702 2.79175i 0.159902 0.147962i
\(357\) 0 0
\(358\) 4.00064 9.15257i 0.211441 0.483728i
\(359\) 36.4285 1.92262 0.961311 0.275464i \(-0.0888315\pi\)
0.961311 + 0.275464i \(0.0888315\pi\)
\(360\) −9.52916 + 5.54326i −0.502231 + 0.292155i
\(361\) −12.6804 −0.667390
\(362\) −1.34478 + 3.07654i −0.0706799 + 0.161699i
\(363\) −1.66313 1.66313i −0.0872915 0.0872915i
\(364\) 0 0
\(365\) 18.0817 + 12.1878i 0.946440 + 0.637937i
\(366\) 2.80639 1.09922i 0.146692 0.0574573i
\(367\) 23.1194 23.1194i 1.20682 1.20682i 0.234769 0.972051i \(-0.424567\pi\)
0.972051 0.234769i \(-0.0754335\pi\)
\(368\) 18.2294 15.6015i 0.950276 0.813284i
\(369\) 13.8353i 0.720235i
\(370\) −8.08894 12.7422i −0.420524 0.662433i
\(371\) 0 0
\(372\) 8.07844 + 0.313291i 0.418848 + 0.0162434i
\(373\) −18.4926 + 18.4926i −0.957512 + 0.957512i −0.999133 0.0416212i \(-0.986748\pi\)
0.0416212 + 0.999133i \(0.486748\pi\)
\(374\) −3.67191 9.37464i −0.189870 0.484751i
\(375\) −2.59418 + 12.2632i −0.133963 + 0.633268i
\(376\) 3.64738 7.53445i 0.188099 0.388560i
\(377\) 10.3557 + 10.3557i 0.533346 + 0.533346i
\(378\) 0 0
\(379\) 20.3769 1.04669 0.523344 0.852121i \(-0.324684\pi\)
0.523344 + 0.852121i \(0.324684\pi\)
\(380\) −6.64020 + 9.07191i −0.340635 + 0.465379i
\(381\) −21.2192 −1.08709
\(382\) 8.18423 + 3.57738i 0.418742 + 0.183035i
\(383\) −18.0549 18.0549i −0.922564 0.922564i 0.0746461 0.997210i \(-0.476217\pi\)
−0.997210 + 0.0746461i \(0.976217\pi\)
\(384\) −6.39433 + 10.9544i −0.326309 + 0.559014i
\(385\) 0 0
\(386\) −10.8941 27.8134i −0.554496 1.41567i
\(387\) −13.2935 + 13.2935i −0.675747 + 0.675747i
\(388\) 0.726869 18.7429i 0.0369012 0.951526i
\(389\) 18.0492i 0.915129i 0.889176 + 0.457564i \(0.151278\pi\)
−0.889176 + 0.457564i \(0.848722\pi\)
\(390\) −19.8380 4.43138i −1.00454 0.224392i
\(391\) 14.3130i 0.723842i
\(392\) 0 0
\(393\) 12.1738 12.1738i 0.614088 0.614088i
\(394\) −1.88747 + 0.739294i −0.0950892 + 0.0372451i
\(395\) 3.44511 + 17.6930i 0.173343 + 0.890233i
\(396\) 7.06437 + 7.63441i 0.354998 + 0.383643i
\(397\) 21.2747 + 21.2747i 1.06774 + 1.06774i 0.997532 + 0.0702120i \(0.0223676\pi\)
0.0702120 + 0.997532i \(0.477632\pi\)
\(398\) −5.38931 + 12.3295i −0.270141 + 0.618022i
\(399\) 0 0
\(400\) −6.04584 19.0643i −0.302292 0.953215i
\(401\) 4.89560 0.244475 0.122237 0.992501i \(-0.460993\pi\)
0.122237 + 0.992501i \(0.460993\pi\)
\(402\) −1.97564 + 4.51981i −0.0985358 + 0.225428i
\(403\) −14.6175 14.6175i −0.728149 0.728149i
\(404\) 10.1407 + 10.9590i 0.504519 + 0.545229i
\(405\) 0.313029 + 1.60762i 0.0155546 + 0.0798833i
\(406\) 0 0
\(407\) −10.0694 + 10.0694i −0.499119 + 0.499119i
\(408\) 2.48441 + 7.14683i 0.122997 + 0.353821i
\(409\) 33.5439i 1.65864i −0.558774 0.829320i \(-0.688728\pi\)
0.558774 0.829320i \(-0.311272\pi\)
\(410\) −24.4961 5.47190i −1.20978 0.270238i
\(411\) 5.28276i 0.260579i
\(412\) −0.319431 + 8.23678i −0.0157372 + 0.405797i
\(413\) 0 0
\(414\) 5.39289 + 13.7684i 0.265046 + 0.676680i
\(415\) −10.6011 + 15.7278i −0.520390 + 0.772048i
\(416\) 31.0249 9.45436i 1.52112 0.463538i
\(417\) 8.17053 + 8.17053i 0.400112 + 0.400112i
\(418\) 9.71937 + 4.24840i 0.475390 + 0.207796i
\(419\) 36.3735 1.77696 0.888481 0.458914i \(-0.151761\pi\)
0.888481 + 0.458914i \(0.151761\pi\)
\(420\) 0 0
\(421\) −33.2473 −1.62038 −0.810188 0.586170i \(-0.800635\pi\)
−0.810188 + 0.586170i \(0.800635\pi\)
\(422\) 34.9196 + 15.2636i 1.69986 + 0.743018i
\(423\) 3.64776 + 3.64776i 0.177360 + 0.177360i
\(424\) −3.15454 + 6.51638i −0.153198 + 0.316463i
\(425\) −10.9850 4.65449i −0.532853 0.225776i
\(426\) 4.68219 + 11.9539i 0.226853 + 0.579171i
\(427\) 0 0
\(428\) −20.8175 0.807325i −1.00625 0.0390235i
\(429\) 19.1787i 0.925955i
\(430\) −18.2793 28.7946i −0.881505 1.38860i
\(431\) 31.1145i 1.49873i −0.662154 0.749367i \(-0.730358\pi\)
0.662154 0.749367i \(-0.269642\pi\)
\(432\) −13.8304 16.1600i −0.665416 0.777501i
\(433\) 7.14603 7.14603i 0.343416 0.343416i −0.514234 0.857650i \(-0.671924\pi\)
0.857650 + 0.514234i \(0.171924\pi\)
\(434\) 0 0
\(435\) 5.30988 + 3.57906i 0.254589 + 0.171603i
\(436\) 15.0656 13.9407i 0.721509 0.667637i
\(437\) 10.6629 + 10.6629i 0.510075 + 0.510075i
\(438\) −6.19263 + 14.1673i −0.295895 + 0.676941i
\(439\) −0.557131 −0.0265904 −0.0132952 0.999912i \(-0.504232\pi\)
−0.0132952 + 0.999912i \(0.504232\pi\)
\(440\) −16.3111 + 9.48844i −0.777603 + 0.452344i
\(441\) 0 0
\(442\) 7.74889 17.7277i 0.368577 0.843221i
\(443\) 17.2462 + 17.2462i 0.819391 + 0.819391i 0.986020 0.166629i \(-0.0532882\pi\)
−0.166629 + 0.986020i \(0.553288\pi\)
\(444\) 7.85485 7.26835i 0.372774 0.344941i
\(445\) −4.51096 + 0.878357i −0.213840 + 0.0416381i
\(446\) −4.14581 + 1.62385i −0.196310 + 0.0768917i
\(447\) 7.66789 7.66789i 0.362679 0.362679i
\(448\) 0 0
\(449\) 8.64441i 0.407955i 0.978976 + 0.203978i \(0.0653870\pi\)
−0.978976 + 0.203978i \(0.934613\pi\)
\(450\) 12.3208 + 0.338420i 0.580807 + 0.0159533i
\(451\) 23.6819i 1.11514i
\(452\) −20.7889 0.806215i −0.977828 0.0379212i
\(453\) −0.875056 + 0.875056i −0.0411137 + 0.0411137i
\(454\) 4.15999 + 10.6207i 0.195238 + 0.498456i
\(455\) 0 0
\(456\) −7.17505 3.47340i −0.336003 0.162657i
\(457\) 1.93285 + 1.93285i 0.0904150 + 0.0904150i 0.750868 0.660453i \(-0.229636\pi\)
−0.660453 + 0.750868i \(0.729636\pi\)
\(458\) 3.15270 + 1.37807i 0.147316 + 0.0643928i
\(459\) −12.6882 −0.592236
\(460\) −26.5107 + 4.10296i −1.23607 + 0.191301i
\(461\) 38.5986 1.79772 0.898858 0.438239i \(-0.144398\pi\)
0.898858 + 0.438239i \(0.144398\pi\)
\(462\) 0 0
\(463\) −13.5055 13.5055i −0.627652 0.627652i 0.319824 0.947477i \(-0.396376\pi\)
−0.947477 + 0.319824i \(0.896376\pi\)
\(464\) −10.1866 0.791286i −0.472902 0.0367345i
\(465\) −7.49511 5.05199i −0.347577 0.234280i
\(466\) −5.39931 13.7848i −0.250118 0.638568i
\(467\) 9.44901 9.44901i 0.437248 0.437248i −0.453837 0.891085i \(-0.649945\pi\)
0.891085 + 0.453837i \(0.149945\pi\)
\(468\) −0.774565 + 19.9728i −0.0358043 + 0.923241i
\(469\) 0 0
\(470\) −7.90128 + 5.01587i −0.364459 + 0.231365i
\(471\) 9.74101i 0.448842i
\(472\) −5.59405 + 1.94463i −0.257487 + 0.0895087i
\(473\) −22.7546 + 22.7546i −1.04626 + 1.04626i
\(474\) −11.9007 + 4.66135i −0.546619 + 0.214103i
\(475\) 11.6511 4.71612i 0.534589 0.216390i
\(476\) 0 0
\(477\) −3.15487 3.15487i −0.144452 0.144452i
\(478\) −7.30958 + 16.7227i −0.334332 + 0.764877i
\(479\) −7.83260 −0.357881 −0.178940 0.983860i \(-0.557267\pi\)
−0.178940 + 0.983860i \(0.557267\pi\)
\(480\) 12.5252 6.65033i 0.571695 0.303545i
\(481\) −27.3646 −1.24772
\(482\) 1.53719 3.51675i 0.0700172 0.160183i
\(483\) 0 0
\(484\) −2.84968 3.07963i −0.129531 0.139983i
\(485\) −11.7212 + 17.3895i −0.532231 + 0.789616i
\(486\) 19.9254 7.80448i 0.903833 0.354018i
\(487\) −1.72517 + 1.72517i −0.0781749 + 0.0781749i −0.745113 0.666938i \(-0.767605\pi\)
0.666938 + 0.745113i \(0.267605\pi\)
\(488\) 5.07861 1.76545i 0.229898 0.0799181i
\(489\) 1.20836i 0.0546439i
\(490\) 0 0
\(491\) 33.5206i 1.51276i 0.654130 + 0.756382i \(0.273035\pi\)
−0.654130 + 0.756382i \(0.726965\pi\)
\(492\) 0.689682 17.7840i 0.0310932 0.801764i
\(493\) −4.30971 + 4.30971i −0.194100 + 0.194100i
\(494\) 7.43398 + 18.9795i 0.334471 + 0.853926i
\(495\) −2.22264 11.4148i −0.0999001 0.513055i
\(496\) 14.3788 + 1.11693i 0.645628 + 0.0501517i
\(497\) 0 0
\(498\) −12.3230 5.38646i −0.552207 0.241373i
\(499\) −20.6924 −0.926319 −0.463159 0.886275i \(-0.653284\pi\)
−0.463159 + 0.886275i \(0.653284\pi\)
\(500\) −5.47210 + 21.6808i −0.244720 + 0.969594i
\(501\) −3.45851 −0.154515
\(502\) −4.08651 1.78624i −0.182390 0.0797237i
\(503\) 4.35918 + 4.35918i 0.194366 + 0.194366i 0.797580 0.603214i \(-0.206113\pi\)
−0.603214 + 0.797580i \(0.706113\pi\)
\(504\) 0 0
\(505\) −3.19053 16.3856i −0.141977 0.729148i
\(506\) 9.23105 + 23.5675i 0.410370 + 1.04770i
\(507\) −15.7542 + 15.7542i −0.699669 + 0.699669i
\(508\) −37.8249 1.46689i −1.67821 0.0650827i
\(509\) 30.5865i 1.35572i −0.735189 0.677862i \(-0.762907\pi\)
0.735189 0.677862i \(-0.237093\pi\)
\(510\) 1.84420 8.25596i 0.0816626 0.365580i
\(511\) 0 0
\(512\) −12.1557 + 19.0851i −0.537211 + 0.843448i
\(513\) 9.45244 9.45244i 0.417335 0.417335i
\(514\) 21.6830 8.49291i 0.956395 0.374606i
\(515\) 5.15101 7.64201i 0.226980 0.336747i
\(516\) 17.7503 16.4249i 0.781412 0.723067i
\(517\) 6.24391 + 6.24391i 0.274607 + 0.274607i
\(518\) 0 0
\(519\) −26.4469 −1.16089
\(520\) −35.0566 9.27071i −1.53733 0.406548i
\(521\) 9.36545 0.410308 0.205154 0.978730i \(-0.434230\pi\)
0.205154 + 0.978730i \(0.434230\pi\)
\(522\) 2.52190 5.76954i 0.110381 0.252526i
\(523\) −23.1360 23.1360i −1.01167 1.01167i −0.999931 0.0117350i \(-0.996265\pi\)
−0.0117350 0.999931i \(-0.503735\pi\)
\(524\) 22.5424 20.8592i 0.984770 0.911240i
\(525\) 0 0
\(526\) 38.4366 15.0551i 1.67592 0.656432i
\(527\) 6.08333 6.08333i 0.264994 0.264994i
\(528\) −8.70004 10.1655i −0.378621 0.442396i
\(529\) 12.9825i 0.564455i
\(530\) 6.83364 4.33811i 0.296834 0.188436i
\(531\) 3.64981i 0.158388i
\(532\) 0 0
\(533\) −32.1791 + 32.1791i −1.39383 + 1.39383i
\(534\) −1.18844 3.03418i −0.0514290 0.131302i
\(535\) 19.3143 + 13.0186i 0.835030 + 0.562842i
\(536\) −3.83419 + 7.92035i −0.165612 + 0.342107i
\(537\) −5.59931 5.59931i −0.241628 0.241628i
\(538\) −7.91844 3.46120i −0.341388 0.149223i
\(539\) 0 0
\(540\) 3.63719 + 23.5012i 0.156520 + 1.01133i
\(541\) −5.46190 −0.234825 −0.117413 0.993083i \(-0.537460\pi\)
−0.117413 + 0.993083i \(0.537460\pi\)
\(542\) 28.5342 + 12.4725i 1.22565 + 0.535738i
\(543\) 1.88215 + 1.88215i 0.0807708 + 0.0807708i
\(544\) 3.93460 + 12.9116i 0.168695 + 0.553579i
\(545\) −22.5256 + 4.38610i −0.964892 + 0.187880i
\(546\) 0 0
\(547\) −4.64823 + 4.64823i −0.198744 + 0.198744i −0.799461 0.600718i \(-0.794882\pi\)
0.600718 + 0.799461i \(0.294882\pi\)
\(548\) 0.365199 9.41694i 0.0156005 0.402272i
\(549\) 3.31351i 0.141417i
\(550\) 21.0896 + 0.579277i 0.899261 + 0.0247004i
\(551\) 6.42127i 0.273555i
\(552\) −6.24572 17.9669i −0.265835 0.764721i
\(553\) 0 0
\(554\) −21.6699 + 8.48777i −0.920664 + 0.360611i
\(555\) −11.7444 + 2.28681i −0.498520 + 0.0970698i
\(556\) 13.9998 + 15.1295i 0.593724 + 0.641632i
\(557\) 8.82237 + 8.82237i 0.373816 + 0.373816i 0.868865 0.495049i \(-0.164850\pi\)
−0.495049 + 0.868865i \(0.664850\pi\)
\(558\) −3.55976 + 8.14393i −0.150697 + 0.344760i
\(559\) −61.8381 −2.61547
\(560\) 0 0
\(561\) −7.98155 −0.336981
\(562\) 3.84751 8.80223i 0.162297 0.371300i
\(563\) −13.4268 13.4268i −0.565873 0.565873i 0.365097 0.930970i \(-0.381036\pi\)
−0.930970 + 0.365097i \(0.881036\pi\)
\(564\) −4.50703 4.87071i −0.189780 0.205094i
\(565\) 19.2878 + 13.0007i 0.811442 + 0.546943i
\(566\) 17.1775 6.72818i 0.722025 0.282807i
\(567\) 0 0
\(568\) 7.52000 + 21.6326i 0.315532 + 0.907682i
\(569\) 22.5548i 0.945547i −0.881184 0.472773i \(-0.843253\pi\)
0.881184 0.472773i \(-0.156747\pi\)
\(570\) 4.77661 + 7.52438i 0.200070 + 0.315162i
\(571\) 26.3826i 1.10408i 0.833819 + 0.552038i \(0.186150\pi\)
−0.833819 + 0.552038i \(0.813850\pi\)
\(572\) −1.32583 + 34.1875i −0.0554357 + 1.42945i
\(573\) 5.00690 5.00690i 0.209166 0.209166i
\(574\) 0 0
\(575\) 27.6160 + 11.7012i 1.15167 + 0.487975i
\(576\) −8.64972 10.9378i −0.360405 0.455740i
\(577\) −22.5576 22.5576i −0.939086 0.939086i 0.0591623 0.998248i \(-0.481157\pi\)
−0.998248 + 0.0591623i \(0.981157\pi\)
\(578\) −14.6514 6.40422i −0.609418 0.266380i
\(579\) −23.6803 −0.984120
\(580\) 9.21787 + 6.74704i 0.382751 + 0.280156i
\(581\) 0 0
\(582\) −13.6250 5.95556i −0.564773 0.246866i
\(583\) −5.40021 5.40021i −0.223654 0.223654i
\(584\) −12.0183 + 24.8263i −0.497319 + 1.02732i
\(585\) 12.4903 18.5306i 0.516410 0.766144i
\(586\) 0.939774 + 2.39931i 0.0388217 + 0.0991144i
\(587\) 14.8860 14.8860i 0.614410 0.614410i −0.329682 0.944092i \(-0.606942\pi\)
0.944092 + 0.329682i \(0.106942\pi\)
\(588\) 0 0
\(589\) 9.06388i 0.373471i
\(590\) 6.46220 + 1.44351i 0.266044 + 0.0594285i
\(591\) 1.60699i 0.0661026i
\(592\) 14.5044 12.4134i 0.596126 0.510188i
\(593\) −23.3225 + 23.3225i −0.957741 + 0.957741i −0.999143 0.0414014i \(-0.986818\pi\)
0.0414014 + 0.999143i \(0.486818\pi\)
\(594\) 20.8921 8.18314i 0.857214 0.335758i
\(595\) 0 0
\(596\) 14.1987 13.1385i 0.581602 0.538176i
\(597\) 7.54288 + 7.54288i 0.308710 + 0.308710i
\(598\) −19.4804 + 44.5668i −0.796613 + 1.82247i
\(599\) 17.5846 0.718486 0.359243 0.933244i \(-0.383035\pi\)
0.359243 + 0.933244i \(0.383035\pi\)
\(600\) −15.8204 1.04919i −0.645864 0.0428331i
\(601\) −17.7704 −0.724871 −0.362436 0.932009i \(-0.618055\pi\)
−0.362436 + 0.932009i \(0.618055\pi\)
\(602\) 0 0
\(603\) −3.83460 3.83460i −0.156157 0.156157i
\(604\) −1.62035 + 1.49937i −0.0659312 + 0.0610083i
\(605\) 0.896586 + 4.60458i 0.0364514 + 0.187203i
\(606\) 11.0213 4.31689i 0.447710 0.175362i
\(607\) −6.82673 + 6.82673i −0.277088 + 0.277088i −0.831946 0.554857i \(-0.812773\pi\)
0.554857 + 0.831946i \(0.312773\pi\)
\(608\) −12.5500 6.68762i −0.508970 0.271219i
\(609\) 0 0
\(610\) −5.86677 1.31051i −0.237538 0.0530609i
\(611\) 16.9685i 0.686471i
\(612\) −8.31203 0.322349i −0.335994 0.0130302i
\(613\) 6.15701 6.15701i 0.248679 0.248679i −0.571749 0.820429i \(-0.693735\pi\)
0.820429 + 0.571749i \(0.193735\pi\)
\(614\) 8.49513 + 21.6886i 0.342836 + 0.875283i
\(615\) −11.1215 + 16.4998i −0.448463 + 0.665337i
\(616\) 0 0
\(617\) 21.0055 + 21.0055i 0.845648 + 0.845648i 0.989587 0.143938i \(-0.0459767\pi\)
−0.143938 + 0.989587i \(0.545977\pi\)
\(618\) 5.98764 + 2.61724i 0.240858 + 0.105281i
\(619\) −14.0231 −0.563634 −0.281817 0.959468i \(-0.590937\pi\)
−0.281817 + 0.959468i \(0.590937\pi\)
\(620\) −13.0114 9.52372i −0.522550 0.382482i
\(621\) 31.8977 1.28001
\(622\) 39.1128 + 17.0965i 1.56828 + 0.685505i
\(623\) 0 0
\(624\) 1.99127 25.6346i 0.0797144 1.02620i
\(625\) 17.9610 17.3897i 0.718440 0.695588i
\(626\) −11.3793 29.0522i −0.454809 1.16116i
\(627\) 5.94607 5.94607i 0.237463 0.237463i
\(628\) −0.673400 + 17.3641i −0.0268716 + 0.692905i
\(629\) 11.3883i 0.454080i
\(630\) 0 0
\(631\) 25.9447i 1.03284i −0.856334 0.516422i \(-0.827264\pi\)
0.856334 0.516422i \(-0.172736\pi\)
\(632\) −21.5363 + 7.48653i −0.856667 + 0.297798i
\(633\) 21.3629 21.3629i 0.849099 0.849099i
\(634\) −1.90869 + 0.747606i −0.0758038 + 0.0296912i
\(635\) 35.0936 + 23.6544i 1.39265 + 0.938697i
\(636\) 3.89803 + 4.21257i 0.154567 + 0.167039i
\(637\) 0 0
\(638\) 4.31676 9.87576i 0.170902 0.390985i
\(639\) −14.1141 −0.558343
\(640\) 22.7869 10.9889i 0.900733 0.434374i
\(641\) 5.01605 0.198122 0.0990610 0.995081i \(-0.468416\pi\)
0.0990610 + 0.995081i \(0.468416\pi\)
\(642\) −6.61476 + 15.1331i −0.261064 + 0.597255i
\(643\) 5.68565 + 5.68565i 0.224220 + 0.224220i 0.810273 0.586053i \(-0.199319\pi\)
−0.586053 + 0.810273i \(0.699319\pi\)
\(644\) 0 0
\(645\) −26.5397 + 5.16771i −1.04500 + 0.203478i
\(646\) −7.89865 + 3.09379i −0.310768 + 0.121723i
\(647\) −13.7954 + 13.7954i −0.542352 + 0.542352i −0.924218 0.381865i \(-0.875282\pi\)
0.381865 + 0.924218i \(0.375282\pi\)
\(648\) −1.95682 + 0.680239i −0.0768713 + 0.0267223i
\(649\) 6.24741i 0.245232i
\(650\) 27.8694 + 29.4437i 1.09313 + 1.15488i
\(651\) 0 0
\(652\) 0.0835344 2.15400i 0.00327146 0.0843572i
\(653\) −18.9938 + 18.9938i −0.743283 + 0.743283i −0.973208 0.229925i \(-0.926152\pi\)
0.229925 + 0.973208i \(0.426152\pi\)
\(654\) −5.93453 15.1513i −0.232058 0.592461i
\(655\) −33.7048 + 6.56287i −1.31696 + 0.256432i
\(656\) 2.45883 31.6537i 0.0960011 1.23587i
\(657\) −12.0195 12.0195i −0.468926 0.468926i
\(658\) 0 0
\(659\) −2.47864 −0.0965543 −0.0482771 0.998834i \(-0.515373\pi\)
−0.0482771 + 0.998834i \(0.515373\pi\)
\(660\) 2.28798 + 14.7834i 0.0890594 + 0.575445i
\(661\) 12.0854 0.470068 0.235034 0.971987i \(-0.424480\pi\)
0.235034 + 0.971987i \(0.424480\pi\)
\(662\) −36.7706 16.0727i −1.42913 0.624682i
\(663\) −10.8454 10.8454i −0.421199 0.421199i
\(664\) −21.5944 10.4537i −0.838025 0.405682i
\(665\) 0 0
\(666\) 4.29088 + 10.9549i 0.166268 + 0.424494i
\(667\) 10.8345 10.8345i 0.419512 0.419512i
\(668\) −6.16508 0.239088i −0.238534 0.00925060i
\(669\) 3.52973i 0.136467i
\(670\) 8.30597 5.27277i 0.320887 0.203705i
\(671\) 5.67177i 0.218956i
\(672\) 0 0
\(673\) 34.0874 34.0874i 1.31397 1.31397i 0.395511 0.918461i \(-0.370568\pi\)
0.918461 0.395511i \(-0.129432\pi\)
\(674\) −21.9427 + 8.59464i −0.845201 + 0.331053i
\(675\) 10.3729 24.4810i 0.399253 0.942275i
\(676\) −29.1723 + 26.9941i −1.12201 + 1.03823i
\(677\) −23.9032 23.9032i −0.918675 0.918675i 0.0782577 0.996933i \(-0.475064\pi\)
−0.996933 + 0.0782577i \(0.975064\pi\)
\(678\) −6.60567 + 15.1123i −0.253689 + 0.580384i
\(679\) 0 0
\(680\) 3.85817 14.5894i 0.147954 0.559479i
\(681\) 9.04247 0.346508
\(682\) −6.09327 + 13.9400i −0.233323 + 0.533791i
\(683\) 5.29866 + 5.29866i 0.202747 + 0.202747i 0.801176 0.598429i \(-0.204208\pi\)
−0.598429 + 0.801176i \(0.704208\pi\)
\(684\) 6.43241 5.95212i 0.245949 0.227585i
\(685\) −5.88904 + 8.73696i −0.225009 + 0.333822i
\(686\) 0 0
\(687\) 1.92874 1.92874i 0.0735862 0.0735862i
\(688\) 32.7768 28.0517i 1.24960 1.06946i
\(689\) 14.6757i 0.559098i
\(690\) −4.63625 + 20.7552i −0.176499 + 0.790136i
\(691\) 19.0813i 0.725888i 0.931811 + 0.362944i \(0.118228\pi\)
−0.931811 + 0.362944i \(0.881772\pi\)
\(692\) −47.1437 1.82828i −1.79213 0.0695009i
\(693\) 0 0
\(694\) 8.23405 + 21.0221i 0.312560 + 0.797987i
\(695\) −4.40470 22.6212i −0.167080 0.858070i
\(696\) −3.52928 + 7.29050i −0.133777 + 0.276346i
\(697\) −13.3919 13.3919i −0.507255 0.507255i
\(698\) −9.75314 4.26316i −0.369162 0.161363i
\(699\) −11.7363 −0.443909
\(700\) 0 0
\(701\) −30.0384 −1.13454 −0.567268 0.823533i \(-0.692000\pi\)
−0.567268 + 0.823533i \(0.692000\pi\)
\(702\) 39.5076 + 17.2690i 1.49112 + 0.651776i
\(703\) 8.48399 + 8.48399i 0.319980 + 0.319980i
\(704\) −14.8058 18.7223i −0.558014 0.705622i
\(705\) 1.41803 + 7.28256i 0.0534061 + 0.274277i
\(706\) −2.89170 7.38272i −0.108831 0.277852i
\(707\) 0 0
\(708\) −0.181941 + 4.69150i −0.00683777 + 0.176317i
\(709\) 27.3678i 1.02782i −0.857845 0.513909i \(-0.828197\pi\)
0.857845 0.513909i \(-0.171803\pi\)
\(710\) 5.58216 24.9897i 0.209495 0.937848i
\(711\) 14.0512i 0.526962i
\(712\) −1.90874 5.49083i −0.0715332 0.205777i
\(713\) −15.2933 + 15.2933i −0.572737 + 0.572737i
\(714\) 0 0
\(715\) 21.3797 31.7189i 0.799557 1.18622i
\(716\) −9.59414 10.3683i −0.358550 0.387482i
\(717\) 10.2305 + 10.2305i 0.382065 + 0.382065i
\(718\) 20.6337 47.2051i 0.770041 1.76168i
\(719\) 43.5045 1.62245 0.811223 0.584737i \(-0.198802\pi\)
0.811223 + 0.584737i \(0.198802\pi\)
\(720\) 1.78566 + 15.4880i 0.0665475 + 0.577202i
\(721\) 0 0
\(722\) −7.18238 + 16.4317i −0.267300 + 0.611523i
\(723\) −2.15146 2.15146i −0.0800135 0.0800135i
\(724\) 3.22497 + 3.48520i 0.119855 + 0.129526i
\(725\) −4.79200 11.8386i −0.177970 0.439673i
\(726\) −3.09715 + 1.21311i −0.114946 + 0.0450227i
\(727\) 14.9542 14.9542i 0.554620 0.554620i −0.373151 0.927771i \(-0.621723\pi\)
0.927771 + 0.373151i \(0.121723\pi\)
\(728\) 0 0
\(729\) 19.1618i 0.709695i
\(730\) 26.0350 16.5275i 0.963600 0.611710i
\(731\) 25.7350i 0.951845i
\(732\) 0.165177 4.25922i 0.00610512 0.157425i
\(733\) −22.4679 + 22.4679i −0.829871 + 0.829871i −0.987499 0.157627i \(-0.949616\pi\)
0.157627 + 0.987499i \(0.449616\pi\)
\(734\) −16.8636 43.0539i −0.622446 1.58915i
\(735\) 0 0
\(736\) −9.89144 32.4592i −0.364603 1.19646i
\(737\) −6.56371 6.56371i −0.241777 0.241777i
\(738\) 17.9281 + 7.83651i 0.659944 + 0.288466i
\(739\) 0.990905 0.0364510 0.0182255 0.999834i \(-0.494198\pi\)
0.0182255 + 0.999834i \(0.494198\pi\)
\(740\) −21.0934 + 3.26454i −0.775407 + 0.120007i
\(741\) 16.1591 0.593619
\(742\) 0 0
\(743\) 9.00016 + 9.00016i 0.330184 + 0.330184i 0.852656 0.522472i \(-0.174990\pi\)
−0.522472 + 0.852656i \(0.674990\pi\)
\(744\) 4.98172 10.2908i 0.182639 0.377280i
\(745\) −21.2295 + 4.13373i −0.777790 + 0.151448i
\(746\) 13.4888 + 34.4378i 0.493860 + 1.26086i
\(747\) 10.4548 10.4548i 0.382521 0.382521i
\(748\) −14.2278 0.551767i −0.520218 0.0201746i
\(749\) 0 0
\(750\) 14.4216 + 10.3077i 0.526603 + 0.376383i
\(751\) 13.0803i 0.477307i −0.971105 0.238653i \(-0.923294\pi\)
0.971105 0.238653i \(-0.0767060\pi\)
\(752\) −7.69743 8.99401i −0.280697 0.327978i
\(753\) −2.50002 + 2.50002i −0.0911058 + 0.0911058i
\(754\) 19.2848 7.55360i 0.702313 0.275086i
\(755\) 2.42271 0.471740i 0.0881713 0.0171684i
\(756\) 0 0
\(757\) 3.92981 + 3.92981i 0.142831 + 0.142831i 0.774907 0.632076i \(-0.217797\pi\)
−0.632076 + 0.774907i \(0.717797\pi\)
\(758\) 11.5418 26.4049i 0.419216 0.959070i
\(759\) 20.0653 0.728325
\(760\) 7.99453 + 13.7430i 0.289992 + 0.498512i
\(761\) −22.3234 −0.809223 −0.404612 0.914489i \(-0.632593\pi\)
−0.404612 + 0.914489i \(0.632593\pi\)
\(762\) −12.0189 + 27.4964i −0.435397 + 0.996091i
\(763\) 0 0
\(764\) 9.27134 8.57908i 0.335425 0.310380i
\(765\) 7.71182 + 5.19806i 0.278822 + 0.187936i
\(766\) −33.6227 + 13.1695i −1.21484 + 0.475834i
\(767\) 8.48900 8.48900i 0.306520 0.306520i
\(768\) 10.5732 + 14.4907i 0.381527 + 0.522888i
\(769\) 27.9731i 1.00873i −0.863489 0.504367i \(-0.831726\pi\)
0.863489 0.504367i \(-0.168274\pi\)
\(770\) 0 0
\(771\) 18.4608i 0.664851i
\(772\) −42.2121 1.63703i −1.51925 0.0589179i
\(773\) −31.4887 + 31.4887i −1.13257 + 1.13257i −0.142823 + 0.989748i \(0.545618\pi\)
−0.989748 + 0.142823i \(0.954382\pi\)
\(774\) 9.69648 + 24.7558i 0.348533 + 0.889828i
\(775\) 6.76410 + 16.7106i 0.242974 + 0.600262i
\(776\) −23.8759 11.5582i −0.857094 0.414914i
\(777\) 0 0
\(778\) 23.3886 + 10.2233i 0.838523 + 0.366524i
\(779\) 19.9533 0.714902
\(780\) −16.9789 + 23.1967i −0.607941 + 0.830575i
\(781\) −24.1591 −0.864482
\(782\) −18.5473 8.10713i −0.663249 0.289910i
\(783\) −9.60453 9.60453i −0.343238 0.343238i
\(784\) 0 0
\(785\) 10.8590 16.1103i 0.387573 0.575001i
\(786\) −8.87976 22.6706i −0.316731 0.808635i
\(787\) 28.6159 28.6159i 1.02005 1.02005i 0.0202524 0.999795i \(-0.493553\pi\)
0.999795 0.0202524i \(-0.00644697\pi\)
\(788\) −0.111092 + 2.86458i −0.00395747 + 0.102047i
\(789\) 32.7248i 1.16504i
\(790\) 24.8785 + 5.55731i 0.885137 + 0.197720i
\(791\) 0 0
\(792\) 13.8943 4.82998i 0.493711 0.171626i
\(793\) −7.70682 + 7.70682i −0.273677 + 0.273677i
\(794\) 39.6186 15.5180i 1.40601 0.550714i
\(795\) −1.22642 6.29852i −0.0434967 0.223385i
\(796\) 12.9244 + 13.9672i 0.458092 + 0.495056i
\(797\) 3.10654 + 3.10654i 0.110039 + 0.110039i 0.759983 0.649943i \(-0.225207\pi\)
−0.649943 + 0.759983i \(0.725207\pi\)
\(798\) 0 0
\(799\) −7.06174 −0.249826
\(800\) −28.1285 2.96394i −0.994494 0.104791i
\(801\) 3.58246 0.126580
\(802\) 2.77294 6.34387i 0.0979161 0.224010i
\(803\) −20.5739 20.5739i −0.726038 0.726038i
\(804\) 4.73787 + 5.12018i 0.167092 + 0.180575i
\(805\) 0 0
\(806\) −27.2213 + 10.6622i −0.958830 + 0.375560i
\(807\) −4.84430 + 4.84430i −0.170528 + 0.170528i
\(808\) 19.9448 6.93330i 0.701656 0.243912i
\(809\) 30.6474i 1.07751i −0.842464 0.538753i \(-0.818896\pi\)
0.842464 0.538753i \(-0.181104\pi\)
\(810\) 2.26051 + 0.504948i 0.0794261 + 0.0177420i
\(811\) 47.0428i 1.65190i 0.563747 + 0.825948i \(0.309359\pi\)
−0.563747 + 0.825948i \(0.690641\pi\)
\(812\) 0 0
\(813\) 17.4565 17.4565i 0.612225 0.612225i
\(814\) 7.34473 + 18.7516i 0.257433 + 0.657243i
\(815\) −1.34704 + 1.99846i −0.0471847 + 0.0700031i
\(816\) 10.6683 + 0.828701i 0.373465 + 0.0290103i
\(817\) 19.1720 + 19.1720i 0.670744 + 0.670744i
\(818\) −43.4672 18.9998i −1.51979 0.664312i
\(819\) 0 0
\(820\) −20.9656 + 28.6434i −0.732152 + 1.00027i
\(821\) −0.830802 −0.0289952 −0.0144976 0.999895i \(-0.504615\pi\)
−0.0144976 + 0.999895i \(0.504615\pi\)
\(822\) −6.84555 2.99223i −0.238766 0.104366i
\(823\) 0.163598 + 0.163598i 0.00570267 + 0.00570267i 0.709952 0.704250i \(-0.248716\pi\)
−0.704250 + 0.709952i \(0.748716\pi\)
\(824\) 10.4925 + 5.07936i 0.365525 + 0.176948i
\(825\) 6.52508 15.3998i 0.227174 0.536153i
\(826\) 0 0
\(827\) 0.00150949 0.00150949i 5.24902e−5 5.24902e-5i −0.707081 0.707133i \(-0.749988\pi\)
0.707133 + 0.707081i \(0.249988\pi\)
\(828\) 20.8961 + 0.810374i 0.726191 + 0.0281624i
\(829\) 42.5293i 1.47710i 0.674197 + 0.738551i \(0.264490\pi\)
−0.674197 + 0.738551i \(0.735510\pi\)
\(830\) 14.3759 + 22.6458i 0.498995 + 0.786046i
\(831\) 18.4497i 0.640012i
\(832\) 5.32172 45.5580i 0.184497 1.57944i
\(833\) 0 0
\(834\) 15.2155 5.95970i 0.526870 0.206368i
\(835\) 5.71991 + 3.85543i 0.197946 + 0.133423i
\(836\) 11.0104 10.1883i 0.380803 0.352370i
\(837\) 13.5572 + 13.5572i 0.468604 + 0.468604i
\(838\) 20.6025 47.1339i 0.711702 1.62821i
\(839\) 49.4733 1.70801 0.854004 0.520267i \(-0.174168\pi\)
0.854004 + 0.520267i \(0.174168\pi\)
\(840\) 0 0
\(841\) 22.4754 0.775014
\(842\) −18.8318 + 43.0829i −0.648986 + 1.48473i
\(843\) −5.38498 5.38498i −0.185469 0.185469i
\(844\) 39.5579 36.6043i 1.36164 1.25997i
\(845\) 43.6176 8.49304i 1.50049 0.292170i
\(846\) 6.79303 2.66073i 0.233549 0.0914778i
\(847\) 0 0
\(848\) 6.65734 + 7.77872i 0.228614 + 0.267122i
\(849\) 14.6249i 0.501925i
\(850\) −12.2535 + 11.5984i −0.420292 + 0.397821i
\(851\) 28.6297i 0.981412i
\(852\) 18.1423 + 0.703579i 0.621546 + 0.0241042i
\(853\) 9.16674 9.16674i 0.313863 0.313863i −0.532541 0.846404i \(-0.678763\pi\)
0.846404 + 0.532541i \(0.178763\pi\)
\(854\) 0 0
\(855\) −9.61757 + 1.87269i −0.328914 + 0.0640448i
\(856\) −12.8375 + 26.5187i −0.438777 + 0.906389i
\(857\) 15.8929 + 15.8929i 0.542890 + 0.542890i 0.924375 0.381485i \(-0.124587\pi\)
−0.381485 + 0.924375i \(0.624587\pi\)
\(858\) 24.8523 + 10.8631i 0.848443 + 0.370860i
\(859\) −8.11716 −0.276954 −0.138477 0.990366i \(-0.544221\pi\)
−0.138477 + 0.990366i \(0.544221\pi\)
\(860\) −47.6665 + 7.37717i −1.62541 + 0.251559i
\(861\) 0 0
\(862\) −40.3191 17.6237i −1.37328 0.600267i
\(863\) −0.344094 0.344094i −0.0117131 0.0117131i 0.701226 0.712939i \(-0.252636\pi\)
−0.712939 + 0.701226i \(0.752636\pi\)
\(864\) −28.7744 + 8.76857i −0.978926 + 0.298313i
\(865\) 43.7395 + 29.4821i 1.48719 + 1.00242i
\(866\) −5.21242 13.3077i −0.177125 0.452213i
\(867\) −8.96335 + 8.96335i −0.304411 + 0.304411i
\(868\) 0 0
\(869\) 24.0516i 0.815895i
\(870\) 7.64545 4.85347i 0.259205 0.164548i
\(871\) 17.8376i 0.604403i
\(872\) −9.53137 27.4186i −0.322773 0.928511i
\(873\) 11.5594 11.5594i 0.391226 0.391226i
\(874\) 19.8569 7.77766i 0.671670 0.263083i
\(875\) 0 0
\(876\) 14.8508 + 16.0492i 0.501763 + 0.542251i
\(877\) 12.6409 + 12.6409i 0.426854 + 0.426854i 0.887555 0.460701i \(-0.152402\pi\)
−0.460701 + 0.887555i \(0.652402\pi\)
\(878\) −0.315567 + 0.721946i −0.0106499 + 0.0243645i
\(879\) 2.04276 0.0689007
\(880\) 3.05652 + 26.5109i 0.103035 + 0.893681i
\(881\) −5.27459 −0.177705 −0.0888527 0.996045i \(-0.528320\pi\)
−0.0888527 + 0.996045i \(0.528320\pi\)
\(882\) 0 0
\(883\) −5.20270 5.20270i −0.175085 0.175085i 0.614124 0.789209i \(-0.289509\pi\)
−0.789209 + 0.614124i \(0.789509\pi\)
\(884\) −18.5830 20.0825i −0.625013 0.675447i
\(885\) 2.93391 4.35273i 0.0986222 0.146315i
\(886\) 32.1166 12.5796i 1.07898 0.422620i
\(887\) −31.6135 + 31.6135i −1.06148 + 1.06148i −0.0634967 + 0.997982i \(0.520225\pi\)
−0.997982 + 0.0634967i \(0.979775\pi\)
\(888\) −4.96944 14.2954i −0.166764 0.479724i
\(889\) 0 0
\(890\) −1.41688 + 6.34295i −0.0474938 + 0.212616i
\(891\) 2.18537i 0.0732127i
\(892\) −0.244012 + 6.29204i −0.00817012 + 0.210673i
\(893\) 5.26083 5.26083i 0.176047 0.176047i
\(894\) −5.59307 14.2795i −0.187060 0.477577i
\(895\) 3.01857 + 15.5024i 0.100900 + 0.518189i
\(896\) 0 0
\(897\) 27.2648 + 27.2648i 0.910346 + 0.910346i
\(898\) 11.2017 + 4.89633i 0.373805 + 0.163393i
\(899\) 9.20972 0.307161
\(900\) 7.41720 15.7739i 0.247240 0.525798i
\(901\) 6.10754 0.203472
\(902\) 30.6877 + 13.4138i 1.02179 + 0.446631i
\(903\) 0 0
\(904\) −12.8199 + 26.4822i −0.426382 + 0.880785i
\(905\) −1.01466 5.21098i −0.0337285 0.173219i
\(906\) 0.638278 + 1.62957i 0.0212054 + 0.0541388i
\(907\) −6.91939 + 6.91939i −0.229755 + 0.229755i −0.812590 0.582836i \(-0.801943\pi\)
0.582836 + 0.812590i \(0.301943\pi\)
\(908\) 16.1189 + 0.625110i 0.534926 + 0.0207450i
\(909\) 13.0129i 0.431610i
\(910\) 0 0
\(911\) 5.81294i 0.192591i −0.995353 0.0962957i \(-0.969301\pi\)
0.995353 0.0962957i \(-0.0306994\pi\)
\(912\) −8.56499 + 7.33026i −0.283615 + 0.242729i
\(913\) 17.8956 17.8956i 0.592257 0.592257i
\(914\) 3.59944 1.40985i 0.119059 0.0466337i
\(915\) −2.66358 + 3.95167i −0.0880551 + 0.130638i
\(916\) 3.57148 3.30481i 0.118005 0.109194i
\(917\) 0 0
\(918\) −7.18681 + 16.4418i −0.237200 + 0.542660i
\(919\) −21.3375 −0.703861 −0.351930 0.936026i \(-0.614475\pi\)
−0.351930 + 0.936026i \(0.614475\pi\)
\(920\) −9.69931 + 36.6773i −0.319777 + 1.20921i
\(921\) 18.4657 0.608465
\(922\) 21.8628 50.0172i 0.720014 1.64723i
\(923\) −32.8275 32.8275i −1.08053 1.08053i
\(924\) 0 0
\(925\) 21.9728 + 9.31014i 0.722462 + 0.306115i
\(926\) −25.1505 + 9.85108i −0.826496 + 0.323727i
\(927\) −5.07990 + 5.07990i −0.166846 + 0.166846i
\(928\) −6.79523 + 12.7519i −0.223064 + 0.418603i
\(929\) 14.5405i 0.477059i 0.971135 + 0.238529i \(0.0766653\pi\)
−0.971135 + 0.238529i \(0.923335\pi\)
\(930\) −10.7919 + 6.85086i −0.353879 + 0.224649i
\(931\) 0 0
\(932\) −20.9210 0.811338i −0.685290 0.0265763i
\(933\) 23.9282 23.9282i 0.783375 0.783375i
\(934\) −6.89224 17.5964i −0.225521 0.575771i
\(935\) 13.2004 + 8.89756i 0.431699 + 0.290981i
\(936\) 25.4426 + 12.3166i 0.831616 + 0.402580i
\(937\) 5.05360 + 5.05360i 0.165094 + 0.165094i 0.784819 0.619725i \(-0.212756\pi\)
−0.619725 + 0.784819i \(0.712756\pi\)
\(938\) 0 0
\(939\) −24.7350 −0.807195
\(940\) 2.02431 + 13.0798i 0.0660256 + 0.426615i
\(941\) −2.89484 −0.0943690 −0.0471845 0.998886i \(-0.515025\pi\)
−0.0471845 + 0.998886i \(0.515025\pi\)
\(942\) 12.6227 + 5.51746i 0.411270 + 0.179768i
\(943\) 33.6668 + 33.6668i 1.09634 + 1.09634i
\(944\) −0.648650 + 8.35040i −0.0211118 + 0.271782i
\(945\) 0 0
\(946\) 16.5975 + 42.3746i 0.539632 + 1.37772i
\(947\) 23.8463 23.8463i 0.774902 0.774902i −0.204057 0.978959i \(-0.565413\pi\)
0.978959 + 0.204057i \(0.0654128\pi\)
\(948\) −0.700447 + 18.0616i −0.0227495 + 0.586613i
\(949\) 55.9118i 1.81497i
\(950\) 0.488072 17.7691i 0.0158352 0.576506i
\(951\) 1.62505i 0.0526960i
\(952\) 0 0
\(953\) 23.9098 23.9098i 0.774513 0.774513i −0.204379 0.978892i \(-0.565517\pi\)
0.978892 + 0.204379i \(0.0655173\pi\)
\(954\) −5.87514 + 2.30121i −0.190215 + 0.0745043i
\(955\) −13.8623 + 2.69920i −0.448572 + 0.0873442i
\(956\) 17.5295 + 18.9439i 0.566943 + 0.612691i
\(957\) −6.04174 6.04174i −0.195302 0.195302i
\(958\) −4.43650 + 10.1497i −0.143337 + 0.327922i
\(959\) 0 0
\(960\) −1.52323 19.9974i −0.0491621 0.645413i
\(961\) 18.0001 0.580649
\(962\) −15.4997 + 35.4598i −0.499730 + 1.14327i
\(963\) −12.8389 12.8389i −0.413727 0.413727i
\(964\) −3.68641 3.98388i −0.118731 0.128312i
\(965\) 39.1640 + 26.3980i 1.26073 + 0.849782i
\(966\) 0 0
\(967\) 2.13618 2.13618i 0.0686949 0.0686949i −0.671925 0.740620i \(-0.734532\pi\)
0.740620 + 0.671925i \(0.234532\pi\)
\(968\) −5.60478 + 1.94836i −0.180144 + 0.0626225i
\(969\) 6.72489i 0.216035i
\(970\) 15.8948 + 25.0383i 0.510350 + 0.803932i
\(971\) 16.5693i 0.531734i 0.964010 + 0.265867i \(0.0856582\pi\)
−0.964010 + 0.265867i \(0.914342\pi\)
\(972\) 1.17276 30.2404i 0.0376162 0.969963i
\(973\) 0 0
\(974\) 1.25836 + 3.21269i 0.0403206 + 0.102941i
\(975\) 29.7916 12.0590i 0.954096 0.386198i
\(976\) 0.588883 7.58099i 0.0188497 0.242662i
\(977\) −0.221322 0.221322i −0.00708071 0.00708071i 0.703558 0.710638i \(-0.251594\pi\)
−0.710638 + 0.703558i \(0.751594\pi\)
\(978\) −1.56583 0.684433i −0.0500697 0.0218858i
\(979\) 6.13213 0.195984
\(980\) 0 0
\(981\) 17.8891 0.571156
\(982\) 43.4370 + 18.9866i 1.38613 + 0.605886i
\(983\) −40.8154 40.8154i −1.30181 1.30181i −0.927172 0.374636i \(-0.877768\pi\)
−0.374636 0.927172i \(-0.622232\pi\)
\(984\) −22.6544 10.9668i −0.722195 0.349610i
\(985\) 1.79141 2.65774i 0.0570792 0.0846825i
\(986\) 3.14357 + 8.02574i 0.100112 + 0.255592i
\(987\) 0 0
\(988\) 28.8049 + 1.11708i 0.916405 + 0.0355391i
\(989\) 64.6969i 2.05724i
\(990\) −16.0505 3.58534i −0.510119 0.113949i
\(991\) 21.9695i 0.697885i −0.937144 0.348942i \(-0.886541\pi\)
0.937144 0.348942i \(-0.113459\pi\)
\(992\) 9.59174 17.9999i 0.304538 0.571496i
\(993\) −22.4953 + 22.4953i −0.713868 + 0.713868i
\(994\) 0 0
\(995\) −4.06634 20.8834i −0.128912 0.662050i
\(996\) −13.9599 + 12.9175i −0.442336 + 0.409308i
\(997\) −5.96367 5.96367i −0.188871 0.188871i 0.606337 0.795208i \(-0.292638\pi\)
−0.795208 + 0.606337i \(0.792638\pi\)
\(998\) −11.7205 + 26.8138i −0.371005 + 0.848776i
\(999\) 25.3796 0.802976
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 980.2.k.k.687.13 36
4.3 odd 2 inner 980.2.k.k.687.3 36
5.3 odd 4 inner 980.2.k.k.883.3 36
7.2 even 3 140.2.w.b.67.2 yes 72
7.3 odd 6 980.2.x.m.667.13 72
7.4 even 3 140.2.w.b.107.13 yes 72
7.5 odd 6 980.2.x.m.67.2 72
7.6 odd 2 980.2.k.j.687.13 36
20.3 even 4 inner 980.2.k.k.883.13 36
28.3 even 6 980.2.x.m.667.10 72
28.11 odd 6 140.2.w.b.107.10 yes 72
28.19 even 6 980.2.x.m.67.14 72
28.23 odd 6 140.2.w.b.67.14 yes 72
28.27 even 2 980.2.k.j.687.3 36
35.2 odd 12 700.2.be.e.543.9 72
35.3 even 12 980.2.x.m.863.14 72
35.4 even 6 700.2.be.e.107.6 72
35.9 even 6 700.2.be.e.207.17 72
35.13 even 4 980.2.k.j.883.3 36
35.18 odd 12 140.2.w.b.23.14 yes 72
35.23 odd 12 140.2.w.b.123.10 yes 72
35.32 odd 12 700.2.be.e.443.5 72
35.33 even 12 980.2.x.m.263.10 72
140.3 odd 12 980.2.x.m.863.2 72
140.23 even 12 140.2.w.b.123.13 yes 72
140.39 odd 6 700.2.be.e.107.9 72
140.67 even 12 700.2.be.e.443.17 72
140.79 odd 6 700.2.be.e.207.5 72
140.83 odd 4 980.2.k.j.883.13 36
140.103 odd 12 980.2.x.m.263.13 72
140.107 even 12 700.2.be.e.543.6 72
140.123 even 12 140.2.w.b.23.2 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.w.b.23.2 72 140.123 even 12
140.2.w.b.23.14 yes 72 35.18 odd 12
140.2.w.b.67.2 yes 72 7.2 even 3
140.2.w.b.67.14 yes 72 28.23 odd 6
140.2.w.b.107.10 yes 72 28.11 odd 6
140.2.w.b.107.13 yes 72 7.4 even 3
140.2.w.b.123.10 yes 72 35.23 odd 12
140.2.w.b.123.13 yes 72 140.23 even 12
700.2.be.e.107.6 72 35.4 even 6
700.2.be.e.107.9 72 140.39 odd 6
700.2.be.e.207.5 72 140.79 odd 6
700.2.be.e.207.17 72 35.9 even 6
700.2.be.e.443.5 72 35.32 odd 12
700.2.be.e.443.17 72 140.67 even 12
700.2.be.e.543.6 72 140.107 even 12
700.2.be.e.543.9 72 35.2 odd 12
980.2.k.j.687.3 36 28.27 even 2
980.2.k.j.687.13 36 7.6 odd 2
980.2.k.j.883.3 36 35.13 even 4
980.2.k.j.883.13 36 140.83 odd 4
980.2.k.k.687.3 36 4.3 odd 2 inner
980.2.k.k.687.13 36 1.1 even 1 trivial
980.2.k.k.883.3 36 5.3 odd 4 inner
980.2.k.k.883.13 36 20.3 even 4 inner
980.2.x.m.67.2 72 7.5 odd 6
980.2.x.m.67.14 72 28.19 even 6
980.2.x.m.263.10 72 35.33 even 12
980.2.x.m.263.13 72 140.103 odd 12
980.2.x.m.667.10 72 28.3 even 6
980.2.x.m.667.13 72 7.3 odd 6
980.2.x.m.863.2 72 140.3 odd 12
980.2.x.m.863.14 72 35.3 even 12