Properties

Label 700.2.be.e.107.9
Level $700$
Weight $2$
Character 700.107
Analytic conductor $5.590$
Analytic rank $0$
Dimension $72$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [700,2,Mod(107,700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(700, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("700.107");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 700.be (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.58952814149\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(18\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 107.9
Character \(\chi\) \(=\) 700.107
Dual form 700.2.be.e.543.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.157385 + 1.40543i) q^{2} +(-0.290169 + 1.08292i) q^{3} +(-1.95046 - 0.442386i) q^{4} +(-1.47630 - 0.578247i) q^{6} +(2.16744 + 1.51730i) q^{7} +(0.928715 - 2.67161i) q^{8} +(1.50955 + 0.871538i) q^{9} +(2.58391 - 1.49182i) q^{11} +(1.04503 - 1.98383i) q^{12} +(-4.05418 + 4.05418i) q^{13} +(-2.47357 + 2.80739i) q^{14} +(3.60859 + 1.72571i) q^{16} +(-0.617565 + 2.30478i) q^{17} +(-1.46247 + 1.98440i) q^{18} +(-1.25694 + 2.17708i) q^{19} +(-2.27204 + 1.90691i) q^{21} +(1.68998 + 3.86629i) q^{22} +(5.79414 - 1.55254i) q^{23} +(2.62367 + 1.78095i) q^{24} +(-5.05979 - 6.33592i) q^{26} +(-3.76010 + 3.76010i) q^{27} +(-3.55628 - 3.91827i) q^{28} +2.55433i q^{29} +(3.12248 - 1.80277i) q^{31} +(-2.99330 + 4.80001i) q^{32} +(0.865758 + 3.23105i) q^{33} +(-3.14202 - 1.23068i) q^{34} +(-2.55876 - 2.36770i) q^{36} +(-4.61014 + 1.23528i) q^{37} +(-2.86191 - 2.10918i) q^{38} +(-3.21397 - 5.56676i) q^{39} -7.93727 q^{41} +(-2.32244 - 3.49331i) q^{42} +(-7.62646 - 7.62646i) q^{43} +(-5.69977 + 1.76665i) q^{44} +(1.27007 + 8.38760i) q^{46} +(-0.765987 - 2.85870i) q^{47} +(-2.91592 + 3.40708i) q^{48} +(2.39563 + 6.57731i) q^{49} +(-2.31671 - 1.33755i) q^{51} +(9.70103 - 6.11400i) q^{52} +(2.47243 + 0.662485i) q^{53} +(-4.69277 - 5.87634i) q^{54} +(6.06656 - 4.38142i) q^{56} +(-1.99289 - 1.99289i) q^{57} +(-3.58993 - 0.402012i) q^{58} +(1.04694 + 1.81336i) q^{59} +(0.950478 - 1.64628i) q^{61} +(2.04223 + 4.67216i) q^{62} +(1.94948 + 4.17944i) q^{63} +(-6.27498 - 4.96233i) q^{64} +(-4.67727 + 0.708243i) q^{66} +(-3.00512 - 0.805219i) q^{67} +(2.22414 - 4.22219i) q^{68} +6.72512i q^{69} +8.09721i q^{71} +(3.73035 - 3.22351i) q^{72} +(9.41954 + 2.52396i) q^{73} +(-1.01054 - 6.67364i) q^{74} +(3.41472 - 3.69026i) q^{76} +(7.86400 + 0.687116i) q^{77} +(8.32952 - 3.64089i) q^{78} +(4.03058 - 6.98117i) q^{79} +(-0.366226 - 0.634322i) q^{81} +(1.24921 - 11.1553i) q^{82} +(5.99790 + 5.99790i) q^{83} +(5.27511 - 2.71422i) q^{84} +(11.9187 - 9.51816i) q^{86} +(-2.76614 - 0.741186i) q^{87} +(-1.58584 - 8.28866i) q^{88} +(-1.77990 - 1.02763i) q^{89} +(-14.9386 + 2.63582i) q^{91} +(-11.9881 + 0.464910i) q^{92} +(1.04621 + 3.90452i) q^{93} +(4.13826 - 0.626624i) q^{94} +(-4.32949 - 4.63434i) q^{96} +(-6.63160 - 6.63160i) q^{97} +(-9.62097 + 2.33171i) q^{98} +5.20071 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q - 2 q^{2} - 16 q^{6} + 4 q^{8} - 10 q^{12} - 28 q^{16} - 4 q^{17} + 20 q^{18} + 4 q^{21} + 16 q^{22} - 4 q^{26} - 42 q^{28} + 38 q^{32} + 64 q^{33} + 16 q^{36} + 4 q^{37} - 12 q^{38} - 40 q^{41} - 78 q^{42}+ \cdots + 90 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/700\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(477\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.157385 + 1.40543i −0.111288 + 0.993788i
\(3\) −0.290169 + 1.08292i −0.167529 + 0.625227i 0.830175 + 0.557503i \(0.188240\pi\)
−0.997704 + 0.0677240i \(0.978426\pi\)
\(4\) −1.95046 0.442386i −0.975230 0.221193i
\(5\) 0 0
\(6\) −1.47630 0.578247i −0.602699 0.236068i
\(7\) 2.16744 + 1.51730i 0.819217 + 0.573484i
\(8\) 0.928715 2.67161i 0.328350 0.944556i
\(9\) 1.50955 + 0.871538i 0.503183 + 0.290513i
\(10\) 0 0
\(11\) 2.58391 1.49182i 0.779077 0.449800i −0.0570261 0.998373i \(-0.518162\pi\)
0.836103 + 0.548572i \(0.184828\pi\)
\(12\) 1.04503 1.98383i 0.301675 0.572684i
\(13\) −4.05418 + 4.05418i −1.12443 + 1.12443i −0.133359 + 0.991068i \(0.542576\pi\)
−0.991068 + 0.133359i \(0.957424\pi\)
\(14\) −2.47357 + 2.80739i −0.661090 + 0.750306i
\(15\) 0 0
\(16\) 3.60859 + 1.72571i 0.902147 + 0.431428i
\(17\) −0.617565 + 2.30478i −0.149782 + 0.558992i 0.849714 + 0.527243i \(0.176774\pi\)
−0.999496 + 0.0317490i \(0.989892\pi\)
\(18\) −1.46247 + 1.98440i −0.344706 + 0.467727i
\(19\) −1.25694 + 2.17708i −0.288362 + 0.499457i −0.973419 0.229032i \(-0.926444\pi\)
0.685057 + 0.728489i \(0.259777\pi\)
\(20\) 0 0
\(21\) −2.27204 + 1.90691i −0.495800 + 0.416121i
\(22\) 1.68998 + 3.86629i 0.360304 + 0.824295i
\(23\) 5.79414 1.55254i 1.20816 0.323726i 0.402122 0.915586i \(-0.368273\pi\)
0.806041 + 0.591860i \(0.201606\pi\)
\(24\) 2.62367 + 1.78095i 0.535553 + 0.363534i
\(25\) 0 0
\(26\) −5.05979 6.33592i −0.992307 1.24258i
\(27\) −3.76010 + 3.76010i −0.723632 + 0.723632i
\(28\) −3.55628 3.91827i −0.672074 0.740484i
\(29\) 2.55433i 0.474327i 0.971470 + 0.237163i \(0.0762177\pi\)
−0.971470 + 0.237163i \(0.923782\pi\)
\(30\) 0 0
\(31\) 3.12248 1.80277i 0.560815 0.323787i −0.192658 0.981266i \(-0.561711\pi\)
0.753472 + 0.657479i \(0.228377\pi\)
\(32\) −2.99330 + 4.80001i −0.529147 + 0.848530i
\(33\) 0.865758 + 3.23105i 0.150709 + 0.562454i
\(34\) −3.14202 1.23068i −0.538851 0.211060i
\(35\) 0 0
\(36\) −2.55876 2.36770i −0.426460 0.394617i
\(37\) −4.61014 + 1.23528i −0.757903 + 0.203079i −0.617021 0.786947i \(-0.711661\pi\)
−0.140882 + 0.990026i \(0.544994\pi\)
\(38\) −2.86191 2.10918i −0.464263 0.342154i
\(39\) −3.21397 5.56676i −0.514648 0.891396i
\(40\) 0 0
\(41\) −7.93727 −1.23959 −0.619797 0.784763i \(-0.712785\pi\)
−0.619797 + 0.784763i \(0.712785\pi\)
\(42\) −2.32244 3.49331i −0.358360 0.539029i
\(43\) −7.62646 7.62646i −1.16302 1.16302i −0.983810 0.179215i \(-0.942644\pi\)
−0.179215 0.983810i \(-0.557356\pi\)
\(44\) −5.69977 + 1.76665i −0.859272 + 0.266332i
\(45\) 0 0
\(46\) 1.27007 + 8.38760i 0.187261 + 1.23668i
\(47\) −0.765987 2.85870i −0.111731 0.416985i 0.887291 0.461210i \(-0.152585\pi\)
−0.999022 + 0.0442256i \(0.985918\pi\)
\(48\) −2.91592 + 3.40708i −0.420876 + 0.491770i
\(49\) 2.39563 + 6.57731i 0.342232 + 0.939615i
\(50\) 0 0
\(51\) −2.31671 1.33755i −0.324404 0.187295i
\(52\) 9.70103 6.11400i 1.34529 0.847859i
\(53\) 2.47243 + 0.662485i 0.339614 + 0.0909993i 0.424595 0.905383i \(-0.360416\pi\)
−0.0849813 + 0.996383i \(0.527083\pi\)
\(54\) −4.69277 5.87634i −0.638605 0.799668i
\(55\) 0 0
\(56\) 6.06656 4.38142i 0.810678 0.585492i
\(57\) −1.99289 1.99289i −0.263965 0.263965i
\(58\) −3.58993 0.402012i −0.471380 0.0527868i
\(59\) 1.04694 + 1.81336i 0.136301 + 0.236079i 0.926094 0.377294i \(-0.123145\pi\)
−0.789793 + 0.613374i \(0.789812\pi\)
\(60\) 0 0
\(61\) 0.950478 1.64628i 0.121696 0.210784i −0.798740 0.601676i \(-0.794500\pi\)
0.920437 + 0.390892i \(0.127833\pi\)
\(62\) 2.04223 + 4.67216i 0.259363 + 0.593365i
\(63\) 1.94948 + 4.17944i 0.245612 + 0.526560i
\(64\) −6.27498 4.96233i −0.784372 0.620291i
\(65\) 0 0
\(66\) −4.67727 + 0.708243i −0.575733 + 0.0871787i
\(67\) −3.00512 0.805219i −0.367134 0.0983732i 0.0705354 0.997509i \(-0.477529\pi\)
−0.437669 + 0.899136i \(0.644196\pi\)
\(68\) 2.22414 4.22219i 0.269717 0.512016i
\(69\) 6.72512i 0.809609i
\(70\) 0 0
\(71\) 8.09721i 0.960962i 0.877005 + 0.480481i \(0.159538\pi\)
−0.877005 + 0.480481i \(0.840462\pi\)
\(72\) 3.73035 3.22351i 0.439626 0.379894i
\(73\) 9.41954 + 2.52396i 1.10247 + 0.295407i 0.763771 0.645487i \(-0.223345\pi\)
0.338702 + 0.940894i \(0.390012\pi\)
\(74\) −1.01054 6.67364i −0.117473 0.775795i
\(75\) 0 0
\(76\) 3.41472 3.69026i 0.391695 0.423302i
\(77\) 7.86400 + 0.687116i 0.896186 + 0.0783041i
\(78\) 8.32952 3.64089i 0.943133 0.412249i
\(79\) 4.03058 6.98117i 0.453476 0.785443i −0.545123 0.838356i \(-0.683517\pi\)
0.998599 + 0.0529126i \(0.0168505\pi\)
\(80\) 0 0
\(81\) −0.366226 0.634322i −0.0406918 0.0704802i
\(82\) 1.24921 11.1553i 0.137952 1.23189i
\(83\) 5.99790 + 5.99790i 0.658356 + 0.658356i 0.954991 0.296635i \(-0.0958646\pi\)
−0.296635 + 0.954991i \(0.595865\pi\)
\(84\) 5.27511 2.71422i 0.575562 0.296146i
\(85\) 0 0
\(86\) 11.9187 9.51816i 1.28523 1.02637i
\(87\) −2.76614 0.741186i −0.296562 0.0794635i
\(88\) −1.58584 8.28866i −0.169051 0.883574i
\(89\) −1.77990 1.02763i −0.188669 0.108928i 0.402690 0.915336i \(-0.368075\pi\)
−0.591359 + 0.806408i \(0.701408\pi\)
\(90\) 0 0
\(91\) −14.9386 + 2.63582i −1.56599 + 0.276309i
\(92\) −11.9881 + 0.464910i −1.24984 + 0.0484702i
\(93\) 1.04621 + 3.90452i 0.108487 + 0.404880i
\(94\) 4.13826 0.626624i 0.426829 0.0646313i
\(95\) 0 0
\(96\) −4.32949 4.63434i −0.441877 0.472990i
\(97\) −6.63160 6.63160i −0.673337 0.673337i 0.285147 0.958484i \(-0.407958\pi\)
−0.958484 + 0.285147i \(0.907958\pi\)
\(98\) −9.62097 + 2.33171i −0.971865 + 0.235539i
\(99\) 5.20071 0.522691
\(100\) 0 0
\(101\) 3.73273 + 6.46529i 0.371421 + 0.643320i 0.989784 0.142572i \(-0.0455373\pi\)
−0.618363 + 0.785892i \(0.712204\pi\)
\(102\) 2.24445 3.04546i 0.222234 0.301545i
\(103\) 3.98105 1.06672i 0.392264 0.105107i −0.0572952 0.998357i \(-0.518248\pi\)
0.449560 + 0.893250i \(0.351581\pi\)
\(104\) 7.06600 + 14.5964i 0.692878 + 1.43129i
\(105\) 0 0
\(106\) −1.32020 + 3.37056i −0.128229 + 0.327377i
\(107\) 2.69601 + 10.0616i 0.260633 + 0.972696i 0.964869 + 0.262730i \(0.0846229\pi\)
−0.704236 + 0.709966i \(0.748710\pi\)
\(108\) 8.99734 5.67051i 0.865770 0.545645i
\(109\) 8.88798 5.13148i 0.851314 0.491507i −0.00977974 0.999952i \(-0.503113\pi\)
0.861094 + 0.508446i \(0.169780\pi\)
\(110\) 0 0
\(111\) 5.35088i 0.507883i
\(112\) 5.20300 + 9.21568i 0.491637 + 0.870800i
\(113\) −7.35551 + 7.35551i −0.691948 + 0.691948i −0.962660 0.270712i \(-0.912741\pi\)
0.270712 + 0.962660i \(0.412741\pi\)
\(114\) 3.11452 2.48722i 0.291701 0.232949i
\(115\) 0 0
\(116\) 1.13000 4.98211i 0.104918 0.462578i
\(117\) −9.65335 + 2.58661i −0.892453 + 0.239132i
\(118\) −2.71332 + 1.18601i −0.249782 + 0.109181i
\(119\) −4.83558 + 4.05846i −0.443277 + 0.372039i
\(120\) 0 0
\(121\) −1.04895 + 1.81684i −0.0953593 + 0.165167i
\(122\) 2.16413 + 1.59493i 0.195932 + 0.144398i
\(123\) 2.30315 8.59546i 0.207668 0.775027i
\(124\) −6.88780 + 2.13488i −0.618543 + 0.191718i
\(125\) 0 0
\(126\) −6.18073 + 2.08208i −0.550623 + 0.185486i
\(127\) 13.3832 13.3832i 1.18756 1.18756i 0.209826 0.977739i \(-0.432710\pi\)
0.977739 0.209826i \(-0.0672898\pi\)
\(128\) 7.96178 8.03804i 0.703729 0.710469i
\(129\) 10.4718 6.04592i 0.921994 0.532314i
\(130\) 0 0
\(131\) 13.2990 + 7.67817i 1.16194 + 0.670845i 0.951767 0.306820i \(-0.0992651\pi\)
0.210170 + 0.977665i \(0.432598\pi\)
\(132\) −0.259253 6.68504i −0.0225651 0.581858i
\(133\) −6.02762 + 2.81156i −0.522661 + 0.243793i
\(134\) 1.60464 4.09675i 0.138620 0.353905i
\(135\) 0 0
\(136\) 5.58394 + 3.79038i 0.478819 + 0.325022i
\(137\) −1.21956 + 4.55145i −0.104194 + 0.388857i −0.998252 0.0590931i \(-0.981179\pi\)
0.894059 + 0.447950i \(0.147846\pi\)
\(138\) −9.45167 1.05843i −0.804580 0.0900997i
\(139\) 10.3065 0.874185 0.437093 0.899417i \(-0.356008\pi\)
0.437093 + 0.899417i \(0.356008\pi\)
\(140\) 0 0
\(141\) 3.31802 0.279428
\(142\) −11.3800 1.27438i −0.954992 0.106943i
\(143\) −4.42752 + 16.5237i −0.370248 + 1.38178i
\(144\) 3.94332 + 5.75007i 0.328610 + 0.479173i
\(145\) 0 0
\(146\) −5.02973 + 12.8413i −0.416264 + 1.06275i
\(147\) −7.81786 + 0.685754i −0.644806 + 0.0565600i
\(148\) 9.53837 0.369908i 0.784049 0.0304063i
\(149\) −8.37658 4.83622i −0.686236 0.396199i 0.115964 0.993253i \(-0.463004\pi\)
−0.802201 + 0.597055i \(0.796338\pi\)
\(150\) 0 0
\(151\) 0.955932 0.551908i 0.0777927 0.0449136i −0.460599 0.887608i \(-0.652365\pi\)
0.538392 + 0.842695i \(0.319032\pi\)
\(152\) 4.64897 + 5.37994i 0.377082 + 0.436371i
\(153\) −2.94095 + 2.94095i −0.237762 + 0.237762i
\(154\) −2.20337 + 10.9442i −0.177552 + 0.881905i
\(155\) 0 0
\(156\) 3.80607 + 12.2796i 0.304729 + 0.983152i
\(157\) 2.24878 8.39254i 0.179472 0.669798i −0.816275 0.577664i \(-0.803964\pi\)
0.995747 0.0921341i \(-0.0293688\pi\)
\(158\) 9.17719 + 6.76343i 0.730098 + 0.538069i
\(159\) −1.43484 + 2.48522i −0.113790 + 0.197091i
\(160\) 0 0
\(161\) 14.9141 + 5.42640i 1.17540 + 0.427660i
\(162\) 0.949133 0.414872i 0.0745709 0.0325954i
\(163\) −1.04108 + 0.278958i −0.0815440 + 0.0218496i −0.299360 0.954140i \(-0.596773\pi\)
0.217816 + 0.975990i \(0.430107\pi\)
\(164\) 15.4813 + 3.51134i 1.20889 + 0.274190i
\(165\) 0 0
\(166\) −9.37361 + 7.48565i −0.727533 + 0.580999i
\(167\) 2.18132 2.18132i 0.168796 0.168796i −0.617654 0.786450i \(-0.711917\pi\)
0.786450 + 0.617654i \(0.211917\pi\)
\(168\) 2.98443 + 7.84098i 0.230253 + 0.604944i
\(169\) 19.8727i 1.52867i
\(170\) 0 0
\(171\) −3.79482 + 2.19094i −0.290197 + 0.167546i
\(172\) 11.5013 + 18.2490i 0.876963 + 1.39147i
\(173\) −6.10543 22.7858i −0.464187 1.73237i −0.659570 0.751643i \(-0.729262\pi\)
0.195383 0.980727i \(-0.437405\pi\)
\(174\) 1.47703 3.77097i 0.111974 0.285876i
\(175\) 0 0
\(176\) 11.8987 0.924279i 0.896899 0.0696701i
\(177\) −2.26752 + 0.607581i −0.170437 + 0.0456686i
\(178\) 1.72438 2.33979i 0.129248 0.175375i
\(179\) 3.53155 + 6.11682i 0.263960 + 0.457193i 0.967291 0.253670i \(-0.0816379\pi\)
−0.703330 + 0.710863i \(0.748305\pi\)
\(180\) 0 0
\(181\) −2.37419 −0.176472 −0.0882360 0.996100i \(-0.528123\pi\)
−0.0882360 + 0.996100i \(0.528123\pi\)
\(182\) −1.35335 21.4100i −0.100317 1.58701i
\(183\) 1.50699 + 1.50699i 0.111400 + 0.111400i
\(184\) 1.23334 16.9215i 0.0909232 1.24747i
\(185\) 0 0
\(186\) −5.65218 + 0.855866i −0.414438 + 0.0627551i
\(187\) 1.84259 + 6.87664i 0.134744 + 0.502870i
\(188\) 0.229376 + 5.91465i 0.0167290 + 0.431370i
\(189\) −13.8550 + 2.44462i −1.00780 + 0.177820i
\(190\) 0 0
\(191\) 5.46966 + 3.15791i 0.395771 + 0.228498i 0.684658 0.728865i \(-0.259952\pi\)
−0.288887 + 0.957363i \(0.593285\pi\)
\(192\) 7.19463 5.35541i 0.519227 0.386494i
\(193\) 20.4022 + 5.46675i 1.46858 + 0.393505i 0.902445 0.430806i \(-0.141771\pi\)
0.566137 + 0.824311i \(0.308437\pi\)
\(194\) 10.3639 8.27652i 0.744088 0.594220i
\(195\) 0 0
\(196\) −1.76286 13.8886i −0.125919 0.992041i
\(197\) 1.01354 + 1.01354i 0.0722120 + 0.0722120i 0.742290 0.670078i \(-0.233740\pi\)
−0.670078 + 0.742290i \(0.733740\pi\)
\(198\) −0.818513 + 7.30923i −0.0581692 + 0.519444i
\(199\) −4.75738 8.24003i −0.337242 0.584120i 0.646671 0.762769i \(-0.276161\pi\)
−0.983913 + 0.178649i \(0.942827\pi\)
\(200\) 0 0
\(201\) 1.74398 3.02067i 0.123011 0.213061i
\(202\) −9.67397 + 4.22855i −0.680658 + 0.297520i
\(203\) −3.87567 + 5.53636i −0.272019 + 0.388576i
\(204\) 3.92693 + 3.63372i 0.274940 + 0.254412i
\(205\) 0 0
\(206\) 0.872641 + 5.76297i 0.0607998 + 0.401525i
\(207\) 10.0996 + 2.70619i 0.701973 + 0.188093i
\(208\) −21.6262 + 7.63351i −1.49951 + 0.529289i
\(209\) 7.50050i 0.518821i
\(210\) 0 0
\(211\) 26.9476i 1.85515i −0.373634 0.927576i \(-0.621888\pi\)
0.373634 0.927576i \(-0.378112\pi\)
\(212\) −4.52930 2.38592i −0.311073 0.163866i
\(213\) −8.76866 2.34956i −0.600819 0.160989i
\(214\) −14.5652 + 2.20550i −0.995659 + 0.150765i
\(215\) 0 0
\(216\) 6.55345 + 13.5376i 0.445906 + 0.921116i
\(217\) 9.50314 + 0.830336i 0.645115 + 0.0563668i
\(218\) 5.81310 + 13.2990i 0.393712 + 0.900725i
\(219\) −5.46651 + 9.46827i −0.369393 + 0.639807i
\(220\) 0 0
\(221\) −6.84029 11.8477i −0.460128 0.796964i
\(222\) 7.52028 + 0.842147i 0.504728 + 0.0565212i
\(223\) −2.22624 2.22624i −0.149080 0.149080i 0.628627 0.777707i \(-0.283617\pi\)
−0.777707 + 0.628627i \(0.783617\pi\)
\(224\) −13.7709 + 5.86203i −0.920104 + 0.391673i
\(225\) 0 0
\(226\) −9.18000 11.4953i −0.610645 0.764655i
\(227\) 7.79070 + 2.08751i 0.517087 + 0.138553i 0.507919 0.861405i \(-0.330415\pi\)
0.00916824 + 0.999958i \(0.497082\pi\)
\(228\) 3.00543 + 4.76868i 0.199039 + 0.315814i
\(229\) −2.10701 1.21648i −0.139235 0.0803873i 0.428764 0.903416i \(-0.358949\pi\)
−0.567999 + 0.823029i \(0.692282\pi\)
\(230\) 0 0
\(231\) −3.02598 + 8.31674i −0.199095 + 0.547201i
\(232\) 6.82416 + 2.37224i 0.448028 + 0.155745i
\(233\) −2.70941 10.1117i −0.177499 0.662437i −0.996112 0.0880913i \(-0.971923\pi\)
0.818613 0.574346i \(-0.194743\pi\)
\(234\) −2.11600 13.9742i −0.138327 0.913522i
\(235\) 0 0
\(236\) −1.23982 4.00004i −0.0807052 0.260381i
\(237\) 6.39053 + 6.39053i 0.415110 + 0.415110i
\(238\) −4.94283 7.43480i −0.320396 0.481927i
\(239\) 12.9050 0.834754 0.417377 0.908733i \(-0.362949\pi\)
0.417377 + 0.908733i \(0.362949\pi\)
\(240\) 0 0
\(241\) −1.35695 2.35030i −0.0874087 0.151396i 0.819006 0.573784i \(-0.194525\pi\)
−0.906415 + 0.422388i \(0.861192\pi\)
\(242\) −2.38835 1.76017i −0.153529 0.113148i
\(243\) −14.6160 + 3.91634i −0.937616 + 0.251234i
\(244\) −2.58216 + 2.79052i −0.165306 + 0.178645i
\(245\) 0 0
\(246\) 11.7178 + 4.58970i 0.747101 + 0.292629i
\(247\) −3.73043 13.9221i −0.237361 0.885845i
\(248\) −1.91639 10.0163i −0.121691 0.636036i
\(249\) −8.23568 + 4.75487i −0.521915 + 0.301328i
\(250\) 0 0
\(251\) 3.15358i 0.199052i 0.995035 + 0.0995262i \(0.0317327\pi\)
−0.995035 + 0.0995262i \(0.968267\pi\)
\(252\) −1.95346 9.01426i −0.123056 0.567845i
\(253\) 12.6554 12.6554i 0.795640 0.795640i
\(254\) 16.7028 + 20.9154i 1.04803 + 1.31235i
\(255\) 0 0
\(256\) 10.0438 + 12.4548i 0.627739 + 0.778424i
\(257\) 15.9053 4.26180i 0.992143 0.265844i 0.273993 0.961732i \(-0.411656\pi\)
0.718151 + 0.695888i \(0.244989\pi\)
\(258\) 6.84900 + 15.6690i 0.426400 + 0.975507i
\(259\) −11.8665 4.31754i −0.737350 0.268279i
\(260\) 0 0
\(261\) −2.22619 + 3.85588i −0.137798 + 0.238673i
\(262\) −12.8842 + 17.4823i −0.795987 + 1.08006i
\(263\) 7.55474 28.1947i 0.465845 1.73856i −0.188227 0.982126i \(-0.560274\pi\)
0.654072 0.756432i \(-0.273059\pi\)
\(264\) 9.43615 + 0.687763i 0.580755 + 0.0423289i
\(265\) 0 0
\(266\) −3.00279 8.91389i −0.184113 0.546546i
\(267\) 1.62931 1.62931i 0.0997123 0.0997123i
\(268\) 5.50515 + 2.89997i 0.336280 + 0.177144i
\(269\) −5.29203 + 3.05536i −0.322661 + 0.186288i −0.652578 0.757721i \(-0.726313\pi\)
0.329917 + 0.944010i \(0.392979\pi\)
\(270\) 0 0
\(271\) 19.0699 + 11.0100i 1.15841 + 0.668810i 0.950923 0.309428i \(-0.100137\pi\)
0.207489 + 0.978237i \(0.433471\pi\)
\(272\) −6.20594 + 7.25128i −0.376290 + 0.439673i
\(273\) 1.48032 16.9422i 0.0895932 1.02539i
\(274\) −6.20480 2.43033i −0.374846 0.146822i
\(275\) 0 0
\(276\) 2.97510 13.1171i 0.179080 0.789555i
\(277\) 4.25922 15.8956i 0.255912 0.955077i −0.711669 0.702515i \(-0.752060\pi\)
0.967581 0.252561i \(-0.0812730\pi\)
\(278\) −1.62209 + 14.4850i −0.0972862 + 0.868755i
\(279\) 6.28472 0.376257
\(280\) 0 0
\(281\) 6.79274 0.405221 0.202610 0.979259i \(-0.435057\pi\)
0.202610 + 0.979259i \(0.435057\pi\)
\(282\) −0.522207 + 4.66325i −0.0310970 + 0.277692i
\(283\) 3.37625 12.6003i 0.200697 0.749013i −0.790021 0.613080i \(-0.789930\pi\)
0.990718 0.135932i \(-0.0434030\pi\)
\(284\) 3.58209 15.7933i 0.212558 0.937159i
\(285\) 0 0
\(286\) −22.5261 8.82314i −1.33200 0.521723i
\(287\) −17.2036 12.0432i −1.01550 0.710887i
\(288\) −8.70194 + 4.63707i −0.512767 + 0.273242i
\(289\) 9.79179 + 5.65329i 0.575987 + 0.332546i
\(290\) 0 0
\(291\) 9.10580 5.25724i 0.533791 0.308185i
\(292\) −17.2559 9.08995i −1.00982 0.531949i
\(293\) 1.28839 1.28839i 0.0752688 0.0752688i −0.668470 0.743739i \(-0.733051\pi\)
0.743739 + 0.668470i \(0.233051\pi\)
\(294\) 0.266634 11.0954i 0.0155504 0.647095i
\(295\) 0 0
\(296\) −0.981316 + 13.4637i −0.0570378 + 0.782563i
\(297\) −4.10636 + 15.3251i −0.238275 + 0.889255i
\(298\) 8.11531 11.0115i 0.470107 0.637882i
\(299\) −17.1962 + 29.7848i −0.994484 + 1.72250i
\(300\) 0 0
\(301\) −4.95833 28.1015i −0.285793 1.61975i
\(302\) 0.625218 + 1.43036i 0.0359772 + 0.0823078i
\(303\) −8.08454 + 2.16625i −0.464445 + 0.124448i
\(304\) −8.29280 + 5.68708i −0.475625 + 0.326176i
\(305\) 0 0
\(306\) −3.67044 4.59616i −0.209825 0.262745i
\(307\) −11.6465 + 11.6465i −0.664701 + 0.664701i −0.956484 0.291783i \(-0.905751\pi\)
0.291783 + 0.956484i \(0.405751\pi\)
\(308\) −15.0345 4.81912i −0.856667 0.274595i
\(309\) 4.62070i 0.262863i
\(310\) 0 0
\(311\) −26.1398 + 15.0918i −1.48225 + 0.855778i −0.999797 0.0201436i \(-0.993588\pi\)
−0.482454 + 0.875922i \(0.660254\pi\)
\(312\) −17.8571 + 3.41654i −1.01096 + 0.193423i
\(313\) −5.71023 21.3109i −0.322761 1.20456i −0.916543 0.399935i \(-0.869033\pi\)
0.593782 0.804626i \(-0.297634\pi\)
\(314\) 11.4412 + 4.48135i 0.645664 + 0.252897i
\(315\) 0 0
\(316\) −10.9499 + 11.8334i −0.615978 + 0.665682i
\(317\) −1.40009 + 0.375154i −0.0786372 + 0.0210708i −0.297923 0.954590i \(-0.596294\pi\)
0.219286 + 0.975661i \(0.429627\pi\)
\(318\) −3.26698 2.40770i −0.183203 0.135017i
\(319\) 3.81059 + 6.60014i 0.213352 + 0.369537i
\(320\) 0 0
\(321\) −11.6783 −0.651819
\(322\) −9.97367 + 20.1067i −0.555811 + 1.12050i
\(323\) −4.24147 4.24147i −0.236001 0.236001i
\(324\) 0.433694 + 1.39923i 0.0240941 + 0.0777352i
\(325\) 0 0
\(326\) −0.228204 1.50707i −0.0126391 0.0834691i
\(327\) 2.97799 + 11.1140i 0.164683 + 0.614606i
\(328\) −7.37146 + 21.2053i −0.407021 + 1.17087i
\(329\) 2.67726 7.35831i 0.147602 0.405677i
\(330\) 0 0
\(331\) −24.5744 14.1881i −1.35073 0.779846i −0.362381 0.932030i \(-0.618036\pi\)
−0.988352 + 0.152184i \(0.951369\pi\)
\(332\) −9.04528 14.3521i −0.496424 0.787672i
\(333\) −8.03583 2.15320i −0.440361 0.117994i
\(334\) 2.72239 + 3.40900i 0.148962 + 0.186532i
\(335\) 0 0
\(336\) −11.4896 + 2.96035i −0.626811 + 0.161500i
\(337\) 11.7829 + 11.7829i 0.641857 + 0.641857i 0.951012 0.309155i \(-0.100046\pi\)
−0.309155 + 0.951012i \(0.600046\pi\)
\(338\) 27.9297 + 3.12767i 1.51918 + 0.170123i
\(339\) −5.83112 10.0998i −0.316703 0.548546i
\(340\) 0 0
\(341\) 5.37880 9.31636i 0.291279 0.504509i
\(342\) −2.48197 5.67817i −0.134209 0.307041i
\(343\) −4.78733 + 17.8908i −0.258492 + 0.966013i
\(344\) −27.4577 + 13.2921i −1.48042 + 0.716662i
\(345\) 0 0
\(346\) 32.9847 4.99461i 1.77327 0.268512i
\(347\) 15.4205 + 4.13190i 0.827815 + 0.221812i 0.647760 0.761844i \(-0.275706\pi\)
0.180055 + 0.983657i \(0.442373\pi\)
\(348\) 5.06736 + 2.66936i 0.271639 + 0.143093i
\(349\) 7.52656i 0.402888i −0.979500 0.201444i \(-0.935437\pi\)
0.979500 0.201444i \(-0.0645633\pi\)
\(350\) 0 0
\(351\) 30.4882i 1.62734i
\(352\) −0.573668 + 16.8683i −0.0305766 + 0.899081i
\(353\) 5.41550 + 1.45108i 0.288238 + 0.0772331i 0.400041 0.916497i \(-0.368996\pi\)
−0.111803 + 0.993730i \(0.535663\pi\)
\(354\) −0.497038 3.28247i −0.0264173 0.174461i
\(355\) 0 0
\(356\) 3.01702 + 2.79175i 0.159902 + 0.147962i
\(357\) −2.99187 6.41420i −0.158347 0.339476i
\(358\) −9.15257 + 4.00064i −0.483728 + 0.211441i
\(359\) 18.2143 31.5480i 0.961311 1.66504i 0.242097 0.970252i \(-0.422165\pi\)
0.719215 0.694788i \(-0.244502\pi\)
\(360\) 0 0
\(361\) 6.34021 + 10.9816i 0.333695 + 0.577977i
\(362\) 0.373661 3.33675i 0.0196392 0.175376i
\(363\) −1.66313 1.66313i −0.0872915 0.0872915i
\(364\) 30.3032 + 1.46757i 1.58832 + 0.0769217i
\(365\) 0 0
\(366\) −2.35515 + 1.88080i −0.123106 + 0.0983107i
\(367\) −31.5816 8.46227i −1.64855 0.441727i −0.689342 0.724436i \(-0.742100\pi\)
−0.959206 + 0.282709i \(0.908767\pi\)
\(368\) 23.5879 + 4.39657i 1.22961 + 0.229187i
\(369\) −11.9817 6.91763i −0.623742 0.360118i
\(370\) 0 0
\(371\) 4.35366 + 5.18730i 0.226031 + 0.269311i
\(372\) −0.313291 8.07844i −0.0162434 0.418848i
\(373\) 6.76877 + 25.2614i 0.350474 + 1.30799i 0.886086 + 0.463522i \(0.153414\pi\)
−0.535612 + 0.844464i \(0.679919\pi\)
\(374\) −9.95463 + 1.50735i −0.514742 + 0.0779433i
\(375\) 0 0
\(376\) −8.34872 0.608504i −0.430552 0.0313812i
\(377\) −10.3557 10.3557i −0.533346 0.533346i
\(378\) −1.25518 19.8570i −0.0645594 1.02133i
\(379\) −20.3769 −1.04669 −0.523344 0.852121i \(-0.675316\pi\)
−0.523344 + 0.852121i \(0.675316\pi\)
\(380\) 0 0
\(381\) 10.6096 + 18.3763i 0.543546 + 0.941449i
\(382\) −5.29906 + 7.19021i −0.271124 + 0.367883i
\(383\) 24.6635 6.60856i 1.26025 0.337682i 0.433960 0.900932i \(-0.357116\pi\)
0.826286 + 0.563250i \(0.190449\pi\)
\(384\) 6.39433 + 10.9544i 0.326309 + 0.559014i
\(385\) 0 0
\(386\) −10.8941 + 27.8134i −0.554496 + 1.41567i
\(387\) −4.86576 18.1593i −0.247341 0.923088i
\(388\) 10.0009 + 15.8684i 0.507721 + 0.805595i
\(389\) 15.6310 9.02458i 0.792525 0.457564i −0.0483257 0.998832i \(-0.515389\pi\)
0.840851 + 0.541267i \(0.182055\pi\)
\(390\) 0 0
\(391\) 14.3130i 0.723842i
\(392\) 19.7968 0.291730i 0.999891 0.0147346i
\(393\) −12.1738 + 12.1738i −0.614088 + 0.614088i
\(394\) −1.58398 + 1.26495i −0.0797998 + 0.0637272i
\(395\) 0 0
\(396\) −10.1438 2.30072i −0.509744 0.115616i
\(397\) 29.0617 7.78706i 1.45857 0.390821i 0.559571 0.828782i \(-0.310966\pi\)
0.898994 + 0.437961i \(0.144299\pi\)
\(398\) 12.3295 5.38931i 0.618022 0.270141i
\(399\) −1.29568 7.34329i −0.0648649 0.367624i
\(400\) 0 0
\(401\) −2.44780 + 4.23972i −0.122237 + 0.211721i −0.920650 0.390390i \(-0.872340\pi\)
0.798412 + 0.602111i \(0.205674\pi\)
\(402\) 3.97086 + 2.92645i 0.198048 + 0.145958i
\(403\) −5.35037 + 19.9678i −0.266521 + 0.994669i
\(404\) −4.42040 14.2616i −0.219923 0.709541i
\(405\) 0 0
\(406\) −7.17099 6.31832i −0.355890 0.313573i
\(407\) −10.0694 + 10.0694i −0.499119 + 0.499119i
\(408\) −5.72498 + 4.94713i −0.283429 + 0.244920i
\(409\) −29.0499 + 16.7720i −1.43642 + 0.829320i −0.997599 0.0692530i \(-0.977938\pi\)
−0.438825 + 0.898573i \(0.644605\pi\)
\(410\) 0 0
\(411\) −4.57500 2.64138i −0.225668 0.130290i
\(412\) −8.23678 + 0.319431i −0.405797 + 0.0157372i
\(413\) −0.482212 + 5.51888i −0.0237281 + 0.271566i
\(414\) −5.39289 + 13.7684i −0.265046 + 0.676680i
\(415\) 0 0
\(416\) −7.32472 31.5955i −0.359124 1.54910i
\(417\) −2.99062 + 11.1611i −0.146451 + 0.546564i
\(418\) −10.5414 1.18047i −0.515598 0.0577385i
\(419\) −36.3735 −1.77696 −0.888481 0.458914i \(-0.848239\pi\)
−0.888481 + 0.458914i \(0.848239\pi\)
\(420\) 0 0
\(421\) −33.2473 −1.62038 −0.810188 0.586170i \(-0.800635\pi\)
−0.810188 + 0.586170i \(0.800635\pi\)
\(422\) 37.8730 + 4.24115i 1.84363 + 0.206456i
\(423\) 1.33517 4.98294i 0.0649184 0.242279i
\(424\) 4.06608 5.99010i 0.197466 0.290905i
\(425\) 0 0
\(426\) 4.68219 11.9539i 0.226853 0.579171i
\(427\) 4.55800 2.12606i 0.220577 0.102887i
\(428\) −0.807325 20.8175i −0.0390235 1.00625i
\(429\) −16.6092 9.58933i −0.801900 0.462977i
\(430\) 0 0
\(431\) 26.9460 15.5573i 1.29794 0.749367i 0.317894 0.948126i \(-0.397024\pi\)
0.980048 + 0.198759i \(0.0636910\pi\)
\(432\) −20.0575 + 7.07980i −0.965018 + 0.340627i
\(433\) −7.14603 + 7.14603i −0.343416 + 0.343416i −0.857650 0.514234i \(-0.828076\pi\)
0.514234 + 0.857650i \(0.328076\pi\)
\(434\) −2.66263 + 13.2253i −0.127810 + 0.634835i
\(435\) 0 0
\(436\) −19.6058 + 6.07682i −0.938945 + 0.291027i
\(437\) −3.90289 + 14.5658i −0.186700 + 0.696776i
\(438\) −12.4466 9.17295i −0.594723 0.438301i
\(439\) −0.278565 + 0.482489i −0.0132952 + 0.0230280i −0.872596 0.488442i \(-0.837565\pi\)
0.859301 + 0.511470i \(0.170899\pi\)
\(440\) 0 0
\(441\) −2.11606 + 12.0166i −0.100765 + 0.572221i
\(442\) 17.7277 7.74889i 0.843221 0.368577i
\(443\) −23.5587 + 6.31254i −1.11931 + 0.299918i −0.770604 0.637315i \(-0.780045\pi\)
−0.348705 + 0.937233i \(0.613379\pi\)
\(444\) −2.36715 + 10.4367i −0.112340 + 0.495302i
\(445\) 0 0
\(446\) 3.47920 2.77845i 0.164745 0.131563i
\(447\) 7.66789 7.66789i 0.362679 0.362679i
\(448\) −6.07134 20.2766i −0.286844 0.957977i
\(449\) 8.64441i 0.407955i 0.978976 + 0.203978i \(0.0653870\pi\)
−0.978976 + 0.203978i \(0.934613\pi\)
\(450\) 0 0
\(451\) −20.5092 + 11.8410i −0.965738 + 0.557569i
\(452\) 17.6006 11.0927i 0.827863 0.521754i
\(453\) 0.320293 + 1.19535i 0.0150487 + 0.0561624i
\(454\) −4.15999 + 10.6207i −0.195238 + 0.498456i
\(455\) 0 0
\(456\) −7.17505 + 3.47340i −0.336003 + 0.162657i
\(457\) 2.64033 0.707473i 0.123509 0.0330942i −0.196535 0.980497i \(-0.562969\pi\)
0.320044 + 0.947403i \(0.396302\pi\)
\(458\) 2.04129 2.76979i 0.0953831 0.129424i
\(459\) −6.34412 10.9883i −0.296118 0.512891i
\(460\) 0 0
\(461\) 38.5986 1.79772 0.898858 0.438239i \(-0.144398\pi\)
0.898858 + 0.438239i \(0.144398\pi\)
\(462\) −11.2123 5.56173i −0.521645 0.258755i
\(463\) −13.5055 13.5055i −0.627652 0.627652i 0.319824 0.947477i \(-0.396376\pi\)
−0.947477 + 0.319824i \(0.896376\pi\)
\(464\) −4.40804 + 9.21752i −0.204638 + 0.427913i
\(465\) 0 0
\(466\) 14.6376 2.21646i 0.678075 0.102676i
\(467\) 3.45858 + 12.9076i 0.160044 + 0.597292i 0.998620 + 0.0525083i \(0.0167216\pi\)
−0.838577 + 0.544784i \(0.816612\pi\)
\(468\) 19.9728 0.774565i 0.923241 0.0358043i
\(469\) −5.29167 6.30492i −0.244347 0.291134i
\(470\) 0 0
\(471\) 8.43596 + 4.87051i 0.388709 + 0.224421i
\(472\) 5.81690 1.11293i 0.267745 0.0512267i
\(473\) −31.0834 8.32876i −1.42921 0.382957i
\(474\) −9.98721 + 7.97567i −0.458728 + 0.366335i
\(475\) 0 0
\(476\) 11.2270 5.77668i 0.514589 0.264774i
\(477\) 3.15487 + 3.15487i 0.144452 + 0.144452i
\(478\) −2.03105 + 18.1370i −0.0928980 + 0.829569i
\(479\) −3.91630 6.78323i −0.178940 0.309934i 0.762578 0.646897i \(-0.223934\pi\)
−0.941518 + 0.336963i \(0.890600\pi\)
\(480\) 0 0
\(481\) 13.6823 23.6984i 0.623858 1.08055i
\(482\) 3.51675 1.53719i 0.160183 0.0700172i
\(483\) −10.2040 + 14.5763i −0.464298 + 0.663245i
\(484\) 2.84968 3.07963i 0.129531 0.139983i
\(485\) 0 0
\(486\) −3.20381 21.1581i −0.145328 0.959751i
\(487\) 2.35662 + 0.631456i 0.106789 + 0.0286140i 0.311818 0.950142i \(-0.399062\pi\)
−0.205029 + 0.978756i \(0.565729\pi\)
\(488\) −3.51548 4.06823i −0.159138 0.184160i
\(489\) 1.20836i 0.0546439i
\(490\) 0 0
\(491\) 33.5206i 1.51276i −0.654130 0.756382i \(-0.726965\pi\)
0.654130 0.756382i \(-0.273035\pi\)
\(492\) −8.29471 + 15.7462i −0.373954 + 0.709895i
\(493\) −5.88718 1.57746i −0.265145 0.0710454i
\(494\) 20.1537 3.05171i 0.906757 0.137303i
\(495\) 0 0
\(496\) 14.3788 1.11693i 0.645628 0.0501517i
\(497\) −12.2859 + 17.5502i −0.551096 + 0.787236i
\(498\) −5.38646 12.3230i −0.241373 0.552207i
\(499\) −10.3462 + 17.9201i −0.463159 + 0.802216i −0.999116 0.0420297i \(-0.986618\pi\)
0.535957 + 0.844245i \(0.319951\pi\)
\(500\) 0 0
\(501\) 1.72926 + 2.99516i 0.0772575 + 0.133814i
\(502\) −4.43214 0.496326i −0.197816 0.0221521i
\(503\) 4.35918 + 4.35918i 0.194366 + 0.194366i 0.797580 0.603214i \(-0.206113\pi\)
−0.603214 + 0.797580i \(0.706113\pi\)
\(504\) 12.9763 1.32674i 0.578012 0.0590975i
\(505\) 0 0
\(506\) 15.7945 + 19.7781i 0.702152 + 0.879242i
\(507\) 21.5207 + 5.76644i 0.955766 + 0.256097i
\(508\) −32.0239 + 20.1828i −1.42083 + 0.895468i
\(509\) 26.4887 + 15.2933i 1.17409 + 0.677862i 0.954640 0.297761i \(-0.0962400\pi\)
0.219451 + 0.975623i \(0.429573\pi\)
\(510\) 0 0
\(511\) 16.5867 + 19.7628i 0.733754 + 0.874253i
\(512\) −19.0851 + 12.1557i −0.843448 + 0.537211i
\(513\) −3.45983 12.9123i −0.152755 0.570091i
\(514\) 3.48641 + 23.0245i 0.153779 + 1.01557i
\(515\) 0 0
\(516\) −23.0995 + 7.15973i −1.01690 + 0.315189i
\(517\) −6.24391 6.24391i −0.274607 0.274607i
\(518\) 7.93561 15.9980i 0.348671 0.702913i
\(519\) 26.4469 1.16089
\(520\) 0 0
\(521\) −4.68273 8.11072i −0.205154 0.355337i 0.745028 0.667033i \(-0.232436\pi\)
−0.950182 + 0.311696i \(0.899103\pi\)
\(522\) −5.06880 3.73562i −0.221855 0.163503i
\(523\) 31.6043 8.46836i 1.38196 0.370296i 0.510128 0.860098i \(-0.329598\pi\)
0.871833 + 0.489803i \(0.162931\pi\)
\(524\) −22.5424 20.8592i −0.984770 0.911240i
\(525\) 0 0
\(526\) 38.4366 + 15.0551i 1.67592 + 0.656432i
\(527\) 2.22665 + 8.30998i 0.0969945 + 0.361988i
\(528\) −2.45171 + 13.1536i −0.106697 + 0.572437i
\(529\) 11.2432 6.49124i 0.488833 0.282228i
\(530\) 0 0
\(531\) 3.64981i 0.158388i
\(532\) 13.0004 2.81729i 0.563640 0.122145i
\(533\) 32.1791 32.1791i 1.39383 1.39383i
\(534\) 2.03345 + 2.54631i 0.0879961 + 0.110190i
\(535\) 0 0
\(536\) −4.94213 + 7.28068i −0.213468 + 0.314478i
\(537\) −7.64880 + 2.04949i −0.330070 + 0.0884420i
\(538\) −3.46120 7.91844i −0.149223 0.341388i
\(539\) 16.0022 + 13.4213i 0.689265 + 0.578096i
\(540\) 0 0
\(541\) 2.73095 4.73015i 0.117413 0.203365i −0.801329 0.598224i \(-0.795873\pi\)
0.918742 + 0.394859i \(0.129207\pi\)
\(542\) −18.4751 + 25.0685i −0.793572 + 1.07679i
\(543\) 0.688915 2.57107i 0.0295642 0.110335i
\(544\) −9.21444 9.86325i −0.395066 0.422883i
\(545\) 0 0
\(546\) 23.5781 + 4.74693i 1.00905 + 0.203150i
\(547\) −4.64823 + 4.64823i −0.198744 + 0.198744i −0.799461 0.600718i \(-0.794882\pi\)
0.600718 + 0.799461i \(0.294882\pi\)
\(548\) 4.39220 8.33791i 0.187626 0.356178i
\(549\) 2.86959 1.65676i 0.122471 0.0707087i
\(550\) 0 0
\(551\) −5.56098 3.21064i −0.236906 0.136778i
\(552\) 17.9669 + 6.24572i 0.764721 + 0.265835i
\(553\) 19.3286 9.01572i 0.821934 0.383387i
\(554\) 21.6699 + 8.48777i 0.920664 + 0.360611i
\(555\) 0 0
\(556\) −20.1024 4.55945i −0.852532 0.193364i
\(557\) −3.22921 + 12.0516i −0.136826 + 0.510642i 0.863158 + 0.504934i \(0.168483\pi\)
−0.999984 + 0.00570726i \(0.998183\pi\)
\(558\) −0.989120 + 8.83273i −0.0418728 + 0.373919i
\(559\) 61.8381 2.61547
\(560\) 0 0
\(561\) −7.98155 −0.336981
\(562\) −1.06907 + 9.54671i −0.0450962 + 0.402704i
\(563\) −4.91456 + 18.3414i −0.207124 + 0.772997i 0.781668 + 0.623695i \(0.214369\pi\)
−0.988792 + 0.149302i \(0.952297\pi\)
\(564\) −6.47167 1.46785i −0.272507 0.0618076i
\(565\) 0 0
\(566\) 17.1775 + 6.72818i 0.722025 + 0.282807i
\(567\) 0.168680 1.93053i 0.00708388 0.0810747i
\(568\) 21.6326 + 7.52000i 0.907682 + 0.315532i
\(569\) 19.5330 + 11.2774i 0.818868 + 0.472773i 0.850026 0.526741i \(-0.176586\pi\)
−0.0311582 + 0.999514i \(0.509920\pi\)
\(570\) 0 0
\(571\) −22.8480 + 13.1913i −0.956158 + 0.552038i −0.894988 0.446090i \(-0.852816\pi\)
−0.0611692 + 0.998127i \(0.519483\pi\)
\(572\) 15.9456 30.2702i 0.666717 1.26566i
\(573\) −5.00690 + 5.00690i −0.209166 + 0.209166i
\(574\) 19.6334 22.2830i 0.819483 0.930074i
\(575\) 0 0
\(576\) −5.14753 12.9598i −0.214480 0.539990i
\(577\) 8.25666 30.8143i 0.343729 1.28282i −0.550360 0.834927i \(-0.685510\pi\)
0.894090 0.447888i \(-0.147824\pi\)
\(578\) −9.48637 + 12.8719i −0.394581 + 0.535401i
\(579\) −11.8402 + 20.5077i −0.492060 + 0.852273i
\(580\) 0 0
\(581\) 3.89953 + 22.1007i 0.161780 + 0.916892i
\(582\) 5.95556 + 13.6250i 0.246866 + 0.564773i
\(583\) 7.37683 1.97662i 0.305517 0.0818630i
\(584\) 15.4911 22.8213i 0.641026 0.944351i
\(585\) 0 0
\(586\) 1.60797 + 2.01352i 0.0664248 + 0.0831778i
\(587\) 14.8860 14.8860i 0.614410 0.614410i −0.329682 0.944092i \(-0.606942\pi\)
0.944092 + 0.329682i \(0.106942\pi\)
\(588\) 15.5518 + 2.12098i 0.641345 + 0.0874677i
\(589\) 9.06388i 0.373471i
\(590\) 0 0
\(591\) −1.39169 + 0.803493i −0.0572465 + 0.0330513i
\(592\) −18.7679 3.49815i −0.771354 0.143773i
\(593\) 8.53664 + 31.8592i 0.350558 + 1.30830i 0.885984 + 0.463717i \(0.153484\pi\)
−0.535426 + 0.844582i \(0.679849\pi\)
\(594\) −20.8921 8.18314i −0.857214 0.335758i
\(595\) 0 0
\(596\) 14.1987 + 13.1385i 0.581602 + 0.538176i
\(597\) 10.3038 2.76089i 0.421705 0.112996i
\(598\) −39.1539 28.8558i −1.60112 1.18000i
\(599\) 8.79228 + 15.2287i 0.359243 + 0.622227i 0.987835 0.155509i \(-0.0497016\pi\)
−0.628592 + 0.777736i \(0.716368\pi\)
\(600\) 0 0
\(601\) −17.7704 −0.724871 −0.362436 0.932009i \(-0.618055\pi\)
−0.362436 + 0.932009i \(0.618055\pi\)
\(602\) 40.2751 2.54583i 1.64149 0.103760i
\(603\) −3.83460 3.83460i −0.156157 0.156157i
\(604\) −2.10866 + 0.653583i −0.0858003 + 0.0265939i
\(605\) 0 0
\(606\) −1.77212 11.7032i −0.0719875 0.475409i
\(607\) −2.49876 9.32548i −0.101421 0.378510i 0.896493 0.443057i \(-0.146106\pi\)
−0.997915 + 0.0645477i \(0.979440\pi\)
\(608\) −6.68762 12.5500i −0.271219 0.508970i
\(609\) −4.87086 5.80354i −0.197377 0.235171i
\(610\) 0 0
\(611\) 14.6951 + 8.48424i 0.594502 + 0.343236i
\(612\) 7.03725 4.43518i 0.284464 0.179281i
\(613\) 8.41064 + 2.25362i 0.339702 + 0.0910230i 0.424637 0.905364i \(-0.360402\pi\)
−0.0849350 + 0.996386i \(0.527068\pi\)
\(614\) −14.5354 18.2013i −0.586599 0.734546i
\(615\) 0 0
\(616\) 9.13912 20.3714i 0.368226 0.820787i
\(617\) −21.0055 21.0055i −0.845648 0.845648i 0.143938 0.989587i \(-0.454023\pi\)
−0.989587 + 0.143938i \(0.954023\pi\)
\(618\) −6.49407 0.727229i −0.261230 0.0292534i
\(619\) −7.01153 12.1443i −0.281817 0.488121i 0.690015 0.723795i \(-0.257604\pi\)
−0.971832 + 0.235673i \(0.924270\pi\)
\(620\) 0 0
\(621\) −15.9489 + 27.6243i −0.640006 + 1.10852i
\(622\) −17.0965 39.1128i −0.685505 1.56828i
\(623\) −2.29862 4.92796i −0.0920923 0.197434i
\(624\) −1.99127 25.6346i −0.0797144 1.02620i
\(625\) 0 0
\(626\) 30.8496 4.67131i 1.23300 0.186703i
\(627\) −8.12248 2.17641i −0.324381 0.0869175i
\(628\) −8.09889 + 15.3745i −0.323181 + 0.613509i
\(629\) 11.3883i 0.454080i
\(630\) 0 0
\(631\) 25.9447i 1.03284i 0.856334 + 0.516422i \(0.172736\pi\)
−0.856334 + 0.516422i \(0.827264\pi\)
\(632\) −14.9077 17.2517i −0.592996 0.686234i
\(633\) 29.1823 + 7.81936i 1.15989 + 0.310792i
\(634\) −0.306899 2.02678i −0.0121885 0.0804936i
\(635\) 0 0
\(636\) 3.89803 4.21257i 0.154567 0.167039i
\(637\) −36.3779 16.9533i −1.44134 0.671713i
\(638\) −9.87576 + 4.31676i −0.390985 + 0.170902i
\(639\) −7.05703 + 12.2231i −0.279172 + 0.483540i
\(640\) 0 0
\(641\) −2.50802 4.34403i −0.0990610 0.171579i 0.812235 0.583330i \(-0.198251\pi\)
−0.911296 + 0.411751i \(0.864917\pi\)
\(642\) 1.83799 16.4130i 0.0725396 0.647770i
\(643\) 5.68565 + 5.68565i 0.224220 + 0.224220i 0.810273 0.586053i \(-0.199319\pi\)
−0.586053 + 0.810273i \(0.699319\pi\)
\(644\) −26.6889 17.1818i −1.05169 0.677057i
\(645\) 0 0
\(646\) 6.62862 5.29354i 0.260800 0.208271i
\(647\) 18.8448 + 5.04946i 0.740867 + 0.198515i 0.609463 0.792814i \(-0.291385\pi\)
0.131404 + 0.991329i \(0.458052\pi\)
\(648\) −2.03478 + 0.389308i −0.0799337 + 0.0152934i
\(649\) 5.41041 + 3.12370i 0.212377 + 0.122616i
\(650\) 0 0
\(651\) −3.65670 + 10.0502i −0.143318 + 0.393900i
\(652\) 2.15400 0.0835344i 0.0843572 0.00327146i
\(653\) 6.95220 + 25.9460i 0.272061 + 1.01534i 0.957786 + 0.287483i \(0.0928186\pi\)
−0.685725 + 0.727861i \(0.740515\pi\)
\(654\) −16.0886 + 2.43618i −0.629115 + 0.0952620i
\(655\) 0 0
\(656\) −28.6423 13.6975i −1.11830 0.534796i
\(657\) 12.0195 + 12.0195i 0.468926 + 0.468926i
\(658\) 9.92022 + 4.92079i 0.386730 + 0.191832i
\(659\) 2.47864 0.0965543 0.0482771 0.998834i \(-0.484627\pi\)
0.0482771 + 0.998834i \(0.484627\pi\)
\(660\) 0 0
\(661\) −6.04270 10.4663i −0.235034 0.407091i 0.724249 0.689539i \(-0.242187\pi\)
−0.959283 + 0.282448i \(0.908853\pi\)
\(662\) 23.8080 32.3046i 0.925322 1.25556i
\(663\) 14.8150 3.96968i 0.575368 0.154169i
\(664\) 21.5944 10.4537i 0.838025 0.405682i
\(665\) 0 0
\(666\) 4.29088 10.9549i 0.166268 0.424494i
\(667\) 3.96569 + 14.8001i 0.153552 + 0.573064i
\(668\) −5.21957 + 3.28960i −0.201951 + 0.127278i
\(669\) 3.05684 1.76487i 0.118184 0.0682337i
\(670\) 0 0
\(671\) 5.67177i 0.218956i
\(672\) −2.35226 16.6138i −0.0907405 0.640890i
\(673\) −34.0874 + 34.0874i −1.31397 + 1.31397i −0.395511 + 0.918461i \(0.629432\pi\)
−0.918461 + 0.395511i \(0.870568\pi\)
\(674\) −18.4145 + 14.7056i −0.709301 + 0.566439i
\(675\) 0 0
\(676\) −8.79142 + 38.7610i −0.338132 + 1.49081i
\(677\) −32.6524 + 8.74919i −1.25493 + 0.336259i −0.824241 0.566240i \(-0.808398\pi\)
−0.430693 + 0.902498i \(0.641731\pi\)
\(678\) 15.1123 6.60567i 0.580384 0.253689i
\(679\) −4.31152 24.4357i −0.165461 0.937756i
\(680\) 0 0
\(681\) −4.52124 + 7.83101i −0.173254 + 0.300085i
\(682\) 12.2469 + 9.02578i 0.468960 + 0.345615i
\(683\) 1.93944 7.23810i 0.0742107 0.276958i −0.918842 0.394625i \(-0.870875\pi\)
0.993053 + 0.117666i \(0.0375413\pi\)
\(684\) 8.37089 2.59457i 0.320069 0.0992058i
\(685\) 0 0
\(686\) −24.3908 9.54400i −0.931246 0.364392i
\(687\) 1.92874 1.92874i 0.0735862 0.0735862i
\(688\) −14.3597 40.6819i −0.547458 1.55098i
\(689\) −12.7095 + 7.33783i −0.484193 + 0.279549i
\(690\) 0 0
\(691\) 16.5249 + 9.54066i 0.628637 + 0.362944i 0.780224 0.625500i \(-0.215105\pi\)
−0.151587 + 0.988444i \(0.548438\pi\)
\(692\) 1.82828 + 47.1437i 0.0695009 + 1.79213i
\(693\) 11.2722 + 7.89102i 0.428197 + 0.299755i
\(694\) −8.23405 + 21.0221i −0.312560 + 0.797987i
\(695\) 0 0
\(696\) −4.54912 + 6.70170i −0.172434 + 0.254027i
\(697\) 4.90178 18.2937i 0.185668 0.692923i
\(698\) 10.5780 + 1.18457i 0.400385 + 0.0448365i
\(699\) 11.7363 0.443909
\(700\) 0 0
\(701\) −30.0384 −1.13454 −0.567268 0.823533i \(-0.692000\pi\)
−0.567268 + 0.823533i \(0.692000\pi\)
\(702\) 42.8490 + 4.79839i 1.61723 + 0.181103i
\(703\) 3.10535 11.5893i 0.117121 0.437100i
\(704\) −23.6168 3.46106i −0.890093 0.130443i
\(705\) 0 0
\(706\) −2.89170 + 7.38272i −0.108831 + 0.277852i
\(707\) −1.71926 + 19.6768i −0.0646594 + 0.740023i
\(708\) 4.69150 0.181941i 0.176317 0.00683777i
\(709\) 23.7012 + 13.6839i 0.890117 + 0.513909i 0.873981 0.485960i \(-0.161530\pi\)
0.0161363 + 0.999870i \(0.494863\pi\)
\(710\) 0 0
\(711\) 12.1687 7.02562i 0.456363 0.263481i
\(712\) −4.39843 + 3.80082i −0.164838 + 0.142442i
\(713\) 15.2933 15.2933i 0.572737 0.572737i
\(714\) 9.48558 3.19537i 0.354989 0.119584i
\(715\) 0 0
\(716\) −4.18215 13.4929i −0.156294 0.504254i
\(717\) −3.74462 + 13.9751i −0.139846 + 0.521911i
\(718\) 41.4718 + 30.5640i 1.54771 + 1.14064i
\(719\) 21.7523 37.6760i 0.811223 1.40508i −0.100786 0.994908i \(-0.532136\pi\)
0.912009 0.410171i \(-0.134531\pi\)
\(720\) 0 0
\(721\) 10.2472 + 3.72838i 0.381627 + 0.138852i
\(722\) −16.4317 + 7.18238i −0.611523 + 0.267300i
\(723\) 2.93894 0.787488i 0.109300 0.0292870i
\(724\) 4.63076 + 1.05031i 0.172101 + 0.0390344i
\(725\) 0 0
\(726\) 2.59916 2.07565i 0.0964637 0.0770348i
\(727\) 14.9542 14.9542i 0.554620 0.554620i −0.373151 0.927771i \(-0.621723\pi\)
0.927771 + 0.373151i \(0.121723\pi\)
\(728\) −6.83183 + 42.3580i −0.253204 + 1.56989i
\(729\) 19.1618i 0.709695i
\(730\) 0 0
\(731\) 22.2872 12.8675i 0.824322 0.475922i
\(732\) −2.27266 3.60601i −0.0839999 0.133282i
\(733\) 8.22383 + 30.6917i 0.303754 + 1.13363i 0.934013 + 0.357240i \(0.116282\pi\)
−0.630259 + 0.776385i \(0.717051\pi\)
\(734\) 16.8636 43.0539i 0.622446 1.58915i
\(735\) 0 0
\(736\) −9.89144 + 32.4592i −0.364603 + 1.19646i
\(737\) −8.96619 + 2.40248i −0.330274 + 0.0884966i
\(738\) 11.6080 15.7507i 0.427296 0.579791i
\(739\) 0.495453 + 0.858149i 0.0182255 + 0.0315675i 0.874994 0.484133i \(-0.160865\pi\)
−0.856769 + 0.515701i \(0.827532\pi\)
\(740\) 0 0
\(741\) 16.1591 0.593619
\(742\) −7.97559 + 5.30236i −0.292793 + 0.194656i
\(743\) 9.00016 + 9.00016i 0.330184 + 0.330184i 0.852656 0.522472i \(-0.174990\pi\)
−0.522472 + 0.852656i \(0.674990\pi\)
\(744\) 11.4030 + 0.831117i 0.418054 + 0.0304702i
\(745\) 0 0
\(746\) −36.5684 + 5.53727i −1.33886 + 0.202734i
\(747\) 3.82673 + 14.2815i 0.140013 + 0.522534i
\(748\) −0.551767 14.2278i −0.0201746 0.520218i
\(749\) −9.42304 + 25.8987i −0.344310 + 0.946318i
\(750\) 0 0
\(751\) −11.3279 6.54015i −0.413360 0.238653i 0.278872 0.960328i \(-0.410039\pi\)
−0.692232 + 0.721675i \(0.743373\pi\)
\(752\) 2.16917 11.6378i 0.0791015 0.424385i
\(753\) −3.41509 0.915071i −0.124453 0.0333470i
\(754\) 16.1840 12.9244i 0.589388 0.470678i
\(755\) 0 0
\(756\) 28.1051 + 1.36112i 1.02217 + 0.0495035i
\(757\) −3.92981 3.92981i −0.142831 0.142831i 0.632076 0.774907i \(-0.282203\pi\)
−0.774907 + 0.632076i \(0.782203\pi\)
\(758\) 3.20701 28.6382i 0.116484 1.04019i
\(759\) 10.0327 + 17.3771i 0.364162 + 0.630748i
\(760\) 0 0
\(761\) 11.1617 19.3326i 0.404612 0.700808i −0.589665 0.807648i \(-0.700740\pi\)
0.994276 + 0.106840i \(0.0340734\pi\)
\(762\) −27.4964 + 12.0189i −0.996091 + 0.435397i
\(763\) 27.0502 + 2.36351i 0.979282 + 0.0855646i
\(764\) −9.27134 8.57908i −0.335425 0.310380i
\(765\) 0 0
\(766\) 5.40621 + 35.7029i 0.195334 + 1.29000i
\(767\) −11.5962 3.10719i −0.418714 0.112194i
\(768\) −16.4020 + 7.26271i −0.591856 + 0.262071i
\(769\) 27.9731i 1.00873i −0.863489 0.504367i \(-0.831726\pi\)
0.863489 0.504367i \(-0.168274\pi\)
\(770\) 0 0
\(771\) 18.4608i 0.664851i
\(772\) −37.3752 19.6883i −1.34516 0.708598i
\(773\) −43.0144 11.5257i −1.54712 0.414550i −0.618562 0.785736i \(-0.712285\pi\)
−0.928559 + 0.371186i \(0.878951\pi\)
\(774\) 26.2874 3.98049i 0.944880 0.143076i
\(775\) 0 0
\(776\) −23.8759 + 11.5582i −0.857094 + 0.414914i
\(777\) 8.11886 11.5977i 0.291263 0.416066i
\(778\) 10.2233 + 23.3886i 0.366524 + 0.838523i
\(779\) 9.97667 17.2801i 0.357451 0.619124i
\(780\) 0 0
\(781\) 12.0796 + 20.9224i 0.432241 + 0.748663i
\(782\) −20.1160 2.25266i −0.719346 0.0805548i
\(783\) −9.60453 9.60453i −0.343238 0.343238i
\(784\) −2.70572 + 27.8690i −0.0966327 + 0.995320i
\(785\) 0 0
\(786\) −15.1935 19.0254i −0.541933 0.678614i
\(787\) −39.0901 10.4742i −1.39341 0.373363i −0.517437 0.855722i \(-0.673114\pi\)
−0.875974 + 0.482358i \(0.839780\pi\)
\(788\) −1.52850 2.42526i −0.0544505 0.0863962i
\(789\) 28.3405 + 16.3624i 1.00895 + 0.582518i
\(790\) 0 0
\(791\) −27.1031 + 4.78217i −0.963677 + 0.170034i
\(792\) 4.82998 13.8943i 0.171626 0.493711i
\(793\) 2.82089 + 10.5277i 0.100173 + 0.373850i
\(794\) 6.37029 + 42.0697i 0.226073 + 1.49300i
\(795\) 0 0
\(796\) 5.63381 + 18.1764i 0.199685 + 0.644247i
\(797\) −3.10654 3.10654i −0.110039 0.110039i 0.649943 0.759983i \(-0.274793\pi\)
−0.759983 + 0.649943i \(0.774793\pi\)
\(798\) 10.5244 0.665257i 0.372559 0.0235498i
\(799\) 7.06174 0.249826
\(800\) 0 0
\(801\) −1.79123 3.10250i −0.0632900 0.109622i
\(802\) −5.57337 4.10748i −0.196803 0.145040i
\(803\) 28.1045 7.53057i 0.991786 0.265748i
\(804\) −4.73787 + 5.12018i −0.167092 + 0.180575i
\(805\) 0 0
\(806\) −27.2213 10.6622i −0.958830 0.375560i
\(807\) −1.77314 6.61744i −0.0624174 0.232945i
\(808\) 20.7394 3.96799i 0.729608 0.139594i
\(809\) −26.5415 + 15.3237i −0.933148 + 0.538753i −0.887806 0.460218i \(-0.847771\pi\)
−0.0453422 + 0.998972i \(0.514438\pi\)
\(810\) 0 0
\(811\) 47.0428i 1.65190i −0.563747 0.825948i \(-0.690641\pi\)
0.563747 0.825948i \(-0.309359\pi\)
\(812\) 10.0086 9.08391i 0.351231 0.318783i
\(813\) −17.4565 + 17.4565i −0.612225 + 0.612225i
\(814\) −12.5670 15.7365i −0.440473 0.551565i
\(815\) 0 0
\(816\) −6.05182 8.82466i −0.211856 0.308925i
\(817\) 26.1894 7.01744i 0.916253 0.245509i
\(818\) −18.9998 43.4672i −0.664312 1.51979i
\(819\) −24.8478 9.04066i −0.868251 0.315906i
\(820\) 0 0
\(821\) 0.415401 0.719496i 0.0144976 0.0251106i −0.858686 0.512503i \(-0.828718\pi\)
0.873183 + 0.487392i \(0.162052\pi\)
\(822\) 4.43231 6.01413i 0.154594 0.209767i
\(823\) 0.0598810 0.223479i 0.00208732 0.00778999i −0.964874 0.262712i \(-0.915383\pi\)
0.966962 + 0.254922i \(0.0820498\pi\)
\(824\) 0.847407 11.6265i 0.0295208 0.405028i
\(825\) 0 0
\(826\) −7.68050 1.54630i −0.267239 0.0538027i
\(827\) 0.00150949 0.00150949i 5.24902e−5 5.24902e-5i −0.707081 0.707133i \(-0.749988\pi\)
0.707133 + 0.707081i \(0.249988\pi\)
\(828\) −18.5018 9.74626i −0.642981 0.338706i
\(829\) 36.8314 21.2646i 1.27921 0.738551i 0.302506 0.953148i \(-0.402177\pi\)
0.976703 + 0.214596i \(0.0688435\pi\)
\(830\) 0 0
\(831\) 15.9779 + 9.22484i 0.554267 + 0.320006i
\(832\) 45.5580 5.32172i 1.57944 0.184497i
\(833\) −16.6387 + 1.45949i −0.576498 + 0.0505683i
\(834\) −15.2155 5.95970i −0.526870 0.206368i
\(835\) 0 0
\(836\) 3.31812 14.6294i 0.114760 0.505970i
\(837\) −4.96227 + 18.5194i −0.171521 + 0.640126i
\(838\) 5.72464 51.1204i 0.197754 1.76592i
\(839\) −49.4733 −1.70801 −0.854004 0.520267i \(-0.825832\pi\)
−0.854004 + 0.520267i \(0.825832\pi\)
\(840\) 0 0
\(841\) 22.4754 0.775014
\(842\) 5.23262 46.7267i 0.180328 1.61031i
\(843\) −1.97104 + 7.35602i −0.0678862 + 0.253355i
\(844\) −11.9213 + 52.5603i −0.410347 + 1.80920i
\(845\) 0 0
\(846\) 6.79303 + 2.66073i 0.233549 + 0.0914778i
\(847\) −5.03023 + 2.34633i −0.172841 + 0.0806207i
\(848\) 7.77872 + 6.65734i 0.267122 + 0.228614i
\(849\) 12.6655 + 7.31245i 0.434680 + 0.250963i
\(850\) 0 0
\(851\) −24.7940 + 14.3148i −0.849928 + 0.490706i
\(852\) 16.0635 + 8.46185i 0.550327 + 0.289898i
\(853\) −9.16674 + 9.16674i −0.313863 + 0.313863i −0.846404 0.532541i \(-0.821237\pi\)
0.532541 + 0.846404i \(0.321237\pi\)
\(854\) 2.27066 + 6.74055i 0.0777004 + 0.230657i
\(855\) 0 0
\(856\) 29.3846 + 2.14172i 1.00434 + 0.0732026i
\(857\) −5.81720 + 21.7101i −0.198712 + 0.741602i 0.792563 + 0.609790i \(0.208746\pi\)
−0.991275 + 0.131812i \(0.957920\pi\)
\(858\) 16.0912 21.8338i 0.549343 0.745395i
\(859\) −4.05858 + 7.02967i −0.138477 + 0.239849i −0.926920 0.375258i \(-0.877554\pi\)
0.788443 + 0.615107i \(0.210887\pi\)
\(860\) 0 0
\(861\) 18.0338 15.1356i 0.614590 0.515821i
\(862\) 17.6237 + 40.3191i 0.600267 + 1.37328i
\(863\) 0.470041 0.125947i 0.0160004 0.00428729i −0.250810 0.968036i \(-0.580697\pi\)
0.266810 + 0.963749i \(0.414030\pi\)
\(864\) −6.79341 29.3037i −0.231116 0.996931i
\(865\) 0 0
\(866\) −8.91856 11.1679i −0.303065 0.379501i
\(867\) −8.96335 + 8.96335i −0.304411 + 0.304411i
\(868\) −18.1682 5.82360i −0.616668 0.197666i
\(869\) 24.0516i 0.815895i
\(870\) 0 0
\(871\) 15.4478 8.91879i 0.523428 0.302202i
\(872\) −5.45489 28.5109i −0.184726 0.965500i
\(873\) −4.23103 15.7904i −0.143199 0.534424i
\(874\) −19.8569 7.77766i −0.671670 0.263083i
\(875\) 0 0
\(876\) 14.8508 16.0492i 0.501763 0.542251i
\(877\) 17.2678 4.62691i 0.583094 0.156240i 0.0447988 0.998996i \(-0.485735\pi\)
0.538295 + 0.842757i \(0.319069\pi\)
\(878\) −0.634262 0.467440i −0.0214053 0.0157753i
\(879\) 1.02138 + 1.76909i 0.0344504 + 0.0596698i
\(880\) 0 0
\(881\) −5.27459 −0.177705 −0.0888527 0.996045i \(-0.528320\pi\)
−0.0888527 + 0.996045i \(0.528320\pi\)
\(882\) −16.5555 4.86521i −0.557453 0.163820i
\(883\) −5.20270 5.20270i −0.175085 0.175085i 0.614124 0.789209i \(-0.289509\pi\)
−0.789209 + 0.614124i \(0.789509\pi\)
\(884\) 8.10044 + 26.1346i 0.272447 + 0.879001i
\(885\) 0 0
\(886\) −5.16404 34.1036i −0.173489 1.14573i
\(887\) −11.5714 43.1849i −0.388528 1.45001i −0.832529 0.553981i \(-0.813108\pi\)
0.444001 0.896026i \(-0.353559\pi\)
\(888\) −14.2954 4.96944i −0.479724 0.166764i
\(889\) 49.3135 8.70105i 1.65392 0.291824i
\(890\) 0 0
\(891\) −1.89259 1.09269i −0.0634040 0.0366063i
\(892\) 3.35734 + 5.32706i 0.112412 + 0.178363i
\(893\) 7.18643 + 1.92560i 0.240485 + 0.0644377i
\(894\) 9.56986 + 11.9835i 0.320064 + 0.400787i
\(895\) 0 0
\(896\) 29.4528 5.34162i 0.983949 0.178451i
\(897\) −27.2648 27.2648i −0.910346 0.910346i
\(898\) −12.1491 1.36050i −0.405421 0.0454005i
\(899\) 4.60486 + 7.97585i 0.153581 + 0.266009i
\(900\) 0 0
\(901\) −3.05377 + 5.28929i −0.101736 + 0.176212i
\(902\) −13.4138 30.6877i −0.446631 1.02179i
\(903\) 31.8706 + 2.78469i 1.06059 + 0.0926686i
\(904\) 12.8199 + 26.4822i 0.426382 + 0.880785i
\(905\) 0 0
\(906\) −1.73039 + 0.262019i −0.0574882 + 0.00870499i
\(907\) 9.45206 + 2.53267i 0.313851 + 0.0840960i 0.412306 0.911045i \(-0.364723\pi\)
−0.0984553 + 0.995141i \(0.531390\pi\)
\(908\) −14.2720 7.51811i −0.473632 0.249497i
\(909\) 13.0129i 0.431610i
\(910\) 0 0
\(911\) 5.81294i 0.192591i 0.995353 + 0.0962957i \(0.0306994\pi\)
−0.995353 + 0.0962957i \(0.969301\pi\)
\(912\) −3.75237 10.6307i −0.124253 0.352017i
\(913\) 24.4458 + 6.55024i 0.809038 + 0.216781i
\(914\) 0.578756 + 3.82213i 0.0191435 + 0.126425i
\(915\) 0 0
\(916\) 3.57148 + 3.30481i 0.118005 + 0.109194i
\(917\) 17.1747 + 36.8205i 0.567160 + 1.21592i
\(918\) 16.4418 7.18681i 0.542660 0.237200i
\(919\) −10.6688 + 18.4789i −0.351930 + 0.609561i −0.986588 0.163232i \(-0.947808\pi\)
0.634657 + 0.772794i \(0.281141\pi\)
\(920\) 0 0
\(921\) −9.23283 15.9917i −0.304232 0.526946i
\(922\) −6.07484 + 54.2476i −0.200064 + 1.78655i
\(923\) −32.8275 32.8275i −1.08053 1.08053i
\(924\) 9.58127 14.8828i 0.315201 0.489609i
\(925\) 0 0
\(926\) 21.1065 16.8554i 0.693604 0.553903i
\(927\) 6.93927 + 1.85937i 0.227916 + 0.0610698i
\(928\) −12.2608 7.64588i −0.402481 0.250988i
\(929\) −12.5925 7.27026i −0.413145 0.238529i 0.278995 0.960293i \(-0.409999\pi\)
−0.692140 + 0.721763i \(0.743332\pi\)
\(930\) 0 0
\(931\) −17.3305 3.05180i −0.567984 0.100019i
\(932\) 0.811338 + 20.9210i 0.0265763 + 0.685290i
\(933\) −8.75834 32.6866i −0.286735 1.07011i
\(934\) −18.6850 + 2.82933i −0.611393 + 0.0925784i
\(935\) 0 0
\(936\) −2.05481 + 28.1922i −0.0671637 + 0.921491i
\(937\) −5.05360 5.05360i −0.165094 0.165094i 0.619725 0.784819i \(-0.287244\pi\)
−0.784819 + 0.619725i \(0.787244\pi\)
\(938\) 9.69395 6.44477i 0.316519 0.210429i
\(939\) 24.7350 0.807195
\(940\) 0 0
\(941\) 1.44742 + 2.50700i 0.0471845 + 0.0817259i 0.888653 0.458580i \(-0.151642\pi\)
−0.841469 + 0.540306i \(0.818308\pi\)
\(942\) −8.17284 + 11.0896i −0.266286 + 0.361319i
\(943\) −45.9897 + 12.3229i −1.49763 + 0.401289i
\(944\) 0.648650 + 8.35040i 0.0211118 + 0.271782i
\(945\) 0 0
\(946\) 16.5975 42.3746i 0.539632 1.37772i
\(947\) 8.72837 + 32.5747i 0.283634 + 1.05854i 0.949832 + 0.312761i \(0.101254\pi\)
−0.666198 + 0.745775i \(0.732079\pi\)
\(948\) −9.63740 15.2916i −0.313008 0.496647i
\(949\) −48.4211 + 27.9559i −1.57181 + 0.907487i
\(950\) 0 0
\(951\) 1.62505i 0.0526960i
\(952\) 6.35175 + 16.6879i 0.205861 + 0.540859i
\(953\) −23.9098 + 23.9098i −0.774513 + 0.774513i −0.978892 0.204379i \(-0.934483\pi\)
0.204379 + 0.978892i \(0.434483\pi\)
\(954\) −4.93047 + 3.93742i −0.159630 + 0.127479i
\(955\) 0 0
\(956\) −25.1707 5.70899i −0.814077 0.184642i
\(957\) −8.25317 + 2.21143i −0.266787 + 0.0714854i
\(958\) 10.1497 4.43650i 0.327922 0.143337i
\(959\) −9.54923 + 8.01459i −0.308361 + 0.258805i
\(960\) 0 0
\(961\) −9.00006 + 15.5886i −0.290325 + 0.502857i
\(962\) 31.1530 + 22.9592i 1.00441 + 0.740236i
\(963\) −4.69935 + 17.5382i −0.151435 + 0.565161i
\(964\) 1.60693 + 5.18447i 0.0517558 + 0.166980i
\(965\) 0 0
\(966\) −18.8800 16.6351i −0.607455 0.535225i
\(967\) 2.13618 2.13618i 0.0686949 0.0686949i −0.671925 0.740620i \(-0.734532\pi\)
0.740620 + 0.671925i \(0.234532\pi\)
\(968\) 3.87970 + 4.48972i 0.124698 + 0.144305i
\(969\) 5.82393 3.36245i 0.187092 0.108017i
\(970\) 0 0
\(971\) 14.3494 + 8.28465i 0.460495 + 0.265867i 0.712252 0.701923i \(-0.247675\pi\)
−0.251757 + 0.967790i \(0.581008\pi\)
\(972\) 30.2404 1.17276i 0.969963 0.0376162i
\(973\) 22.3387 + 15.6380i 0.716147 + 0.501331i
\(974\) −1.25836 + 3.21269i −0.0403206 + 0.102941i
\(975\) 0 0
\(976\) 6.27089 4.30048i 0.200726 0.137655i
\(977\) 0.0810094 0.302331i 0.00259172 0.00967243i −0.964618 0.263652i \(-0.915073\pi\)
0.967210 + 0.253980i \(0.0817396\pi\)
\(978\) 1.69826 + 0.190178i 0.0543045 + 0.00608121i
\(979\) −6.13213 −0.195984
\(980\) 0 0
\(981\) 17.8891 0.571156
\(982\) 47.1108 + 5.27563i 1.50337 + 0.168352i
\(983\) −14.9395 + 55.7548i −0.476495 + 1.77830i 0.139142 + 0.990272i \(0.455566\pi\)
−0.615636 + 0.788030i \(0.711101\pi\)
\(984\) −20.8247 14.1358i −0.663868 0.450634i
\(985\) 0 0
\(986\) 3.14357 8.02574i 0.100112 0.255592i
\(987\) 7.19163 + 5.03442i 0.228912 + 0.160247i
\(988\) 1.11708 + 28.8049i 0.0355391 + 0.916405i
\(989\) −56.0292 32.3485i −1.78162 1.02862i
\(990\) 0 0
\(991\) 19.0262 10.9848i 0.604386 0.348942i −0.166379 0.986062i \(-0.553208\pi\)
0.770765 + 0.637120i \(0.219874\pi\)
\(992\) −0.693241 + 20.3842i −0.0220104 + 0.647199i
\(993\) 22.4953 22.4953i 0.713868 0.713868i
\(994\) −22.7320 20.0290i −0.721015 0.635283i
\(995\) 0 0
\(996\) 18.1669 5.63084i 0.575639 0.178420i
\(997\) 2.18286 8.14653i 0.0691317 0.258003i −0.922707 0.385502i \(-0.874028\pi\)
0.991839 + 0.127499i \(0.0406949\pi\)
\(998\) −23.5571 17.3612i −0.745688 0.549559i
\(999\) 12.6898 21.9794i 0.401488 0.695397i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 700.2.be.e.107.9 72
4.3 odd 2 inner 700.2.be.e.107.6 72
5.2 odd 4 140.2.w.b.23.2 72
5.3 odd 4 inner 700.2.be.e.443.17 72
5.4 even 2 140.2.w.b.107.10 yes 72
7.4 even 3 inner 700.2.be.e.207.5 72
20.3 even 4 inner 700.2.be.e.443.5 72
20.7 even 4 140.2.w.b.23.14 yes 72
20.19 odd 2 140.2.w.b.107.13 yes 72
28.11 odd 6 inner 700.2.be.e.207.17 72
35.2 odd 12 980.2.k.k.883.13 36
35.4 even 6 140.2.w.b.67.14 yes 72
35.9 even 6 980.2.k.k.687.3 36
35.12 even 12 980.2.k.j.883.13 36
35.17 even 12 980.2.x.m.263.13 72
35.18 odd 12 inner 700.2.be.e.543.6 72
35.19 odd 6 980.2.k.j.687.3 36
35.24 odd 6 980.2.x.m.67.14 72
35.27 even 4 980.2.x.m.863.2 72
35.32 odd 12 140.2.w.b.123.13 yes 72
35.34 odd 2 980.2.x.m.667.10 72
140.19 even 6 980.2.k.j.687.13 36
140.27 odd 4 980.2.x.m.863.14 72
140.39 odd 6 140.2.w.b.67.2 yes 72
140.47 odd 12 980.2.k.j.883.3 36
140.59 even 6 980.2.x.m.67.2 72
140.67 even 12 140.2.w.b.123.10 yes 72
140.79 odd 6 980.2.k.k.687.13 36
140.87 odd 12 980.2.x.m.263.10 72
140.107 even 12 980.2.k.k.883.3 36
140.123 even 12 inner 700.2.be.e.543.9 72
140.139 even 2 980.2.x.m.667.13 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.w.b.23.2 72 5.2 odd 4
140.2.w.b.23.14 yes 72 20.7 even 4
140.2.w.b.67.2 yes 72 140.39 odd 6
140.2.w.b.67.14 yes 72 35.4 even 6
140.2.w.b.107.10 yes 72 5.4 even 2
140.2.w.b.107.13 yes 72 20.19 odd 2
140.2.w.b.123.10 yes 72 140.67 even 12
140.2.w.b.123.13 yes 72 35.32 odd 12
700.2.be.e.107.6 72 4.3 odd 2 inner
700.2.be.e.107.9 72 1.1 even 1 trivial
700.2.be.e.207.5 72 7.4 even 3 inner
700.2.be.e.207.17 72 28.11 odd 6 inner
700.2.be.e.443.5 72 20.3 even 4 inner
700.2.be.e.443.17 72 5.3 odd 4 inner
700.2.be.e.543.6 72 35.18 odd 12 inner
700.2.be.e.543.9 72 140.123 even 12 inner
980.2.k.j.687.3 36 35.19 odd 6
980.2.k.j.687.13 36 140.19 even 6
980.2.k.j.883.3 36 140.47 odd 12
980.2.k.j.883.13 36 35.12 even 12
980.2.k.k.687.3 36 35.9 even 6
980.2.k.k.687.13 36 140.79 odd 6
980.2.k.k.883.3 36 140.107 even 12
980.2.k.k.883.13 36 35.2 odd 12
980.2.x.m.67.2 72 140.59 even 6
980.2.x.m.67.14 72 35.24 odd 6
980.2.x.m.263.10 72 140.87 odd 12
980.2.x.m.263.13 72 35.17 even 12
980.2.x.m.667.10 72 35.34 odd 2
980.2.x.m.667.13 72 140.139 even 2
980.2.x.m.863.2 72 35.27 even 4
980.2.x.m.863.14 72 140.27 odd 4