Properties

Label 140.2.w.b.123.10
Level $140$
Weight $2$
Character 140.123
Analytic conductor $1.118$
Analytic rank $0$
Dimension $72$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [140,2,Mod(23,140)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(140, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 9, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("140.23");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 140 = 2^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 140.w (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.11790562830\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(18\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 123.10
Character \(\chi\) \(=\) 140.123
Dual form 140.2.w.b.107.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.157385 + 1.40543i) q^{2} +(0.290169 + 1.08292i) q^{3} +(-1.95046 + 0.442386i) q^{4} +(-2.11448 + 0.727309i) q^{5} +(-1.47630 + 0.578247i) q^{6} +(-2.16744 + 1.51730i) q^{7} +(-0.928715 - 2.67161i) q^{8} +(1.50955 - 0.871538i) q^{9} +O(q^{10})\) \(q+(0.157385 + 1.40543i) q^{2} +(0.290169 + 1.08292i) q^{3} +(-1.95046 + 0.442386i) q^{4} +(-2.11448 + 0.727309i) q^{5} +(-1.47630 + 0.578247i) q^{6} +(-2.16744 + 1.51730i) q^{7} +(-0.928715 - 2.67161i) q^{8} +(1.50955 - 0.871538i) q^{9} +(-1.35497 - 2.85728i) q^{10} +(2.58391 + 1.49182i) q^{11} +(-1.04503 - 1.98383i) q^{12} +(4.05418 + 4.05418i) q^{13} +(-2.47357 - 2.80739i) q^{14} +(-1.40118 - 2.07878i) q^{15} +(3.60859 - 1.72571i) q^{16} +(0.617565 + 2.30478i) q^{17} +(1.46247 + 1.98440i) q^{18} +(-1.25694 - 2.17708i) q^{19} +(3.80246 - 2.35400i) q^{20} +(-2.27204 - 1.90691i) q^{21} +(-1.68998 + 3.86629i) q^{22} +(-5.79414 - 1.55254i) q^{23} +(2.62367 - 1.78095i) q^{24} +(3.94204 - 3.07576i) q^{25} +(-5.05979 + 6.33592i) q^{26} +(3.76010 + 3.76010i) q^{27} +(3.55628 - 3.91827i) q^{28} -2.55433i q^{29} +(2.70105 - 2.29642i) q^{30} +(3.12248 + 1.80277i) q^{31} +(2.99330 + 4.80001i) q^{32} +(-0.865758 + 3.23105i) q^{33} +(-3.14202 + 1.23068i) q^{34} +(3.47947 - 4.78469i) q^{35} +(-2.55876 + 2.36770i) q^{36} +(4.61014 + 1.23528i) q^{37} +(2.86191 - 2.10918i) q^{38} +(-3.21397 + 5.56676i) q^{39} +(3.90683 + 4.97360i) q^{40} -7.93727 q^{41} +(2.32244 - 3.49331i) q^{42} +(7.62646 - 7.62646i) q^{43} +(-5.69977 - 1.76665i) q^{44} +(-2.55803 + 2.94076i) q^{45} +(1.27007 - 8.38760i) q^{46} +(0.765987 - 2.85870i) q^{47} +(2.91592 + 3.40708i) q^{48} +(2.39563 - 6.57731i) q^{49} +(4.94318 + 5.05618i) q^{50} +(-2.31671 + 1.33755i) q^{51} +(-9.70103 - 6.11400i) q^{52} +(-2.47243 + 0.662485i) q^{53} +(-4.69277 + 5.87634i) q^{54} +(-6.54863 - 1.27512i) q^{55} +(6.06656 + 4.38142i) q^{56} +(1.99289 - 1.99289i) q^{57} +(3.58993 - 0.402012i) q^{58} +(1.04694 - 1.81336i) q^{59} +(3.65256 + 3.43471i) q^{60} +(0.950478 + 1.64628i) q^{61} +(-2.04223 + 4.67216i) q^{62} +(-1.94948 + 4.17944i) q^{63} +(-6.27498 + 4.96233i) q^{64} +(-11.5211 - 5.62384i) q^{65} +(-4.67727 - 0.708243i) q^{66} +(3.00512 - 0.805219i) q^{67} +(-2.22414 - 4.22219i) q^{68} -6.72512i q^{69} +(7.27216 + 4.13711i) q^{70} -8.09721i q^{71} +(-3.73035 - 3.22351i) q^{72} +(-9.41954 + 2.52396i) q^{73} +(-1.01054 + 6.67364i) q^{74} +(4.47467 + 3.37645i) q^{75} +(3.41472 + 3.69026i) q^{76} +(-7.86400 + 0.687116i) q^{77} +(-8.32952 - 3.64089i) q^{78} +(4.03058 + 6.98117i) q^{79} +(-6.37516 + 6.27354i) q^{80} +(-0.366226 + 0.634322i) q^{81} +(-1.24921 - 11.1553i) q^{82} +(-5.99790 + 5.99790i) q^{83} +(5.27511 + 2.71422i) q^{84} +(-2.98212 - 4.42426i) q^{85} +(11.9187 + 9.51816i) q^{86} +(2.76614 - 0.741186i) q^{87} +(1.58584 - 8.28866i) q^{88} +(-1.77990 + 1.02763i) q^{89} +(-4.53562 - 3.13230i) q^{90} +(-14.9386 - 2.63582i) q^{91} +(11.9881 + 0.464910i) q^{92} +(-1.04621 + 3.90452i) q^{93} +(4.13826 + 0.626624i) q^{94} +(4.24118 + 3.68921i) q^{95} +(-4.32949 + 4.63434i) q^{96} +(6.63160 - 6.63160i) q^{97} +(9.62097 + 2.33171i) q^{98} +5.20071 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 2 q^{2} - 8 q^{5} - 16 q^{6} - 4 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 72 q + 2 q^{2} - 8 q^{5} - 16 q^{6} - 4 q^{8} + 2 q^{10} + 10 q^{12} - 28 q^{16} + 4 q^{17} - 20 q^{18} - 56 q^{20} + 4 q^{21} - 16 q^{22} - 16 q^{25} - 4 q^{26} + 42 q^{28} - 32 q^{30} - 38 q^{32} - 64 q^{33} + 16 q^{36} - 4 q^{37} + 12 q^{38} + 2 q^{40} - 40 q^{41} + 78 q^{42} - 12 q^{45} - 28 q^{46} + 12 q^{48} - 28 q^{50} + 48 q^{52} - 24 q^{53} + 36 q^{56} - 16 q^{57} + 30 q^{58} - 10 q^{60} - 20 q^{61} + 56 q^{62} + 4 q^{65} + 44 q^{66} - 12 q^{68} + 84 q^{70} + 44 q^{72} - 12 q^{73} + 112 q^{76} + 16 q^{77} + 64 q^{78} + 52 q^{80} - 52 q^{81} - 34 q^{82} + 16 q^{85} + 64 q^{86} + 16 q^{88} - 32 q^{90} + 44 q^{92} + 12 q^{93} - 48 q^{96} - 24 q^{97} - 90 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/140\mathbb{Z}\right)^\times\).

\(n\) \(57\) \(71\) \(101\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.157385 + 1.40543i 0.111288 + 0.993788i
\(3\) 0.290169 + 1.08292i 0.167529 + 0.625227i 0.997704 + 0.0677240i \(0.0215737\pi\)
−0.830175 + 0.557503i \(0.811760\pi\)
\(4\) −1.95046 + 0.442386i −0.975230 + 0.221193i
\(5\) −2.11448 + 0.727309i −0.945624 + 0.325262i
\(6\) −1.47630 + 0.578247i −0.602699 + 0.236068i
\(7\) −2.16744 + 1.51730i −0.819217 + 0.573484i
\(8\) −0.928715 2.67161i −0.328350 0.944556i
\(9\) 1.50955 0.871538i 0.503183 0.290513i
\(10\) −1.35497 2.85728i −0.428478 0.903552i
\(11\) 2.58391 + 1.49182i 0.779077 + 0.449800i 0.836103 0.548572i \(-0.184828\pi\)
−0.0570261 + 0.998373i \(0.518162\pi\)
\(12\) −1.04503 1.98383i −0.301675 0.572684i
\(13\) 4.05418 + 4.05418i 1.12443 + 1.12443i 0.991068 + 0.133359i \(0.0425763\pi\)
0.133359 + 0.991068i \(0.457424\pi\)
\(14\) −2.47357 2.80739i −0.661090 0.750306i
\(15\) −1.40118 2.07878i −0.361782 0.536738i
\(16\) 3.60859 1.72571i 0.902147 0.431428i
\(17\) 0.617565 + 2.30478i 0.149782 + 0.558992i 0.999496 + 0.0317490i \(0.0101077\pi\)
−0.849714 + 0.527243i \(0.823226\pi\)
\(18\) 1.46247 + 1.98440i 0.344706 + 0.467727i
\(19\) −1.25694 2.17708i −0.288362 0.499457i 0.685057 0.728489i \(-0.259777\pi\)
−0.973419 + 0.229032i \(0.926444\pi\)
\(20\) 3.80246 2.35400i 0.850255 0.526371i
\(21\) −2.27204 1.90691i −0.495800 0.416121i
\(22\) −1.68998 + 3.86629i −0.360304 + 0.824295i
\(23\) −5.79414 1.55254i −1.20816 0.323726i −0.402122 0.915586i \(-0.631727\pi\)
−0.806041 + 0.591860i \(0.798394\pi\)
\(24\) 2.62367 1.78095i 0.535553 0.363534i
\(25\) 3.94204 3.07576i 0.788409 0.615152i
\(26\) −5.05979 + 6.33592i −0.992307 + 1.24258i
\(27\) 3.76010 + 3.76010i 0.723632 + 0.723632i
\(28\) 3.55628 3.91827i 0.672074 0.740484i
\(29\) 2.55433i 0.474327i −0.971470 0.237163i \(-0.923782\pi\)
0.971470 0.237163i \(-0.0762177\pi\)
\(30\) 2.70105 2.29642i 0.493142 0.419267i
\(31\) 3.12248 + 1.80277i 0.560815 + 0.323787i 0.753472 0.657479i \(-0.228377\pi\)
−0.192658 + 0.981266i \(0.561711\pi\)
\(32\) 2.99330 + 4.80001i 0.529147 + 0.848530i
\(33\) −0.865758 + 3.23105i −0.150709 + 0.562454i
\(34\) −3.14202 + 1.23068i −0.538851 + 0.211060i
\(35\) 3.47947 4.78469i 0.588138 0.808760i
\(36\) −2.55876 + 2.36770i −0.426460 + 0.394617i
\(37\) 4.61014 + 1.23528i 0.757903 + 0.203079i 0.617021 0.786947i \(-0.288339\pi\)
0.140882 + 0.990026i \(0.455006\pi\)
\(38\) 2.86191 2.10918i 0.464263 0.342154i
\(39\) −3.21397 + 5.56676i −0.514648 + 0.891396i
\(40\) 3.90683 + 4.97360i 0.617724 + 0.786395i
\(41\) −7.93727 −1.23959 −0.619797 0.784763i \(-0.712785\pi\)
−0.619797 + 0.784763i \(0.712785\pi\)
\(42\) 2.32244 3.49331i 0.358360 0.539029i
\(43\) 7.62646 7.62646i 1.16302 1.16302i 0.179215 0.983810i \(-0.442644\pi\)
0.983810 0.179215i \(-0.0573557\pi\)
\(44\) −5.69977 1.76665i −0.859272 0.266332i
\(45\) −2.55803 + 2.94076i −0.381329 + 0.438382i
\(46\) 1.27007 8.38760i 0.187261 1.23668i
\(47\) 0.765987 2.85870i 0.111731 0.416985i −0.887291 0.461210i \(-0.847415\pi\)
0.999022 + 0.0442256i \(0.0140821\pi\)
\(48\) 2.91592 + 3.40708i 0.420876 + 0.491770i
\(49\) 2.39563 6.57731i 0.342232 0.939615i
\(50\) 4.94318 + 5.05618i 0.699071 + 0.715053i
\(51\) −2.31671 + 1.33755i −0.324404 + 0.187295i
\(52\) −9.70103 6.11400i −1.34529 0.847859i
\(53\) −2.47243 + 0.662485i −0.339614 + 0.0909993i −0.424595 0.905383i \(-0.639584\pi\)
0.0849813 + 0.996383i \(0.472917\pi\)
\(54\) −4.69277 + 5.87634i −0.638605 + 0.799668i
\(55\) −6.54863 1.27512i −0.883017 0.171938i
\(56\) 6.06656 + 4.38142i 0.810678 + 0.585492i
\(57\) 1.99289 1.99289i 0.263965 0.263965i
\(58\) 3.58993 0.402012i 0.471380 0.0527868i
\(59\) 1.04694 1.81336i 0.136301 0.236079i −0.789793 0.613374i \(-0.789812\pi\)
0.926094 + 0.377294i \(0.123145\pi\)
\(60\) 3.65256 + 3.43471i 0.471544 + 0.443420i
\(61\) 0.950478 + 1.64628i 0.121696 + 0.210784i 0.920437 0.390892i \(-0.127833\pi\)
−0.798740 + 0.601676i \(0.794500\pi\)
\(62\) −2.04223 + 4.67216i −0.259363 + 0.593365i
\(63\) −1.94948 + 4.17944i −0.245612 + 0.526560i
\(64\) −6.27498 + 4.96233i −0.784372 + 0.620291i
\(65\) −11.5211 5.62384i −1.42902 0.697551i
\(66\) −4.67727 0.708243i −0.575733 0.0871787i
\(67\) 3.00512 0.805219i 0.367134 0.0983732i −0.0705354 0.997509i \(-0.522471\pi\)
0.437669 + 0.899136i \(0.355804\pi\)
\(68\) −2.22414 4.22219i −0.269717 0.512016i
\(69\) 6.72512i 0.809609i
\(70\) 7.27216 + 4.13711i 0.869189 + 0.494480i
\(71\) 8.09721i 0.960962i −0.877005 0.480481i \(-0.840462\pi\)
0.877005 0.480481i \(-0.159538\pi\)
\(72\) −3.73035 3.22351i −0.439626 0.379894i
\(73\) −9.41954 + 2.52396i −1.10247 + 0.295407i −0.763771 0.645487i \(-0.776655\pi\)
−0.338702 + 0.940894i \(0.609988\pi\)
\(74\) −1.01054 + 6.67364i −0.117473 + 0.775795i
\(75\) 4.47467 + 3.37645i 0.516691 + 0.389879i
\(76\) 3.41472 + 3.69026i 0.391695 + 0.423302i
\(77\) −7.86400 + 0.687116i −0.896186 + 0.0783041i
\(78\) −8.32952 3.64089i −0.943133 0.412249i
\(79\) 4.03058 + 6.98117i 0.453476 + 0.785443i 0.998599 0.0529126i \(-0.0168505\pi\)
−0.545123 + 0.838356i \(0.683517\pi\)
\(80\) −6.37516 + 6.27354i −0.712764 + 0.701403i
\(81\) −0.366226 + 0.634322i −0.0406918 + 0.0704802i
\(82\) −1.24921 11.1553i −0.137952 1.23189i
\(83\) −5.99790 + 5.99790i −0.658356 + 0.658356i −0.954991 0.296635i \(-0.904135\pi\)
0.296635 + 0.954991i \(0.404135\pi\)
\(84\) 5.27511 + 2.71422i 0.575562 + 0.296146i
\(85\) −2.98212 4.42426i −0.323456 0.479878i
\(86\) 11.9187 + 9.51816i 1.28523 + 1.02637i
\(87\) 2.76614 0.741186i 0.296562 0.0794635i
\(88\) 1.58584 8.28866i 0.169051 0.883574i
\(89\) −1.77990 + 1.02763i −0.188669 + 0.108928i −0.591359 0.806408i \(-0.701408\pi\)
0.402690 + 0.915336i \(0.368075\pi\)
\(90\) −4.53562 3.13230i −0.478096 0.330174i
\(91\) −14.9386 2.63582i −1.56599 0.276309i
\(92\) 11.9881 + 0.464910i 1.24984 + 0.0484702i
\(93\) −1.04621 + 3.90452i −0.108487 + 0.404880i
\(94\) 4.13826 + 0.626624i 0.426829 + 0.0646313i
\(95\) 4.24118 + 3.68921i 0.435136 + 0.378505i
\(96\) −4.32949 + 4.63434i −0.441877 + 0.472990i
\(97\) 6.63160 6.63160i 0.673337 0.673337i −0.285147 0.958484i \(-0.592042\pi\)
0.958484 + 0.285147i \(0.0920425\pi\)
\(98\) 9.62097 + 2.33171i 0.971865 + 0.235539i
\(99\) 5.20071 0.522691
\(100\) −6.32813 + 7.74305i −0.632813 + 0.774305i
\(101\) 3.73273 6.46529i 0.371421 0.643320i −0.618363 0.785892i \(-0.712204\pi\)
0.989784 + 0.142572i \(0.0455373\pi\)
\(102\) −2.24445 3.04546i −0.222234 0.301545i
\(103\) −3.98105 1.06672i −0.392264 0.105107i 0.0572952 0.998357i \(-0.481752\pi\)
−0.449560 + 0.893250i \(0.648419\pi\)
\(104\) 7.06600 14.5964i 0.692878 1.43129i
\(105\) 6.19109 + 2.37964i 0.604189 + 0.232229i
\(106\) −1.32020 3.37056i −0.128229 0.327377i
\(107\) −2.69601 + 10.0616i −0.260633 + 0.972696i 0.704236 + 0.709966i \(0.251290\pi\)
−0.964869 + 0.262730i \(0.915377\pi\)
\(108\) −8.99734 5.67051i −0.865770 0.545645i
\(109\) 8.88798 + 5.13148i 0.851314 + 0.491507i 0.861094 0.508446i \(-0.169780\pi\)
−0.00977974 + 0.999952i \(0.503113\pi\)
\(110\) 0.761439 9.40432i 0.0726004 0.896666i
\(111\) 5.35088i 0.507883i
\(112\) −5.20300 + 9.21568i −0.491637 + 0.870800i
\(113\) 7.35551 + 7.35551i 0.691948 + 0.691948i 0.962660 0.270712i \(-0.0872592\pi\)
−0.270712 + 0.962660i \(0.587259\pi\)
\(114\) 3.11452 + 2.48722i 0.291701 + 0.232949i
\(115\) 13.3808 0.931326i 1.24776 0.0868466i
\(116\) 1.13000 + 4.98211i 0.104918 + 0.462578i
\(117\) 9.65335 + 2.58661i 0.892453 + 0.239132i
\(118\) 2.71332 + 1.18601i 0.249782 + 0.109181i
\(119\) −4.83558 4.05846i −0.443277 0.372039i
\(120\) −4.25239 + 5.67399i −0.388188 + 0.517962i
\(121\) −1.04895 1.81684i −0.0953593 0.165167i
\(122\) −2.16413 + 1.59493i −0.195932 + 0.144398i
\(123\) −2.30315 8.59546i −0.207668 0.775027i
\(124\) −6.88780 2.13488i −0.618543 0.191718i
\(125\) −6.09835 + 9.37071i −0.545453 + 0.838142i
\(126\) −6.18073 2.08208i −0.550623 0.185486i
\(127\) −13.3832 13.3832i −1.18756 1.18756i −0.977739 0.209826i \(-0.932710\pi\)
−0.209826 0.977739i \(-0.567290\pi\)
\(128\) −7.96178 8.03804i −0.703729 0.710469i
\(129\) 10.4718 + 6.04592i 0.921994 + 0.532314i
\(130\) 6.09065 17.0772i 0.534186 1.49777i
\(131\) 13.2990 7.67817i 1.16194 0.670845i 0.210170 0.977665i \(-0.432598\pi\)
0.951767 + 0.306820i \(0.0992651\pi\)
\(132\) 0.259253 6.68504i 0.0225651 0.581858i
\(133\) 6.02762 + 2.81156i 0.522661 + 0.243793i
\(134\) 1.60464 + 4.09675i 0.138620 + 0.353905i
\(135\) −10.6854 5.21590i −0.919654 0.448913i
\(136\) 5.58394 3.79038i 0.478819 0.325022i
\(137\) 1.21956 + 4.55145i 0.104194 + 0.388857i 0.998252 0.0590931i \(-0.0188209\pi\)
−0.894059 + 0.447950i \(0.852154\pi\)
\(138\) 9.45167 1.05843i 0.804580 0.0900997i
\(139\) 10.3065 0.874185 0.437093 0.899417i \(-0.356008\pi\)
0.437093 + 0.899417i \(0.356008\pi\)
\(140\) −4.66989 + 10.8716i −0.394678 + 0.918820i
\(141\) 3.31802 0.279428
\(142\) 11.3800 1.27438i 0.954992 0.106943i
\(143\) 4.42752 + 16.5237i 0.370248 + 1.38178i
\(144\) 3.94332 5.75007i 0.328610 0.479173i
\(145\) 1.85778 + 5.40107i 0.154281 + 0.448535i
\(146\) −5.02973 12.8413i −0.416264 1.06275i
\(147\) 7.81786 + 0.685754i 0.644806 + 0.0565600i
\(148\) −9.53837 0.369908i −0.784049 0.0304063i
\(149\) −8.37658 + 4.83622i −0.686236 + 0.396199i −0.802201 0.597055i \(-0.796338\pi\)
0.115964 + 0.993253i \(0.463004\pi\)
\(150\) −4.04111 + 6.82023i −0.329955 + 0.556870i
\(151\) 0.955932 + 0.551908i 0.0777927 + 0.0449136i 0.538392 0.842695i \(-0.319032\pi\)
−0.460599 + 0.887608i \(0.652365\pi\)
\(152\) −4.64897 + 5.37994i −0.377082 + 0.436371i
\(153\) 2.94095 + 2.94095i 0.237762 + 0.237762i
\(154\) −2.20337 10.9442i −0.177552 0.881905i
\(155\) −7.91360 1.54090i −0.635635 0.123768i
\(156\) 3.80607 12.2796i 0.304729 0.983152i
\(157\) −2.24878 8.39254i −0.179472 0.669798i −0.995747 0.0921341i \(-0.970631\pi\)
0.816275 0.577664i \(-0.196036\pi\)
\(158\) −9.17719 + 6.76343i −0.730098 + 0.538069i
\(159\) −1.43484 2.48522i −0.113790 0.197091i
\(160\) −9.82037 7.97247i −0.776369 0.630279i
\(161\) 14.9141 5.42640i 1.17540 0.427660i
\(162\) −0.949133 0.414872i −0.0745709 0.0325954i
\(163\) 1.04108 + 0.278958i 0.0815440 + 0.0218496i 0.299360 0.954140i \(-0.403227\pi\)
−0.217816 + 0.975990i \(0.569893\pi\)
\(164\) 15.4813 3.51134i 1.20889 0.274190i
\(165\) −0.519346 7.46167i −0.0404310 0.580890i
\(166\) −9.37361 7.48565i −0.727533 0.580999i
\(167\) −2.18132 2.18132i −0.168796 0.168796i 0.617654 0.786450i \(-0.288083\pi\)
−0.786450 + 0.617654i \(0.788083\pi\)
\(168\) −2.98443 + 7.84098i −0.230253 + 0.604944i
\(169\) 19.8727i 1.52867i
\(170\) 5.74864 4.88747i 0.440901 0.374852i
\(171\) −3.79482 2.19094i −0.290197 0.167546i
\(172\) −11.5013 + 18.2490i −0.876963 + 1.39147i
\(173\) 6.10543 22.7858i 0.464187 1.73237i −0.195383 0.980727i \(-0.562595\pi\)
0.659570 0.751643i \(-0.270738\pi\)
\(174\) 1.47703 + 3.77097i 0.111974 + 0.285876i
\(175\) −3.87733 + 12.6478i −0.293098 + 0.956082i
\(176\) 11.8987 + 0.924279i 0.896899 + 0.0696701i
\(177\) 2.26752 + 0.607581i 0.170437 + 0.0456686i
\(178\) −1.72438 2.33979i −0.129248 0.175375i
\(179\) 3.53155 6.11682i 0.263960 0.457193i −0.703330 0.710863i \(-0.748305\pi\)
0.967291 + 0.253670i \(0.0816379\pi\)
\(180\) 3.68839 6.86747i 0.274916 0.511871i
\(181\) −2.37419 −0.176472 −0.0882360 0.996100i \(-0.528123\pi\)
−0.0882360 + 0.996100i \(0.528123\pi\)
\(182\) 1.35335 21.4100i 0.100317 1.58701i
\(183\) −1.50699 + 1.50699i −0.111400 + 0.111400i
\(184\) 1.23334 + 16.9215i 0.0909232 + 1.24747i
\(185\) −10.6465 + 0.741014i −0.782745 + 0.0544805i
\(186\) −5.65218 0.855866i −0.414438 0.0627551i
\(187\) −1.84259 + 6.87664i −0.134744 + 0.502870i
\(188\) −0.229376 + 5.91465i −0.0167290 + 0.431370i
\(189\) −13.8550 2.44462i −1.00780 0.177820i
\(190\) −4.51743 + 6.54131i −0.327729 + 0.474556i
\(191\) 5.46966 3.15791i 0.395771 0.228498i −0.288887 0.957363i \(-0.593285\pi\)
0.684658 + 0.728865i \(0.259952\pi\)
\(192\) −7.19463 5.35541i −0.519227 0.386494i
\(193\) −20.4022 + 5.46675i −1.46858 + 0.393505i −0.902445 0.430806i \(-0.858229\pi\)
−0.566137 + 0.824311i \(0.691563\pi\)
\(194\) 10.3639 + 8.27652i 0.744088 + 0.594220i
\(195\) 2.74712 14.1084i 0.196726 1.01032i
\(196\) −1.76286 + 13.8886i −0.125919 + 0.992041i
\(197\) −1.01354 + 1.01354i −0.0722120 + 0.0722120i −0.742290 0.670078i \(-0.766260\pi\)
0.670078 + 0.742290i \(0.266260\pi\)
\(198\) 0.818513 + 7.30923i 0.0581692 + 0.519444i
\(199\) −4.75738 + 8.24003i −0.337242 + 0.584120i −0.983913 0.178649i \(-0.942827\pi\)
0.646671 + 0.762769i \(0.276161\pi\)
\(200\) −11.8783 7.67509i −0.839919 0.542711i
\(201\) 1.74398 + 3.02067i 0.123011 + 0.213061i
\(202\) 9.67397 + 4.22855i 0.680658 + 0.297520i
\(203\) 3.87567 + 5.53636i 0.272019 + 0.388576i
\(204\) 3.92693 3.63372i 0.274940 0.254412i
\(205\) 16.7832 5.77284i 1.17219 0.403193i
\(206\) 0.872641 5.76297i 0.0607998 0.401525i
\(207\) −10.0996 + 2.70619i −0.701973 + 0.188093i
\(208\) 21.6262 + 7.63351i 1.49951 + 0.529289i
\(209\) 7.50050i 0.518821i
\(210\) −2.37003 + 9.07566i −0.163547 + 0.626280i
\(211\) 26.9476i 1.85515i 0.373634 + 0.927576i \(0.378112\pi\)
−0.373634 + 0.927576i \(0.621888\pi\)
\(212\) 4.52930 2.38592i 0.311073 0.163866i
\(213\) 8.76866 2.34956i 0.600819 0.160989i
\(214\) −14.5652 2.20550i −0.995659 0.150765i
\(215\) −10.5792 + 21.6728i −0.721496 + 1.47807i
\(216\) 6.55345 13.5376i 0.445906 0.921116i
\(217\) −9.50314 + 0.830336i −0.645115 + 0.0563668i
\(218\) −5.81310 + 13.2990i −0.393712 + 0.900725i
\(219\) −5.46651 9.46827i −0.369393 0.639807i
\(220\) 13.3369 0.409948i 0.899176 0.0276387i
\(221\) −6.84029 + 11.8477i −0.460128 + 0.796964i
\(222\) −7.52028 + 0.842147i −0.504728 + 0.0565212i
\(223\) 2.22624 2.22624i 0.149080 0.149080i −0.628627 0.777707i \(-0.716383\pi\)
0.777707 + 0.628627i \(0.216383\pi\)
\(224\) −13.7709 5.86203i −0.920104 0.391673i
\(225\) 3.27007 8.07865i 0.218004 0.538577i
\(226\) −9.18000 + 11.4953i −0.610645 + 0.764655i
\(227\) −7.79070 + 2.08751i −0.517087 + 0.138553i −0.507919 0.861405i \(-0.669585\pi\)
−0.00916824 + 0.999958i \(0.502918\pi\)
\(228\) −3.00543 + 4.76868i −0.199039 + 0.315814i
\(229\) −2.10701 + 1.21648i −0.139235 + 0.0803873i −0.567999 0.823029i \(-0.692282\pi\)
0.428764 + 0.903416i \(0.358949\pi\)
\(230\) 3.41484 + 18.6591i 0.225168 + 1.23035i
\(231\) −3.02598 8.31674i −0.199095 0.547201i
\(232\) −6.82416 + 2.37224i −0.448028 + 0.155745i
\(233\) 2.70941 10.1117i 0.177499 0.662437i −0.818613 0.574346i \(-0.805257\pi\)
0.996112 0.0880913i \(-0.0280767\pi\)
\(234\) −2.11600 + 13.9742i −0.138327 + 0.913522i
\(235\) 0.459495 + 6.60178i 0.0299742 + 0.430652i
\(236\) −1.23982 + 4.00004i −0.0807052 + 0.260381i
\(237\) −6.39053 + 6.39053i −0.415110 + 0.415110i
\(238\) 4.94283 7.43480i 0.320396 0.481927i
\(239\) 12.9050 0.834754 0.417377 0.908733i \(-0.362949\pi\)
0.417377 + 0.908733i \(0.362949\pi\)
\(240\) −8.64364 5.08343i −0.557945 0.328134i
\(241\) −1.35695 + 2.35030i −0.0874087 + 0.151396i −0.906415 0.422388i \(-0.861192\pi\)
0.819006 + 0.573784i \(0.194525\pi\)
\(242\) 2.38835 1.76017i 0.153529 0.113148i
\(243\) 14.6160 + 3.91634i 0.937616 + 0.251234i
\(244\) −2.58216 2.79052i −0.165306 0.178645i
\(245\) −0.281771 + 15.6499i −0.0180017 + 0.999838i
\(246\) 11.7178 4.58970i 0.747101 0.292629i
\(247\) 3.73043 13.9221i 0.237361 0.885845i
\(248\) 1.91639 10.0163i 0.121691 0.636036i
\(249\) −8.23568 4.75487i −0.521915 0.301328i
\(250\) −14.1297 7.09598i −0.893638 0.448789i
\(251\) 3.15358i 0.199052i −0.995035 0.0995262i \(-0.968267\pi\)
0.995035 0.0995262i \(-0.0317327\pi\)
\(252\) 1.95346 9.01426i 0.123056 0.567845i
\(253\) −12.6554 12.6554i −0.795640 0.795640i
\(254\) 16.7028 20.9154i 1.04803 1.31235i
\(255\) 3.92582 4.51319i 0.245844 0.282627i
\(256\) 10.0438 12.4548i 0.627739 0.778424i
\(257\) −15.9053 4.26180i −0.992143 0.265844i −0.273993 0.961732i \(-0.588344\pi\)
−0.718151 + 0.695888i \(0.755011\pi\)
\(258\) −6.84900 + 15.6690i −0.426400 + 0.975507i
\(259\) −11.8665 + 4.31754i −0.737350 + 0.268279i
\(260\) 24.9594 + 5.87229i 1.54792 + 0.364184i
\(261\) −2.22619 3.85588i −0.137798 0.238673i
\(262\) 12.8842 + 17.4823i 0.795987 + 1.08006i
\(263\) −7.55474 28.1947i −0.465845 1.73856i −0.654072 0.756432i \(-0.726941\pi\)
0.188227 0.982126i \(-0.439726\pi\)
\(264\) 9.43615 0.687763i 0.580755 0.0423289i
\(265\) 4.74607 3.19903i 0.291549 0.196515i
\(266\) −3.00279 + 8.91389i −0.184113 + 0.546546i
\(267\) −1.62931 1.62931i −0.0997123 0.0997123i
\(268\) −5.50515 + 2.89997i −0.336280 + 0.177144i
\(269\) −5.29203 3.05536i −0.322661 0.186288i 0.329917 0.944010i \(-0.392979\pi\)
−0.652578 + 0.757721i \(0.726313\pi\)
\(270\) 5.64886 15.8385i 0.343778 0.963900i
\(271\) 19.0699 11.0100i 1.15841 0.668810i 0.207489 0.978237i \(-0.433471\pi\)
0.950923 + 0.309428i \(0.100137\pi\)
\(272\) 6.20594 + 7.25128i 0.376290 + 0.439673i
\(273\) −1.48032 16.9422i −0.0895932 1.02539i
\(274\) −6.20480 + 2.43033i −0.374846 + 0.146822i
\(275\) 14.7743 2.06665i 0.890927 0.124624i
\(276\) 2.97510 + 13.1171i 0.179080 + 0.789555i
\(277\) −4.25922 15.8956i −0.255912 0.955077i −0.967581 0.252561i \(-0.918727\pi\)
0.711669 0.702515i \(-0.247940\pi\)
\(278\) 1.62209 + 14.4850i 0.0972862 + 0.868755i
\(279\) 6.28472 0.376257
\(280\) −16.0143 4.85217i −0.957035 0.289973i
\(281\) 6.79274 0.405221 0.202610 0.979259i \(-0.435057\pi\)
0.202610 + 0.979259i \(0.435057\pi\)
\(282\) 0.522207 + 4.66325i 0.0310970 + 0.277692i
\(283\) −3.37625 12.6003i −0.200697 0.749013i −0.990718 0.135932i \(-0.956597\pi\)
0.790021 0.613080i \(-0.210070\pi\)
\(284\) 3.58209 + 15.7933i 0.212558 + 0.937159i
\(285\) −2.76448 + 5.66338i −0.163754 + 0.335469i
\(286\) −22.5261 + 8.82314i −1.33200 + 0.521723i
\(287\) 17.2036 12.0432i 1.01550 0.710887i
\(288\) 8.70194 + 4.63707i 0.512767 + 0.273242i
\(289\) 9.79179 5.65329i 0.575987 0.332546i
\(290\) −7.29844 + 3.46103i −0.428579 + 0.203239i
\(291\) 9.10580 + 5.25724i 0.533791 + 0.308185i
\(292\) 17.2559 9.08995i 1.00982 0.531949i
\(293\) −1.28839 1.28839i −0.0752688 0.0752688i 0.668470 0.743739i \(-0.266949\pi\)
−0.743739 + 0.668470i \(0.766949\pi\)
\(294\) 0.266634 + 11.0954i 0.0155504 + 0.647095i
\(295\) −0.894869 + 4.59577i −0.0521013 + 0.267576i
\(296\) −0.981316 13.4637i −0.0570378 0.782563i
\(297\) 4.10636 + 15.3251i 0.238275 + 0.889255i
\(298\) −8.11531 11.0115i −0.470107 0.637882i
\(299\) −17.1962 29.7848i −0.994484 1.72250i
\(300\) −10.2214 4.60609i −0.590131 0.265933i
\(301\) −4.95833 + 28.1015i −0.285793 + 1.61975i
\(302\) −0.625218 + 1.43036i −0.0359772 + 0.0823078i
\(303\) 8.08454 + 2.16625i 0.464445 + 0.124448i
\(304\) −8.29280 5.68708i −0.475625 0.326176i
\(305\) −3.20712 2.78973i −0.183639 0.159739i
\(306\) −3.67044 + 4.59616i −0.209825 + 0.262745i
\(307\) 11.6465 + 11.6465i 0.664701 + 0.664701i 0.956484 0.291783i \(-0.0942486\pi\)
−0.291783 + 0.956484i \(0.594249\pi\)
\(308\) 15.0345 4.81912i 0.856667 0.274595i
\(309\) 4.62070i 0.262863i
\(310\) 0.920151 11.3645i 0.0522610 0.645461i
\(311\) −26.1398 15.0918i −1.48225 0.855778i −0.482454 0.875922i \(-0.660254\pi\)
−0.999797 + 0.0201436i \(0.993588\pi\)
\(312\) 17.8571 + 3.41654i 1.01096 + 0.193423i
\(313\) 5.71023 21.3109i 0.322761 1.20456i −0.593782 0.804626i \(-0.702366\pi\)
0.916543 0.399935i \(-0.130967\pi\)
\(314\) 11.4412 4.48135i 0.645664 0.252897i
\(315\) 1.08239 10.2552i 0.0609859 0.577816i
\(316\) −10.9499 11.8334i −0.615978 0.665682i
\(317\) 1.40009 + 0.375154i 0.0786372 + 0.0210708i 0.297923 0.954590i \(-0.403706\pi\)
−0.219286 + 0.975661i \(0.570373\pi\)
\(318\) 3.26698 2.40770i 0.183203 0.135017i
\(319\) 3.81059 6.60014i 0.213352 0.369537i
\(320\) 9.65916 15.0566i 0.539964 0.841688i
\(321\) −11.6783 −0.651819
\(322\) 9.97367 + 20.1067i 0.555811 + 1.12050i
\(323\) 4.24147 4.24147i 0.236001 0.236001i
\(324\) 0.433694 1.39923i 0.0240941 0.0777352i
\(325\) 28.4514 + 3.51208i 1.57820 + 0.194815i
\(326\) −0.228204 + 1.50707i −0.0126391 + 0.0834691i
\(327\) −2.97799 + 11.1140i −0.164683 + 0.614606i
\(328\) 7.37146 + 21.2053i 0.407021 + 1.17087i
\(329\) 2.67726 + 7.35831i 0.147602 + 0.405677i
\(330\) 10.4051 1.90426i 0.572782 0.104826i
\(331\) −24.5744 + 14.1881i −1.35073 + 0.779846i −0.988352 0.152184i \(-0.951369\pi\)
−0.362381 + 0.932030i \(0.618036\pi\)
\(332\) 9.04528 14.3521i 0.496424 0.787672i
\(333\) 8.03583 2.15320i 0.440361 0.117994i
\(334\) 2.72239 3.40900i 0.148962 0.186532i
\(335\) −5.76862 + 3.88827i −0.315173 + 0.212439i
\(336\) −11.4896 2.96035i −0.626811 0.161500i
\(337\) −11.7829 + 11.7829i −0.641857 + 0.641857i −0.951012 0.309155i \(-0.899954\pi\)
0.309155 + 0.951012i \(0.399954\pi\)
\(338\) −27.9297 + 3.12767i −1.51918 + 0.170123i
\(339\) −5.83112 + 10.0998i −0.316703 + 0.548546i
\(340\) 7.77374 + 7.31009i 0.421590 + 0.396445i
\(341\) 5.37880 + 9.31636i 0.291279 + 0.504509i
\(342\) 2.48197 5.67817i 0.134209 0.307041i
\(343\) 4.78733 + 17.8908i 0.258492 + 0.966013i
\(344\) −27.4577 13.2921i −1.48042 0.716662i
\(345\) 4.89124 + 14.2201i 0.263335 + 0.765586i
\(346\) 32.9847 + 4.99461i 1.77327 + 0.268512i
\(347\) −15.4205 + 4.13190i −0.827815 + 0.221812i −0.647760 0.761844i \(-0.724294\pi\)
−0.180055 + 0.983657i \(0.557627\pi\)
\(348\) −5.06736 + 2.66936i −0.271639 + 0.143093i
\(349\) 7.52656i 0.402888i 0.979500 + 0.201444i \(0.0645633\pi\)
−0.979500 + 0.201444i \(0.935437\pi\)
\(350\) −18.3858 3.45874i −0.982762 0.184877i
\(351\) 30.4882i 1.62734i
\(352\) 0.573668 + 16.8683i 0.0305766 + 0.899081i
\(353\) −5.41550 + 1.45108i −0.288238 + 0.0772331i −0.400041 0.916497i \(-0.631004\pi\)
0.111803 + 0.993730i \(0.464337\pi\)
\(354\) −0.497038 + 3.28247i −0.0264173 + 0.174461i
\(355\) 5.88917 + 17.1214i 0.312565 + 0.908708i
\(356\) 3.01702 2.79175i 0.159902 0.147962i
\(357\) 2.99187 6.41420i 0.158347 0.339476i
\(358\) 9.15257 + 4.00064i 0.483728 + 0.211441i
\(359\) 18.2143 + 31.5480i 0.961311 + 1.66504i 0.719215 + 0.694788i \(0.244502\pi\)
0.242097 + 0.970252i \(0.422165\pi\)
\(360\) 10.2322 + 4.10293i 0.539286 + 0.216244i
\(361\) 6.34021 10.9816i 0.333695 0.577977i
\(362\) −0.373661 3.33675i −0.0196392 0.175376i
\(363\) 1.66313 1.66313i 0.0872915 0.0872915i
\(364\) 30.3032 1.46757i 1.58832 0.0769217i
\(365\) 18.0817 12.1878i 0.946440 0.637937i
\(366\) −2.35515 1.88080i −0.123106 0.0983107i
\(367\) 31.5816 8.46227i 1.64855 0.441727i 0.689342 0.724436i \(-0.257900\pi\)
0.959206 + 0.282709i \(0.0912332\pi\)
\(368\) −23.5879 + 4.39657i −1.22961 + 0.229187i
\(369\) −11.9817 + 6.91763i −0.623742 + 0.360118i
\(370\) −2.71704 14.8463i −0.141252 0.771820i
\(371\) 4.35366 5.18730i 0.226031 0.269311i
\(372\) 0.313291 8.07844i 0.0162434 0.418848i
\(373\) −6.76877 + 25.2614i −0.350474 + 1.30799i 0.535612 + 0.844464i \(0.320081\pi\)
−0.886086 + 0.463522i \(0.846586\pi\)
\(374\) −9.95463 1.50735i −0.514742 0.0779433i
\(375\) −11.9173 3.88496i −0.615408 0.200618i
\(376\) −8.34872 + 0.608504i −0.430552 + 0.0313812i
\(377\) 10.3557 10.3557i 0.533346 0.533346i
\(378\) 1.25518 19.8570i 0.0645594 1.02133i
\(379\) −20.3769 −1.04669 −0.523344 0.852121i \(-0.675316\pi\)
−0.523344 + 0.852121i \(0.675316\pi\)
\(380\) −9.90432 5.31942i −0.508081 0.272881i
\(381\) 10.6096 18.3763i 0.543546 0.941449i
\(382\) 5.29906 + 7.19021i 0.271124 + 0.367883i
\(383\) −24.6635 6.60856i −1.26025 0.337682i −0.433960 0.900932i \(-0.642884\pi\)
−0.826286 + 0.563250i \(0.809551\pi\)
\(384\) 6.39433 10.9544i 0.326309 0.559014i
\(385\) 16.1285 7.17245i 0.821986 0.365542i
\(386\) −10.8941 27.8134i −0.554496 1.41567i
\(387\) 4.86576 18.1593i 0.247341 0.923088i
\(388\) −10.0009 + 15.8684i −0.507721 + 0.805595i
\(389\) 15.6310 + 9.02458i 0.792525 + 0.457564i 0.840851 0.541267i \(-0.182055\pi\)
−0.0483257 + 0.998832i \(0.515389\pi\)
\(390\) 20.2606 + 1.64044i 1.02594 + 0.0830671i
\(391\) 14.3130i 0.723842i
\(392\) −19.7968 0.291730i −0.999891 0.0147346i
\(393\) 12.1738 + 12.1738i 0.614088 + 0.614088i
\(394\) −1.58398 1.26495i −0.0797998 0.0637272i
\(395\) −13.6000 11.8301i −0.684293 0.595235i
\(396\) −10.1438 + 2.30072i −0.509744 + 0.115616i
\(397\) −29.0617 7.78706i −1.45857 0.390821i −0.559571 0.828782i \(-0.689034\pi\)
−0.898994 + 0.437961i \(0.855701\pi\)
\(398\) −12.3295 5.38931i −0.618022 0.270141i
\(399\) −1.29568 + 7.34329i −0.0648649 + 0.367624i
\(400\) 8.91734 17.9020i 0.445867 0.895099i
\(401\) −2.44780 4.23972i −0.122237 0.211721i 0.798412 0.602111i \(-0.205674\pi\)
−0.920650 + 0.390390i \(0.872340\pi\)
\(402\) −3.97086 + 2.92645i −0.198048 + 0.145958i
\(403\) 5.35037 + 19.9678i 0.266521 + 0.994669i
\(404\) −4.42040 + 14.2616i −0.219923 + 0.709541i
\(405\) 0.313029 1.60762i 0.0155546 0.0798833i
\(406\) −7.17099 + 6.31832i −0.355890 + 0.313573i
\(407\) 10.0694 + 10.0694i 0.499119 + 0.499119i
\(408\) 5.72498 + 4.94713i 0.283429 + 0.244920i
\(409\) −29.0499 16.7720i −1.43642 0.829320i −0.438825 0.898573i \(-0.644605\pi\)
−0.997599 + 0.0692530i \(0.977938\pi\)
\(410\) 10.7547 + 22.6790i 0.531139 + 1.12004i
\(411\) −4.57500 + 2.64138i −0.225668 + 0.130290i
\(412\) 8.23678 + 0.319431i 0.405797 + 0.0157372i
\(413\) 0.482212 + 5.51888i 0.0237281 + 0.271566i
\(414\) −5.39289 13.7684i −0.265046 0.676680i
\(415\) 8.32012 17.0448i 0.408418 0.836695i
\(416\) −7.32472 + 31.5955i −0.359124 + 1.54910i
\(417\) 2.99062 + 11.1611i 0.146451 + 0.546564i
\(418\) 10.5414 1.18047i 0.515598 0.0577385i
\(419\) −36.3735 −1.77696 −0.888481 0.458914i \(-0.848239\pi\)
−0.888481 + 0.458914i \(0.848239\pi\)
\(420\) −13.1282 1.90253i −0.640590 0.0928342i
\(421\) −33.2473 −1.62038 −0.810188 0.586170i \(-0.800635\pi\)
−0.810188 + 0.586170i \(0.800635\pi\)
\(422\) −37.8730 + 4.24115i −1.84363 + 0.206456i
\(423\) −1.33517 4.98294i −0.0649184 0.242279i
\(424\) 4.06608 + 5.99010i 0.197466 + 0.290905i
\(425\) 9.52343 + 7.18608i 0.461954 + 0.348576i
\(426\) 4.68219 + 11.9539i 0.226853 + 0.579171i
\(427\) −4.55800 2.12606i −0.220577 0.102887i
\(428\) 0.807325 20.8175i 0.0390235 1.00625i
\(429\) −16.6092 + 9.58933i −0.801900 + 0.462977i
\(430\) −32.1246 11.4573i −1.54918 0.552522i
\(431\) 26.9460 + 15.5573i 1.29794 + 0.749367i 0.980048 0.198759i \(-0.0636910\pi\)
0.317894 + 0.948126i \(0.397024\pi\)
\(432\) 20.0575 + 7.07980i 0.965018 + 0.340627i
\(433\) 7.14603 + 7.14603i 0.343416 + 0.343416i 0.857650 0.514234i \(-0.171924\pi\)
−0.514234 + 0.857650i \(0.671924\pi\)
\(434\) −2.66263 13.2253i −0.127810 0.634835i
\(435\) −5.30988 + 3.57906i −0.254589 + 0.171603i
\(436\) −19.6058 6.07682i −0.938945 0.291027i
\(437\) 3.90289 + 14.5658i 0.186700 + 0.696776i
\(438\) 12.4466 9.17295i 0.594723 0.438301i
\(439\) −0.278565 0.482489i −0.0132952 0.0230280i 0.859301 0.511470i \(-0.170899\pi\)
−0.872596 + 0.488442i \(0.837565\pi\)
\(440\) 2.67518 + 18.6796i 0.127534 + 0.890515i
\(441\) −2.11606 12.0166i −0.100765 0.572221i
\(442\) −17.7277 7.74889i −0.843221 0.368577i
\(443\) 23.5587 + 6.31254i 1.11931 + 0.299918i 0.770604 0.637315i \(-0.219955\pi\)
0.348705 + 0.937233i \(0.386621\pi\)
\(444\) −2.36715 10.4367i −0.112340 0.495302i
\(445\) 3.01616 3.46743i 0.142980 0.164372i
\(446\) 3.47920 + 2.77845i 0.164745 + 0.131563i
\(447\) −7.66789 7.66789i −0.362679 0.362679i
\(448\) 6.07134 20.2766i 0.286844 0.957977i
\(449\) 8.64441i 0.407955i −0.978976 0.203978i \(-0.934613\pi\)
0.978976 0.203978i \(-0.0653870\pi\)
\(450\) 11.8686 + 3.32439i 0.559492 + 0.156713i
\(451\) −20.5092 11.8410i −0.965738 0.557569i
\(452\) −17.6006 11.0927i −0.827863 0.521754i
\(453\) −0.320293 + 1.19535i −0.0150487 + 0.0561624i
\(454\) −4.15999 10.6207i −0.195238 0.498456i
\(455\) 33.5044 5.29159i 1.57071 0.248073i
\(456\) −7.17505 3.47340i −0.336003 0.162657i
\(457\) −2.64033 0.707473i −0.123509 0.0330942i 0.196535 0.980497i \(-0.437031\pi\)
−0.320044 + 0.947403i \(0.603698\pi\)
\(458\) −2.04129 2.76979i −0.0953831 0.129424i
\(459\) −6.34412 + 10.9883i −0.296118 + 0.512891i
\(460\) −25.6867 + 7.73598i −1.19765 + 0.360692i
\(461\) 38.5986 1.79772 0.898858 0.438239i \(-0.144398\pi\)
0.898858 + 0.438239i \(0.144398\pi\)
\(462\) 11.2123 5.56173i 0.521645 0.258755i
\(463\) 13.5055 13.5055i 0.627652 0.627652i −0.319824 0.947477i \(-0.603624\pi\)
0.947477 + 0.319824i \(0.103624\pi\)
\(464\) −4.40804 9.21752i −0.204638 0.427913i
\(465\) −0.627596 9.01695i −0.0291041 0.418151i
\(466\) 14.6376 + 2.21646i 0.678075 + 0.102676i
\(467\) −3.45858 + 12.9076i −0.160044 + 0.597292i 0.838577 + 0.544784i \(0.183388\pi\)
−0.998620 + 0.0525083i \(0.983278\pi\)
\(468\) −19.9728 0.774565i −0.923241 0.0358043i
\(469\) −5.29167 + 6.30492i −0.244347 + 0.291134i
\(470\) −9.20601 + 1.68481i −0.424641 + 0.0777144i
\(471\) 8.43596 4.87051i 0.388709 0.224421i
\(472\) −5.81690 1.11293i −0.267745 0.0512267i
\(473\) 31.0834 8.32876i 1.42921 0.382957i
\(474\) −9.98721 7.97567i −0.458728 0.366335i
\(475\) −11.6511 4.71612i −0.534589 0.216390i
\(476\) 11.2270 + 5.77668i 0.514589 + 0.264774i
\(477\) −3.15487 + 3.15487i −0.144452 + 0.144452i
\(478\) 2.03105 + 18.1370i 0.0928980 + 0.829569i
\(479\) −3.91630 + 6.78323i −0.178940 + 0.309934i −0.941518 0.336963i \(-0.890600\pi\)
0.762578 + 0.646897i \(0.223934\pi\)
\(480\) 5.78402 12.9481i 0.264003 0.590996i
\(481\) 13.6823 + 23.6984i 0.623858 + 1.08055i
\(482\) −3.51675 1.53719i −0.160183 0.0700172i
\(483\) 10.2040 + 14.5763i 0.464298 + 0.663245i
\(484\) 2.84968 + 3.07963i 0.129531 + 0.139983i
\(485\) −9.19915 + 18.8456i −0.417712 + 0.855734i
\(486\) −3.20381 + 21.1581i −0.145328 + 0.959751i
\(487\) −2.35662 + 0.631456i −0.106789 + 0.0286140i −0.311818 0.950142i \(-0.600938\pi\)
0.205029 + 0.978756i \(0.434271\pi\)
\(488\) 3.51548 4.06823i 0.159138 0.184160i
\(489\) 1.20836i 0.0546439i
\(490\) −22.0392 + 2.06705i −0.995631 + 0.0933800i
\(491\) 33.5206i 1.51276i 0.654130 + 0.756382i \(0.273035\pi\)
−0.654130 + 0.756382i \(0.726965\pi\)
\(492\) 8.29471 + 15.7462i 0.373954 + 0.709895i
\(493\) 5.88718 1.57746i 0.265145 0.0710454i
\(494\) 20.1537 + 3.05171i 0.906757 + 0.137303i
\(495\) −10.9968 + 3.78252i −0.494269 + 0.170012i
\(496\) 14.3788 + 1.11693i 0.645628 + 0.0501517i
\(497\) 12.2859 + 17.5502i 0.551096 + 0.787236i
\(498\) 5.38646 12.3230i 0.241373 0.552207i
\(499\) −10.3462 17.9201i −0.463159 0.802216i 0.535957 0.844245i \(-0.319951\pi\)
−0.999116 + 0.0420297i \(0.986618\pi\)
\(500\) 7.74911 20.9750i 0.346551 0.938031i
\(501\) 1.72926 2.99516i 0.0772575 0.133814i
\(502\) 4.43214 0.496326i 0.197816 0.0221521i
\(503\) −4.35918 + 4.35918i −0.194366 + 0.194366i −0.797580 0.603214i \(-0.793887\pi\)
0.603214 + 0.797580i \(0.293887\pi\)
\(504\) 12.9763 + 1.32674i 0.578012 + 0.0590975i
\(505\) −3.19053 + 16.3856i −0.141977 + 0.729148i
\(506\) 15.7945 19.7781i 0.702152 0.879242i
\(507\) −21.5207 + 5.76644i −0.955766 + 0.256097i
\(508\) 32.0239 + 20.1828i 1.42083 + 0.895468i
\(509\) 26.4887 15.2933i 1.17409 0.677862i 0.219451 0.975623i \(-0.429573\pi\)
0.954640 + 0.297761i \(0.0962400\pi\)
\(510\) 6.96083 + 4.80715i 0.308231 + 0.212864i
\(511\) 16.5867 19.7628i 0.733754 0.874253i
\(512\) 19.0851 + 12.1557i 0.843448 + 0.537211i
\(513\) 3.45983 12.9123i 0.152755 0.570091i
\(514\) 3.48641 23.0245i 0.153779 1.01557i
\(515\) 9.19368 0.639897i 0.405122 0.0281972i
\(516\) −23.0995 7.15973i −1.01690 0.315189i
\(517\) 6.24391 6.24391i 0.274607 0.274607i
\(518\) −7.93561 15.9980i −0.348671 0.702913i
\(519\) 26.4469 1.16089
\(520\) −4.32485 + 36.0028i −0.189657 + 1.57883i
\(521\) −4.68273 + 8.11072i −0.205154 + 0.355337i −0.950182 0.311696i \(-0.899103\pi\)
0.745028 + 0.667033i \(0.232436\pi\)
\(522\) 5.06880 3.73562i 0.221855 0.163503i
\(523\) −31.6043 8.46836i −1.38196 0.370296i −0.510128 0.860098i \(-0.670402\pi\)
−0.871833 + 0.489803i \(0.837069\pi\)
\(524\) −22.5424 + 20.8592i −0.984770 + 0.911240i
\(525\) −14.8217 0.528860i −0.646871 0.0230814i
\(526\) 38.4366 15.0551i 1.67592 0.656432i
\(527\) −2.22665 + 8.30998i −0.0969945 + 0.361988i
\(528\) 2.45171 + 13.1536i 0.106697 + 0.572437i
\(529\) 11.2432 + 6.49124i 0.488833 + 0.282228i
\(530\) 5.24297 + 6.16678i 0.227740 + 0.267868i
\(531\) 3.64981i 0.158388i
\(532\) −13.0004 2.81729i −0.563640 0.122145i
\(533\) −32.1791 32.1791i −1.39383 1.39383i
\(534\) 2.03345 2.54631i 0.0879961 0.110190i
\(535\) −1.61727 23.2360i −0.0699205 1.00458i
\(536\) −4.94213 7.28068i −0.213468 0.314478i
\(537\) 7.64880 + 2.04949i 0.330070 + 0.0884420i
\(538\) 3.46120 7.91844i 0.149223 0.341388i
\(539\) 16.0022 13.4213i 0.689265 0.578096i
\(540\) 23.1489 + 5.44633i 0.996170 + 0.234373i
\(541\) 2.73095 + 4.73015i 0.117413 + 0.203365i 0.918742 0.394859i \(-0.129207\pi\)
−0.801329 + 0.598224i \(0.795873\pi\)
\(542\) 18.4751 + 25.0685i 0.793572 + 1.07679i
\(543\) −0.688915 2.57107i −0.0295642 0.110335i
\(544\) −9.21444 + 9.86325i −0.395066 + 0.422883i
\(545\) −22.5256 4.38610i −0.964892 0.187880i
\(546\) 23.5781 4.74693i 1.00905 0.203150i
\(547\) 4.64823 + 4.64823i 0.198744 + 0.198744i 0.799461 0.600718i \(-0.205118\pi\)
−0.600718 + 0.799461i \(0.705118\pi\)
\(548\) −4.39220 8.33791i −0.187626 0.356178i
\(549\) 2.86959 + 1.65676i 0.122471 + 0.0707087i
\(550\) 5.22979 + 20.4390i 0.222999 + 0.871523i
\(551\) −5.56098 + 3.21064i −0.236906 + 0.136778i
\(552\) −17.9669 + 6.24572i −0.764721 + 0.265835i
\(553\) −19.3286 9.01572i −0.821934 0.383387i
\(554\) 21.6699 8.48777i 0.920664 0.360611i
\(555\) −3.89174 11.3143i −0.165195 0.480266i
\(556\) −20.1024 + 4.55945i −0.852532 + 0.193364i
\(557\) 3.22921 + 12.0516i 0.136826 + 0.510642i 0.999984 + 0.00570726i \(0.00181669\pi\)
−0.863158 + 0.504934i \(0.831517\pi\)
\(558\) 0.989120 + 8.83273i 0.0418728 + 0.373919i
\(559\) 61.8381 2.61547
\(560\) 4.29898 23.2706i 0.181665 0.983360i
\(561\) −7.98155 −0.336981
\(562\) 1.06907 + 9.54671i 0.0450962 + 0.402704i
\(563\) 4.91456 + 18.3414i 0.207124 + 0.772997i 0.988792 + 0.149302i \(0.0477026\pi\)
−0.781668 + 0.623695i \(0.785631\pi\)
\(564\) −6.47167 + 1.46785i −0.272507 + 0.0618076i
\(565\) −20.9028 10.2033i −0.879387 0.429258i
\(566\) 17.1775 6.72818i 0.722025 0.282807i
\(567\) −0.168680 1.93053i −0.00708388 0.0810747i
\(568\) −21.6326 + 7.52000i −0.907682 + 0.315532i
\(569\) 19.5330 11.2774i 0.818868 0.472773i −0.0311582 0.999514i \(-0.509920\pi\)
0.850026 + 0.526741i \(0.176586\pi\)
\(570\) −8.39456 2.99395i −0.351609 0.125403i
\(571\) −22.8480 13.1913i −0.956158 0.552038i −0.0611692 0.998127i \(-0.519483\pi\)
−0.894988 + 0.446090i \(0.852816\pi\)
\(572\) −15.9456 30.2702i −0.666717 1.26566i
\(573\) 5.00690 + 5.00690i 0.209166 + 0.209166i
\(574\) 19.6334 + 22.2830i 0.819483 + 0.930074i
\(575\) −27.6160 + 11.7012i −1.15167 + 0.487975i
\(576\) −5.14753 + 12.9598i −0.214480 + 0.539990i
\(577\) −8.25666 30.8143i −0.343729 1.28282i −0.894090 0.447888i \(-0.852176\pi\)
0.550360 0.834927i \(-0.314490\pi\)
\(578\) 9.48637 + 12.8719i 0.394581 + 0.535401i
\(579\) −11.8402 20.5077i −0.492060 0.852273i
\(580\) −6.01290 9.71272i −0.249672 0.403299i
\(581\) 3.89953 22.1007i 0.161780 0.916892i
\(582\) −5.95556 + 13.6250i −0.246866 + 0.564773i
\(583\) −7.37683 1.97662i −0.305517 0.0818630i
\(584\) 15.4911 + 22.8213i 0.641026 + 0.944351i
\(585\) −22.2931 + 1.55164i −0.921705 + 0.0641523i
\(586\) 1.60797 2.01352i 0.0664248 0.0831778i
\(587\) −14.8860 14.8860i −0.614410 0.614410i 0.329682 0.944092i \(-0.393058\pi\)
−0.944092 + 0.329682i \(0.893058\pi\)
\(588\) −15.5518 + 2.12098i −0.641345 + 0.0874677i
\(589\) 9.06388i 0.373471i
\(590\) −6.59986 0.534371i −0.271712 0.0219997i
\(591\) −1.39169 0.803493i −0.0572465 0.0330513i
\(592\) 18.7679 3.49815i 0.771354 0.143773i
\(593\) −8.53664 + 31.8592i −0.350558 + 1.30830i 0.535426 + 0.844582i \(0.320151\pi\)
−0.885984 + 0.463717i \(0.846516\pi\)
\(594\) −20.8921 + 8.18314i −0.857214 + 0.335758i
\(595\) 13.1765 + 5.06458i 0.540183 + 0.207627i
\(596\) 14.1987 13.1385i 0.581602 0.538176i
\(597\) −10.3038 2.76089i −0.421705 0.112996i
\(598\) 39.1539 28.8558i 1.60112 1.18000i
\(599\) 8.79228 15.2287i 0.359243 0.622227i −0.628592 0.777736i \(-0.716368\pi\)
0.987835 + 0.155509i \(0.0497016\pi\)
\(600\) 4.86485 15.0903i 0.198607 0.616060i
\(601\) −17.7704 −0.724871 −0.362436 0.932009i \(-0.618055\pi\)
−0.362436 + 0.932009i \(0.618055\pi\)
\(602\) −40.2751 2.54583i −1.64149 0.103760i
\(603\) 3.83460 3.83460i 0.156157 0.156157i
\(604\) −2.10866 0.653583i −0.0858003 0.0265939i
\(605\) 3.53939 + 3.07876i 0.143897 + 0.125169i
\(606\) −1.77212 + 11.7032i −0.0719875 + 0.475409i
\(607\) 2.49876 9.32548i 0.101421 0.378510i −0.896493 0.443057i \(-0.853894\pi\)
0.997915 + 0.0645477i \(0.0205605\pi\)
\(608\) 6.68762 12.5500i 0.271219 0.508970i
\(609\) −4.87086 + 5.80354i −0.197377 + 0.235171i
\(610\) 3.41601 4.94644i 0.138310 0.200275i
\(611\) 14.6951 8.48424i 0.594502 0.343236i
\(612\) −7.03725 4.43518i −0.284464 0.179281i
\(613\) −8.41064 + 2.25362i −0.339702 + 0.0910230i −0.424637 0.905364i \(-0.639598\pi\)
0.0849350 + 0.996386i \(0.472932\pi\)
\(614\) −14.5354 + 18.2013i −0.586599 + 0.734546i
\(615\) 11.1215 + 16.4998i 0.448463 + 0.665337i
\(616\) 9.13912 + 20.3714i 0.368226 + 0.820787i
\(617\) 21.0055 21.0055i 0.845648 0.845648i −0.143938 0.989587i \(-0.545977\pi\)
0.989587 + 0.143938i \(0.0459767\pi\)
\(618\) 6.49407 0.727229i 0.261230 0.0292534i
\(619\) −7.01153 + 12.1443i −0.281817 + 0.488121i −0.971832 0.235673i \(-0.924270\pi\)
0.690015 + 0.723795i \(0.257604\pi\)
\(620\) 16.1168 0.495395i 0.647267 0.0198956i
\(621\) −15.9489 27.6243i −0.640006 1.10852i
\(622\) 17.0965 39.1128i 0.685505 1.56828i
\(623\) 2.29862 4.92796i 0.0920923 0.197434i
\(624\) −1.99127 + 25.6346i −0.0797144 + 1.02620i
\(625\) 6.07943 24.2495i 0.243177 0.969982i
\(626\) 30.8496 + 4.67131i 1.23300 + 0.186703i
\(627\) 8.12248 2.17641i 0.324381 0.0869175i
\(628\) 8.09889 + 15.3745i 0.323181 + 0.613509i
\(629\) 11.3883i 0.454080i
\(630\) 14.5833 0.0927909i 0.581014 0.00369688i
\(631\) 25.9447i 1.03284i −0.856334 0.516422i \(-0.827264\pi\)
0.856334 0.516422i \(-0.172736\pi\)
\(632\) 14.9077 17.2517i 0.592996 0.686234i
\(633\) −29.1823 + 7.81936i −1.15989 + 0.310792i
\(634\) −0.306899 + 2.02678i −0.0121885 + 0.0804936i
\(635\) 38.0321 + 18.5647i 1.50926 + 0.736720i
\(636\) 3.89803 + 4.21257i 0.154567 + 0.167039i
\(637\) 36.3779 16.9533i 1.44134 0.671713i
\(638\) 9.87576 + 4.31676i 0.390985 + 0.170902i
\(639\) −7.05703 12.2231i −0.279172 0.483540i
\(640\) 22.6812 + 11.2056i 0.896551 + 0.442940i
\(641\) −2.50802 + 4.34403i −0.0990610 + 0.171579i −0.911296 0.411751i \(-0.864917\pi\)
0.812235 + 0.583330i \(0.198251\pi\)
\(642\) −1.83799 16.4130i −0.0725396 0.647770i
\(643\) −5.68565 + 5.68565i −0.224220 + 0.224220i −0.810273 0.586053i \(-0.800681\pi\)
0.586053 + 0.810273i \(0.300681\pi\)
\(644\) −26.6889 + 17.1818i −1.05169 + 0.677057i
\(645\) −26.5397 5.16771i −1.04500 0.203478i
\(646\) 6.62862 + 5.29354i 0.260800 + 0.208271i
\(647\) −18.8448 + 5.04946i −0.740867 + 0.198515i −0.609463 0.792814i \(-0.708615\pi\)
−0.131404 + 0.991329i \(0.541948\pi\)
\(648\) 2.03478 + 0.389308i 0.0799337 + 0.0152934i
\(649\) 5.41041 3.12370i 0.212377 0.122616i
\(650\) −0.458155 + 40.5392i −0.0179703 + 1.59008i
\(651\) −3.65670 10.0502i −0.143318 0.393900i
\(652\) −2.15400 0.0835344i −0.0843572 0.00327146i
\(653\) −6.95220 + 25.9460i −0.272061 + 1.01534i 0.685725 + 0.727861i \(0.259485\pi\)
−0.957786 + 0.287483i \(0.907181\pi\)
\(654\) −16.0886 2.43618i −0.629115 0.0952620i
\(655\) −22.5360 + 25.9078i −0.880555 + 1.01230i
\(656\) −28.6423 + 13.6975i −1.11830 + 0.534796i
\(657\) −12.0195 + 12.0195i −0.468926 + 0.468926i
\(658\) −9.92022 + 4.92079i −0.386730 + 0.191832i
\(659\) 2.47864 0.0965543 0.0482771 0.998834i \(-0.484627\pi\)
0.0482771 + 0.998834i \(0.484627\pi\)
\(660\) 4.31390 + 14.3239i 0.167918 + 0.557559i
\(661\) −6.04270 + 10.4663i −0.235034 + 0.407091i −0.959283 0.282448i \(-0.908853\pi\)
0.724249 + 0.689539i \(0.242187\pi\)
\(662\) −23.8080 32.3046i −0.925322 1.25556i
\(663\) −14.8150 3.96968i −0.575368 0.154169i
\(664\) 21.5944 + 10.4537i 0.838025 + 0.405682i
\(665\) −14.7902 1.56103i −0.573538 0.0605343i
\(666\) 4.29088 + 10.9549i 0.166268 + 0.424494i
\(667\) −3.96569 + 14.8001i −0.153552 + 0.573064i
\(668\) 5.21957 + 3.28960i 0.201951 + 0.127278i
\(669\) 3.05684 + 1.76487i 0.118184 + 0.0682337i
\(670\) −6.37258 7.49543i −0.246194 0.289574i
\(671\) 5.67177i 0.218956i
\(672\) 2.35226 16.6138i 0.0907405 0.640890i
\(673\) 34.0874 + 34.0874i 1.31397 + 1.31397i 0.918461 + 0.395511i \(0.129432\pi\)
0.395511 + 0.918461i \(0.370568\pi\)
\(674\) −18.4145 14.7056i −0.709301 0.566439i
\(675\) 26.3876 + 3.25732i 1.01566 + 0.125374i
\(676\) −8.79142 38.7610i −0.338132 1.49081i
\(677\) 32.6524 + 8.74919i 1.25493 + 0.336259i 0.824241 0.566240i \(-0.191602\pi\)
0.430693 + 0.902498i \(0.358269\pi\)
\(678\) −15.1123 6.60567i −0.580384 0.253689i
\(679\) −4.31152 + 24.4357i −0.165461 + 0.937756i
\(680\) −9.05035 + 12.0759i −0.347065 + 0.463091i
\(681\) −4.52124 7.83101i −0.173254 0.300085i
\(682\) −12.2469 + 9.02578i −0.468960 + 0.345615i
\(683\) −1.93944 7.23810i −0.0742107 0.276958i 0.918842 0.394625i \(-0.129125\pi\)
−0.993053 + 0.117666i \(0.962459\pi\)
\(684\) 8.37089 + 2.59457i 0.320069 + 0.0992058i
\(685\) −5.88904 8.73696i −0.225009 0.333822i
\(686\) −24.3908 + 9.54400i −0.931246 + 0.364392i
\(687\) −1.92874 1.92874i −0.0735862 0.0735862i
\(688\) 14.3597 40.6819i 0.547458 1.55098i
\(689\) −12.7095 7.33783i −0.484193 0.279549i
\(690\) −19.2156 + 9.11231i −0.731524 + 0.346900i
\(691\) 16.5249 9.54066i 0.628637 0.362944i −0.151587 0.988444i \(-0.548438\pi\)
0.780224 + 0.625500i \(0.215105\pi\)
\(692\) −1.82828 + 47.1437i −0.0695009 + 1.79213i
\(693\) −11.2722 + 7.89102i −0.428197 + 0.299755i
\(694\) −8.23405 21.0221i −0.312560 0.797987i
\(695\) −21.7929 + 7.49600i −0.826650 + 0.284339i
\(696\) −4.54912 6.70170i −0.172434 0.254027i
\(697\) −4.90178 18.2937i −0.185668 0.692923i
\(698\) −10.5780 + 1.18457i −0.400385 + 0.0448365i
\(699\) 11.7363 0.443909
\(700\) 1.96736 26.3843i 0.0743594 0.997232i
\(701\) −30.0384 −1.13454 −0.567268 0.823533i \(-0.692000\pi\)
−0.567268 + 0.823533i \(0.692000\pi\)
\(702\) −42.8490 + 4.79839i −1.61723 + 0.181103i
\(703\) −3.10535 11.5893i −0.117121 0.437100i
\(704\) −23.6168 + 3.46106i −0.890093 + 0.130443i
\(705\) −7.01589 + 2.41323i −0.264234 + 0.0908874i
\(706\) −2.89170 7.38272i −0.108831 0.277852i
\(707\) 1.71926 + 19.6768i 0.0646594 + 0.740023i
\(708\) −4.69150 0.181941i −0.176317 0.00683777i
\(709\) 23.7012 13.6839i 0.890117 0.513909i 0.0161363 0.999870i \(-0.494863\pi\)
0.873981 + 0.485960i \(0.161530\pi\)
\(710\) −23.1360 + 10.9715i −0.868279 + 0.411751i
\(711\) 12.1687 + 7.02562i 0.456363 + 0.263481i
\(712\) 4.39843 + 3.80082i 0.164838 + 0.142442i
\(713\) −15.2933 15.2933i −0.572737 0.572737i
\(714\) 9.48558 + 3.19537i 0.354989 + 0.119584i
\(715\) −21.3797 31.7189i −0.799557 1.18622i
\(716\) −4.18215 + 13.4929i −0.156294 + 0.504254i
\(717\) 3.74462 + 13.9751i 0.139846 + 0.521911i
\(718\) −41.4718 + 30.5640i −1.54771 + 1.14064i
\(719\) 21.7523 + 37.6760i 0.811223 + 1.40508i 0.912009 + 0.410171i \(0.134531\pi\)
−0.100786 + 0.994908i \(0.532136\pi\)
\(720\) −4.15598 + 15.0264i −0.154884 + 0.560001i
\(721\) 10.2472 3.72838i 0.381627 0.138852i
\(722\) 16.4317 + 7.18238i 0.611523 + 0.267300i
\(723\) −2.93894 0.787488i −0.109300 0.0292870i
\(724\) 4.63076 1.05031i 0.172101 0.0390344i
\(725\) −7.85649 10.0693i −0.291783 0.373963i
\(726\) 2.59916 + 2.07565i 0.0964637 + 0.0770348i
\(727\) −14.9542 14.9542i −0.554620 0.554620i 0.373151 0.927771i \(-0.378277\pi\)
−0.927771 + 0.373151i \(0.878277\pi\)
\(728\) 6.83183 + 42.3580i 0.253204 + 1.56989i
\(729\) 19.1618i 0.709695i
\(730\) 19.9748 + 23.4944i 0.739301 + 0.869567i
\(731\) 22.2872 + 12.8675i 0.824322 + 0.475922i
\(732\) 2.27266 3.60601i 0.0839999 0.133282i
\(733\) −8.22383 + 30.6917i −0.303754 + 1.13363i 0.630259 + 0.776385i \(0.282949\pi\)
−0.934013 + 0.357240i \(0.883718\pi\)
\(734\) 16.8636 + 43.0539i 0.622446 + 1.58915i
\(735\) −17.0295 + 4.23599i −0.628141 + 0.156247i
\(736\) −9.89144 32.4592i −0.364603 1.19646i
\(737\) 8.96619 + 2.40248i 0.330274 + 0.0884966i
\(738\) −11.6080 15.7507i −0.427296 0.579791i
\(739\) 0.495453 0.858149i 0.0182255 0.0315675i −0.856769 0.515701i \(-0.827532\pi\)
0.874994 + 0.484133i \(0.160865\pi\)
\(740\) 20.4377 6.15518i 0.751306 0.226269i
\(741\) 16.1591 0.593619
\(742\) 7.97559 + 5.30236i 0.292793 + 0.194656i
\(743\) −9.00016 + 9.00016i −0.330184 + 0.330184i −0.852656 0.522472i \(-0.825010\pi\)
0.522472 + 0.852656i \(0.325010\pi\)
\(744\) 11.4030 0.831117i 0.418054 0.0304702i
\(745\) 14.1947 16.3185i 0.520053 0.597862i
\(746\) −36.5684 5.53727i −1.33886 0.202734i
\(747\) −3.82673 + 14.2815i −0.140013 + 0.522534i
\(748\) 0.551767 14.2278i 0.0201746 0.520218i
\(749\) −9.42304 25.8987i −0.344310 0.946318i
\(750\) 3.58443 17.3604i 0.130885 0.633911i
\(751\) −11.3279 + 6.54015i −0.413360 + 0.238653i −0.692232 0.721675i \(-0.743373\pi\)
0.278872 + 0.960328i \(0.410039\pi\)
\(752\) −2.16917 11.6378i −0.0791015 0.424385i
\(753\) 3.41509 0.915071i 0.124453 0.0333470i
\(754\) 16.1840 + 12.9244i 0.589388 + 0.470678i
\(755\) −2.42271 0.471740i −0.0881713 0.0171684i
\(756\) 28.1051 1.36112i 1.02217 0.0495035i
\(757\) 3.92981 3.92981i 0.142831 0.142831i −0.632076 0.774907i \(-0.717797\pi\)
0.774907 + 0.632076i \(0.217797\pi\)
\(758\) −3.20701 28.6382i −0.116484 1.04019i
\(759\) 10.0327 17.3771i 0.364162 0.630748i
\(760\) 5.91728 14.7570i 0.214642 0.535293i
\(761\) 11.1617 + 19.3326i 0.404612 + 0.700808i 0.994276 0.106840i \(-0.0340734\pi\)
−0.589665 + 0.807648i \(0.700740\pi\)
\(762\) 27.4964 + 12.0189i 0.996091 + 0.435397i
\(763\) −27.0502 + 2.36351i −0.979282 + 0.0855646i
\(764\) −9.27134 + 8.57908i −0.335425 + 0.310380i
\(765\) −8.35757 4.07960i −0.302168 0.147498i
\(766\) 5.40621 35.7029i 0.195334 1.29000i
\(767\) 11.5962 3.10719i 0.418714 0.112194i
\(768\) 16.4020 + 7.26271i 0.591856 + 0.262071i
\(769\) 27.9731i 1.00873i 0.863489 + 0.504367i \(0.168274\pi\)
−0.863489 + 0.504367i \(0.831726\pi\)
\(770\) 12.6188 + 21.5387i 0.454748 + 0.776199i
\(771\) 18.4608i 0.664851i
\(772\) 37.3752 19.6883i 1.34516 0.708598i
\(773\) 43.0144 11.5257i 1.54712 0.414550i 0.618562 0.785736i \(-0.287715\pi\)
0.928559 + 0.371186i \(0.121049\pi\)
\(774\) 26.2874 + 3.98049i 0.944880 + 0.143076i
\(775\) 17.8538 2.49742i 0.641329 0.0897099i
\(776\) −23.8759 11.5582i −0.857094 0.414914i
\(777\) −8.11886 11.5977i −0.291263 0.416066i
\(778\) −10.2233 + 23.3886i −0.366524 + 0.838523i
\(779\) 9.97667 + 17.2801i 0.357451 + 0.619124i
\(780\) 0.883191 + 28.7331i 0.0316233 + 1.02881i
\(781\) 12.0796 20.9224i 0.432241 0.748663i
\(782\) 20.1160 2.25266i 0.719346 0.0805548i
\(783\) 9.60453 9.60453i 0.343238 0.343238i
\(784\) −2.70572 27.8690i −0.0966327 0.995320i
\(785\) 10.8590 + 16.1103i 0.387573 + 0.575001i
\(786\) −15.1935 + 19.0254i −0.541933 + 0.678614i
\(787\) 39.0901 10.4742i 1.39341 0.373363i 0.517437 0.855722i \(-0.326886\pi\)
0.875974 + 0.482358i \(0.160220\pi\)
\(788\) 1.52850 2.42526i 0.0544505 0.0863962i
\(789\) 28.3405 16.3624i 1.00895 0.582518i
\(790\) 14.4859 20.9758i 0.515384 0.746285i
\(791\) −27.1031 4.78217i −0.963677 0.170034i
\(792\) −4.82998 13.8943i −0.171626 0.493711i
\(793\) −2.82089 + 10.5277i −0.100173 + 0.373850i
\(794\) 6.37029 42.0697i 0.226073 1.49300i
\(795\) 4.84147 + 4.21137i 0.171709 + 0.149362i
\(796\) 5.63381 18.1764i 0.199685 0.644247i
\(797\) 3.10654 3.10654i 0.110039 0.110039i −0.649943 0.759983i \(-0.725207\pi\)
0.759983 + 0.649943i \(0.225207\pi\)
\(798\) −10.5244 0.665257i −0.372559 0.0235498i
\(799\) 7.06174 0.249826
\(800\) 26.5634 + 9.71518i 0.939159 + 0.343484i
\(801\) −1.79123 + 3.10250i −0.0632900 + 0.109622i
\(802\) 5.57337 4.10748i 0.196803 0.145040i
\(803\) −28.1045 7.53057i −0.991786 0.265748i
\(804\) −4.73787 5.12018i −0.167092 0.180575i
\(805\) −27.5890 + 22.3212i −0.972384 + 0.786718i
\(806\) −27.2213 + 10.6622i −0.958830 + 0.375560i
\(807\) 1.77314 6.61744i 0.0624174 0.232945i
\(808\) −20.7394 3.96799i −0.729608 0.139594i
\(809\) −26.5415 15.3237i −0.933148 0.538753i −0.0453422 0.998972i \(-0.514438\pi\)
−0.887806 + 0.460218i \(0.847771\pi\)
\(810\) 2.30866 + 0.186925i 0.0811181 + 0.00656789i
\(811\) 47.0428i 1.65190i 0.563747 + 0.825948i \(0.309359\pi\)
−0.563747 + 0.825948i \(0.690641\pi\)
\(812\) −10.0086 9.08391i −0.351231 0.318783i
\(813\) 17.4565 + 17.4565i 0.612225 + 0.612225i
\(814\) −12.5670 + 15.7365i −0.440473 + 0.551565i
\(815\) −2.40424 + 0.167339i −0.0842168 + 0.00586164i
\(816\) −6.05182 + 8.82466i −0.211856 + 0.308925i
\(817\) −26.1894 7.01744i −0.916253 0.245509i
\(818\) 18.9998 43.4672i 0.664312 1.51979i
\(819\) −24.8478 + 9.04066i −0.868251 + 0.315906i
\(820\) −30.1811 + 18.6844i −1.05397 + 0.652486i
\(821\) 0.415401 + 0.719496i 0.0144976 + 0.0251106i 0.873183 0.487392i \(-0.162052\pi\)
−0.858686 + 0.512503i \(0.828718\pi\)
\(822\) −4.43231 6.01413i −0.154594 0.209767i
\(823\) −0.0598810 0.223479i −0.00208732 0.00778999i 0.964874 0.262712i \(-0.0846169\pi\)
−0.966962 + 0.254922i \(0.917950\pi\)
\(824\) 0.847407 + 11.6265i 0.0295208 + 0.405028i
\(825\) 6.52508 + 15.3998i 0.227174 + 0.536153i
\(826\) −7.68050 + 1.54630i −0.267239 + 0.0538027i
\(827\) −0.00150949 0.00150949i −5.24902e−5 5.24902e-5i 0.707081 0.707133i \(-0.250012\pi\)
−0.707133 + 0.707081i \(0.750012\pi\)
\(828\) 18.5018 9.74626i 0.642981 0.338706i
\(829\) 36.8314 + 21.2646i 1.27921 + 0.738551i 0.976703 0.214596i \(-0.0688435\pi\)
0.302506 + 0.953148i \(0.402177\pi\)
\(830\) 25.2647 + 9.01074i 0.876950 + 0.312767i
\(831\) 15.9779 9.22484i 0.554267 0.320006i
\(832\) −45.5580 5.32172i −1.57944 0.184497i
\(833\) 16.6387 + 1.45949i 0.576498 + 0.0505683i
\(834\) −15.2155 + 5.95970i −0.526870 + 0.206368i
\(835\) 6.19886 + 3.02587i 0.214520 + 0.104714i
\(836\) 3.31812 + 14.6294i 0.114760 + 0.505970i
\(837\) 4.96227 + 18.5194i 0.171521 + 0.640126i
\(838\) −5.72464 51.1204i −0.197754 1.76592i
\(839\) −49.4733 −1.70801 −0.854004 0.520267i \(-0.825832\pi\)
−0.854004 + 0.520267i \(0.825832\pi\)
\(840\) 0.607698 18.7502i 0.0209676 0.646943i
\(841\) 22.4754 0.775014
\(842\) −5.23262 46.7267i −0.180328 1.61031i
\(843\) 1.97104 + 7.35602i 0.0678862 + 0.253355i
\(844\) −11.9213 52.5603i −0.410347 1.80920i
\(845\) −14.4536 42.0205i −0.497219 1.44555i
\(846\) 6.79303 2.66073i 0.233549 0.0914778i
\(847\) 5.03023 + 2.34633i 0.172841 + 0.0806207i
\(848\) −7.77872 + 6.65734i −0.267122 + 0.228614i
\(849\) 12.6655 7.31245i 0.434680 0.250963i
\(850\) −8.60068 + 14.5155i −0.295001 + 0.497877i
\(851\) −24.7940 14.3148i −0.849928 0.490706i
\(852\) −16.0635 + 8.46185i −0.550327 + 0.289898i
\(853\) 9.16674 + 9.16674i 0.313863 + 0.313863i 0.846404 0.532541i \(-0.178763\pi\)
−0.532541 + 0.846404i \(0.678763\pi\)
\(854\) 2.27066 6.74055i 0.0777004 0.230657i
\(855\) 9.61757 + 1.87269i 0.328914 + 0.0640448i
\(856\) 29.3846 2.14172i 1.00434 0.0732026i
\(857\) 5.81720 + 21.7101i 0.198712 + 0.741602i 0.991275 + 0.131812i \(0.0420796\pi\)
−0.792563 + 0.609790i \(0.791254\pi\)
\(858\) −16.0912 21.8338i −0.549343 0.745395i
\(859\) −4.05858 7.02967i −0.138477 0.239849i 0.788443 0.615107i \(-0.210887\pi\)
−0.926920 + 0.375258i \(0.877554\pi\)
\(860\) 11.0466 46.9520i 0.376685 1.60105i
\(861\) 18.0338 + 15.1356i 0.614590 + 0.515821i
\(862\) −17.6237 + 40.3191i −0.600267 + 1.37328i
\(863\) −0.470041 0.125947i −0.0160004 0.00428729i 0.250810 0.968036i \(-0.419303\pi\)
−0.266810 + 0.963749i \(0.585970\pi\)
\(864\) −6.79341 + 29.3037i −0.231116 + 0.996931i
\(865\) 3.66249 + 52.6206i 0.124528 + 1.78915i
\(866\) −8.91856 + 11.1679i −0.303065 + 0.379501i
\(867\) 8.96335 + 8.96335i 0.304411 + 0.304411i
\(868\) 18.1682 5.82360i 0.616668 0.197666i
\(869\) 24.0516i 0.815895i
\(870\) −5.86581 6.89937i −0.198870 0.233911i
\(871\) 15.4478 + 8.91879i 0.523428 + 0.302202i
\(872\) 5.45489 28.5109i 0.184726 0.965500i
\(873\) 4.23103 15.7904i 0.143199 0.534424i
\(874\) −19.8569 + 7.77766i −0.671670 + 0.263083i
\(875\) −1.00032 29.5635i −0.0338168 0.999428i
\(876\) 14.8508 + 16.0492i 0.501763 + 0.542251i
\(877\) −17.2678 4.62691i −0.583094 0.156240i −0.0447988 0.998996i \(-0.514265\pi\)
−0.538295 + 0.842757i \(0.680931\pi\)
\(878\) 0.634262 0.467440i 0.0214053 0.0157753i
\(879\) 1.02138 1.76909i 0.0344504 0.0596698i
\(880\) −25.8318 + 6.69966i −0.870790 + 0.225846i
\(881\) −5.27459 −0.177705 −0.0888527 0.996045i \(-0.528320\pi\)
−0.0888527 + 0.996045i \(0.528320\pi\)
\(882\) 16.5555 4.86521i 0.557453 0.163820i
\(883\) 5.20270 5.20270i 0.175085 0.175085i −0.614124 0.789209i \(-0.710491\pi\)
0.789209 + 0.614124i \(0.210491\pi\)
\(884\) 8.10044 26.1346i 0.272447 0.879001i
\(885\) −5.23653 + 0.364472i −0.176024 + 0.0122516i
\(886\) −5.16404 + 34.1036i −0.173489 + 1.14573i
\(887\) 11.5714 43.1849i 0.388528 1.45001i −0.444001 0.896026i \(-0.646441\pi\)
0.832529 0.553981i \(-0.186892\pi\)
\(888\) 14.2954 4.96944i 0.479724 0.166764i
\(889\) 49.3135 + 8.70105i 1.65392 + 0.291824i
\(890\) 5.34792 + 3.69328i 0.179263 + 0.123799i
\(891\) −1.89259 + 1.09269i −0.0634040 + 0.0366063i
\(892\) −3.35734 + 5.32706i −0.112412 + 0.178363i
\(893\) −7.18643 + 1.92560i −0.240485 + 0.0644377i
\(894\) 9.56986 11.9835i 0.320064 0.400787i
\(895\) −3.01857 + 15.5024i −0.100900 + 0.518189i
\(896\) 29.4528 + 5.34162i 0.983949 + 0.178451i
\(897\) 27.2648 27.2648i 0.910346 0.910346i
\(898\) 12.1491 1.36050i 0.405421 0.0454005i
\(899\) 4.60486 7.97585i 0.153581 0.266009i
\(900\) −2.80425 + 17.2037i −0.0934750 + 0.573457i
\(901\) −3.05377 5.28929i −0.101736 0.176212i
\(902\) 13.4138 30.6877i 0.446631 1.02179i
\(903\) −31.8706 + 2.78469i −1.06059 + 0.0926686i
\(904\) 12.8199 26.4822i 0.426382 0.880785i
\(905\) 5.02017 1.72677i 0.166876 0.0573997i
\(906\) −1.73039 0.262019i −0.0574882 0.00870499i
\(907\) −9.45206 + 2.53267i −0.313851 + 0.0840960i −0.412306 0.911045i \(-0.635277\pi\)
0.0984553 + 0.995141i \(0.468610\pi\)
\(908\) 14.2720 7.51811i 0.473632 0.249497i
\(909\) 13.0129i 0.431610i
\(910\) 12.7100 + 46.2552i 0.421333 + 1.53335i
\(911\) 5.81294i 0.192591i −0.995353 0.0962957i \(-0.969301\pi\)
0.995353 0.0962957i \(-0.0306994\pi\)
\(912\) 3.75237 10.6307i 0.124253 0.352017i
\(913\) −24.4458 + 6.55024i −0.809038 + 0.216781i
\(914\) 0.578756 3.82213i 0.0191435 0.126425i
\(915\) 2.09046 4.28256i 0.0691084 0.141577i
\(916\) 3.57148 3.30481i 0.118005 0.109194i
\(917\) −17.1747 + 36.8205i −0.567160 + 1.21592i
\(918\) −16.4418 7.18681i −0.542660 0.237200i
\(919\) −10.6688 18.4789i −0.351930 0.609561i 0.634657 0.772794i \(-0.281141\pi\)
−0.986588 + 0.163232i \(0.947808\pi\)
\(920\) −14.9151 34.8832i −0.491735 1.15007i
\(921\) −9.23283 + 15.9917i −0.304232 + 0.526946i
\(922\) 6.07484 + 54.2476i 0.200064 + 1.78655i
\(923\) 32.8275 32.8275i 1.08053 1.08053i
\(924\) 9.58127 + 14.8828i 0.315201 + 0.489609i
\(925\) 21.9728 9.31014i 0.722462 0.306115i
\(926\) 21.1065 + 16.8554i 0.693604 + 0.553903i
\(927\) −6.93927 + 1.85937i −0.227916 + 0.0610698i
\(928\) 12.2608 7.64588i 0.402481 0.250988i
\(929\) −12.5925 + 7.27026i −0.413145 + 0.238529i −0.692140 0.721763i \(-0.743332\pi\)
0.278995 + 0.960293i \(0.409999\pi\)
\(930\) 12.5739 2.30117i 0.412315 0.0754584i
\(931\) −17.3305 + 3.05180i −0.567984 + 0.100019i
\(932\) −0.811338 + 20.9210i −0.0265763 + 0.685290i
\(933\) 8.75834 32.6866i 0.286735 1.07011i
\(934\) −18.6850 2.82933i −0.611393 0.0925784i
\(935\) −1.10532 15.8807i −0.0361479 0.519353i
\(936\) −2.05481 28.1922i −0.0671637 0.921491i
\(937\) 5.05360 5.05360i 0.165094 0.165094i −0.619725 0.784819i \(-0.712756\pi\)
0.784819 + 0.619725i \(0.212756\pi\)
\(938\) −9.69395 6.44477i −0.316519 0.210429i
\(939\) 24.7350 0.807195
\(940\) −3.81676 12.6732i −0.124489 0.413355i
\(941\) 1.44742 2.50700i 0.0471845 0.0817259i −0.841469 0.540306i \(-0.818308\pi\)
0.888653 + 0.458580i \(0.151642\pi\)
\(942\) 8.17284 + 11.0896i 0.266286 + 0.361319i
\(943\) 45.9897 + 12.3229i 1.49763 + 0.401289i
\(944\) 0.648650 8.35040i 0.0211118 0.271782i
\(945\) 31.0741 4.90775i 1.01084 0.159649i
\(946\) 16.5975 + 42.3746i 0.539632 + 1.37772i
\(947\) −8.72837 + 32.5747i −0.283634 + 1.05854i 0.666198 + 0.745775i \(0.267921\pi\)
−0.949832 + 0.312761i \(0.898746\pi\)
\(948\) 9.63740 15.2916i 0.313008 0.496647i
\(949\) −48.4211 27.9559i −1.57181 0.907487i
\(950\) 4.79446 17.1170i 0.155553 0.555350i
\(951\) 1.62505i 0.0526960i
\(952\) −6.35175 + 16.6879i −0.205861 + 0.540859i
\(953\) 23.9098 + 23.9098i 0.774513 + 0.774513i 0.978892 0.204379i \(-0.0655173\pi\)
−0.204379 + 0.978892i \(0.565517\pi\)
\(954\) −4.93047 3.93742i −0.159630 0.127479i
\(955\) −9.26871 + 10.6555i −0.299928 + 0.344803i
\(956\) −25.1707 + 5.70899i −0.814077 + 0.184642i
\(957\) 8.25317 + 2.21143i 0.266787 + 0.0714854i
\(958\) −10.1497 4.43650i −0.327922 0.143337i
\(959\) −9.54923 8.01459i −0.308361 0.258805i
\(960\) 19.1079 + 6.09120i 0.616706 + 0.196592i
\(961\) −9.00006 15.5886i −0.290325 0.502857i
\(962\) −31.1530 + 22.9592i −1.00441 + 0.740236i
\(963\) 4.69935 + 17.5382i 0.151435 + 0.565161i
\(964\) 1.60693 5.18447i 0.0517558 0.166980i
\(965\) 39.1640 26.3980i 1.26073 0.849782i
\(966\) −18.8800 + 16.6351i −0.607455 + 0.535225i
\(967\) −2.13618 2.13618i −0.0686949 0.0686949i 0.671925 0.740620i \(-0.265468\pi\)
−0.740620 + 0.671925i \(0.765468\pi\)
\(968\) −3.87970 + 4.48972i −0.124698 + 0.144305i
\(969\) 5.82393 + 3.36245i 0.187092 + 0.108017i
\(970\) −27.9339 9.96275i −0.896905 0.319885i
\(971\) 14.3494 8.28465i 0.460495 0.265867i −0.251757 0.967790i \(-0.581008\pi\)
0.712252 + 0.701923i \(0.247675\pi\)
\(972\) −30.2404 1.17276i −0.969963 0.0376162i
\(973\) −22.3387 + 15.6380i −0.716147 + 0.501331i
\(974\) −1.25836 3.21269i −0.0403206 0.102941i
\(975\) 4.45240 + 31.8298i 0.142591 + 1.01937i
\(976\) 6.27089 + 4.30048i 0.200726 + 0.137655i
\(977\) −0.0810094 0.302331i −0.00259172 0.00967243i 0.964618 0.263652i \(-0.0849271\pi\)
−0.967210 + 0.253980i \(0.918260\pi\)
\(978\) −1.69826 + 0.190178i −0.0543045 + 0.00608121i
\(979\) −6.13213 −0.195984
\(980\) −6.37374 30.6492i −0.203602 0.979054i
\(981\) 17.8891 0.571156
\(982\) −47.1108 + 5.27563i −1.50337 + 0.168352i
\(983\) 14.9395 + 55.7548i 0.476495 + 1.77830i 0.615636 + 0.788030i \(0.288899\pi\)
−0.139142 + 0.990272i \(0.544434\pi\)
\(984\) −20.8247 + 14.1358i −0.663868 + 0.450634i
\(985\) 1.40596 2.88028i 0.0447976 0.0917733i
\(986\) 3.14357 + 8.02574i 0.100112 + 0.255592i
\(987\) −7.19163 + 5.03442i −0.228912 + 0.160247i
\(988\) −1.11708 + 28.8049i −0.0355391 + 0.916405i
\(989\) −56.0292 + 32.3485i −1.78162 + 1.02862i
\(990\) −7.04679 14.8599i −0.223962 0.472279i
\(991\) 19.0262 + 10.9848i 0.604386 + 0.348942i 0.770765 0.637120i \(-0.219874\pi\)
−0.166379 + 0.986062i \(0.553208\pi\)
\(992\) 0.693241 + 20.3842i 0.0220104 + 0.647199i
\(993\) −22.4953 22.4953i −0.713868 0.713868i
\(994\) −22.7320 + 20.0290i −0.721015 + 0.635283i
\(995\) 4.06634 20.8834i 0.128912 0.662050i
\(996\) 18.1669 + 5.63084i 0.575639 + 0.178420i
\(997\) −2.18286 8.14653i −0.0691317 0.258003i 0.922707 0.385502i \(-0.125972\pi\)
−0.991839 + 0.127499i \(0.959305\pi\)
\(998\) 23.5571 17.3612i 0.745688 0.549559i
\(999\) 12.6898 + 21.9794i 0.401488 + 0.695397i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 140.2.w.b.123.10 yes 72
4.3 odd 2 inner 140.2.w.b.123.13 yes 72
5.2 odd 4 inner 140.2.w.b.67.2 yes 72
5.3 odd 4 700.2.be.e.207.17 72
5.4 even 2 700.2.be.e.543.9 72
7.2 even 3 inner 140.2.w.b.23.14 yes 72
7.3 odd 6 980.2.k.j.883.3 36
7.4 even 3 980.2.k.k.883.3 36
7.5 odd 6 980.2.x.m.863.14 72
7.6 odd 2 980.2.x.m.263.10 72
20.3 even 4 700.2.be.e.207.5 72
20.7 even 4 inner 140.2.w.b.67.14 yes 72
20.19 odd 2 700.2.be.e.543.6 72
28.3 even 6 980.2.k.j.883.13 36
28.11 odd 6 980.2.k.k.883.13 36
28.19 even 6 980.2.x.m.863.2 72
28.23 odd 6 inner 140.2.w.b.23.2 72
28.27 even 2 980.2.x.m.263.13 72
35.2 odd 12 inner 140.2.w.b.107.13 yes 72
35.9 even 6 700.2.be.e.443.5 72
35.12 even 12 980.2.x.m.667.13 72
35.17 even 12 980.2.k.j.687.13 36
35.23 odd 12 700.2.be.e.107.6 72
35.27 even 4 980.2.x.m.67.2 72
35.32 odd 12 980.2.k.k.687.13 36
140.23 even 12 700.2.be.e.107.9 72
140.27 odd 4 980.2.x.m.67.14 72
140.47 odd 12 980.2.x.m.667.10 72
140.67 even 12 980.2.k.k.687.3 36
140.79 odd 6 700.2.be.e.443.17 72
140.87 odd 12 980.2.k.j.687.3 36
140.107 even 12 inner 140.2.w.b.107.10 yes 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.w.b.23.2 72 28.23 odd 6 inner
140.2.w.b.23.14 yes 72 7.2 even 3 inner
140.2.w.b.67.2 yes 72 5.2 odd 4 inner
140.2.w.b.67.14 yes 72 20.7 even 4 inner
140.2.w.b.107.10 yes 72 140.107 even 12 inner
140.2.w.b.107.13 yes 72 35.2 odd 12 inner
140.2.w.b.123.10 yes 72 1.1 even 1 trivial
140.2.w.b.123.13 yes 72 4.3 odd 2 inner
700.2.be.e.107.6 72 35.23 odd 12
700.2.be.e.107.9 72 140.23 even 12
700.2.be.e.207.5 72 20.3 even 4
700.2.be.e.207.17 72 5.3 odd 4
700.2.be.e.443.5 72 35.9 even 6
700.2.be.e.443.17 72 140.79 odd 6
700.2.be.e.543.6 72 20.19 odd 2
700.2.be.e.543.9 72 5.4 even 2
980.2.k.j.687.3 36 140.87 odd 12
980.2.k.j.687.13 36 35.17 even 12
980.2.k.j.883.3 36 7.3 odd 6
980.2.k.j.883.13 36 28.3 even 6
980.2.k.k.687.3 36 140.67 even 12
980.2.k.k.687.13 36 35.32 odd 12
980.2.k.k.883.3 36 7.4 even 3
980.2.k.k.883.13 36 28.11 odd 6
980.2.x.m.67.2 72 35.27 even 4
980.2.x.m.67.14 72 140.27 odd 4
980.2.x.m.263.10 72 7.6 odd 2
980.2.x.m.263.13 72 28.27 even 2
980.2.x.m.667.10 72 140.47 odd 12
980.2.x.m.667.13 72 35.12 even 12
980.2.x.m.863.2 72 28.19 even 6
980.2.x.m.863.14 72 7.5 odd 6