L(s) = 1 | + (−2.59 − 1.5i)3-s + (−0.133 − 2.23i)5-s + (3 + 5.19i)9-s + (−1.5 + 2.59i)11-s + i·13-s + (−3 + 6i)15-s + (−4.33 − 2.5i)17-s + (4 + 6.92i)19-s + (−1.73 + i)23-s + (−4.96 + 0.598i)25-s − 9i·27-s + 29-s + (−1 + 1.73i)31-s + (7.79 − 4.5i)33-s + (8.66 − 5i)37-s + ⋯ |
L(s) = 1 | + (−1.49 − 0.866i)3-s + (−0.0599 − 0.998i)5-s + (1 + 1.73i)9-s + (−0.452 + 0.783i)11-s + 0.277i·13-s + (−0.774 + 1.54i)15-s + (−1.05 − 0.606i)17-s + (0.917 + 1.58i)19-s + (−0.361 + 0.208i)23-s + (−0.992 + 0.119i)25-s − 1.73i·27-s + 0.185·29-s + (−0.179 + 0.311i)31-s + (1.35 − 0.783i)33-s + (1.42 − 0.821i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.946 - 0.324i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.946 - 0.324i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.604357 + 0.100649i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.604357 + 0.100649i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.133 + 2.23i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (2.59 + 1.5i)T + (1.5 + 2.59i)T^{2} \) |
| 11 | \( 1 + (1.5 - 2.59i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - iT - 13T^{2} \) |
| 17 | \( 1 + (4.33 + 2.5i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-4 - 6.92i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (1.73 - i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - T + 29T^{2} \) |
| 31 | \( 1 + (1 - 1.73i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-8.66 + 5i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 6T + 41T^{2} \) |
| 43 | \( 1 - 4iT - 43T^{2} \) |
| 47 | \( 1 + (9.52 - 5.5i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-5.19 - 3i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-5 + 8.66i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-8.66 - 5i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 71T^{2} \) |
| 73 | \( 1 + (-8.66 - 5i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (3.5 + 6.06i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 12iT - 83T^{2} \) |
| 89 | \( 1 + (4 + 6.92i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 3iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.04984564198975422885161118723, −9.390437329431995130681000048556, −8.060908302065309439457015467889, −7.50332231487858494944087204237, −6.54246563685918802109861910950, −5.69432002156047575343929288719, −5.02270565418853954589469780708, −4.17458753199840679756951925377, −2.10716521083837070371705689821, −1.02484058119904222543029692529,
0.42636961076067710366381340074, 2.67915935985273201602604406358, 3.82845209086311144048413634782, 4.78820270560852647865282149702, 5.67800944691663403298356849737, 6.38811216024287723597101720380, 7.10365631757318600519899018152, 8.317371218635312220296071027912, 9.489162150510769453158272970996, 10.15665497531042525440201299405