Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [980,2,Mod(569,980)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(980, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 3, 2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("980.569");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 980.q (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 140) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a primitive root of unity . We also show the integral -expansion of the trace form.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
569.1 |
|
0 | −2.59808 | + | 1.50000i | 0 | −0.133975 | + | 2.23205i | 0 | 0 | 0 | 3.00000 | − | 5.19615i | 0 | ||||||||||||||||||||||||
569.2 | 0 | 2.59808 | − | 1.50000i | 0 | −1.86603 | + | 1.23205i | 0 | 0 | 0 | 3.00000 | − | 5.19615i | 0 | |||||||||||||||||||||||||
949.1 | 0 | −2.59808 | − | 1.50000i | 0 | −0.133975 | − | 2.23205i | 0 | 0 | 0 | 3.00000 | + | 5.19615i | 0 | |||||||||||||||||||||||||
949.2 | 0 | 2.59808 | + | 1.50000i | 0 | −1.86603 | − | 1.23205i | 0 | 0 | 0 | 3.00000 | + | 5.19615i | 0 | |||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
7.c | even | 3 | 1 | inner |
35.j | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 980.2.q.c | 4 | |
5.b | even | 2 | 1 | inner | 980.2.q.c | 4 | |
7.b | odd | 2 | 1 | 980.2.q.f | 4 | ||
7.c | even | 3 | 1 | 980.2.e.b | 2 | ||
7.c | even | 3 | 1 | inner | 980.2.q.c | 4 | |
7.d | odd | 6 | 1 | 140.2.e.a | ✓ | 2 | |
7.d | odd | 6 | 1 | 980.2.q.f | 4 | ||
21.g | even | 6 | 1 | 1260.2.k.c | 2 | ||
28.f | even | 6 | 1 | 560.2.g.a | 2 | ||
35.c | odd | 2 | 1 | 980.2.q.f | 4 | ||
35.i | odd | 6 | 1 | 140.2.e.a | ✓ | 2 | |
35.i | odd | 6 | 1 | 980.2.q.f | 4 | ||
35.j | even | 6 | 1 | 980.2.e.b | 2 | ||
35.j | even | 6 | 1 | inner | 980.2.q.c | 4 | |
35.k | even | 12 | 1 | 700.2.a.a | 1 | ||
35.k | even | 12 | 1 | 700.2.a.j | 1 | ||
35.l | odd | 12 | 1 | 4900.2.a.b | 1 | ||
35.l | odd | 12 | 1 | 4900.2.a.w | 1 | ||
56.j | odd | 6 | 1 | 2240.2.g.e | 2 | ||
56.m | even | 6 | 1 | 2240.2.g.f | 2 | ||
84.j | odd | 6 | 1 | 5040.2.t.s | 2 | ||
105.p | even | 6 | 1 | 1260.2.k.c | 2 | ||
105.w | odd | 12 | 1 | 6300.2.a.c | 1 | ||
105.w | odd | 12 | 1 | 6300.2.a.t | 1 | ||
140.s | even | 6 | 1 | 560.2.g.a | 2 | ||
140.x | odd | 12 | 1 | 2800.2.a.a | 1 | ||
140.x | odd | 12 | 1 | 2800.2.a.bf | 1 | ||
280.ba | even | 6 | 1 | 2240.2.g.f | 2 | ||
280.bk | odd | 6 | 1 | 2240.2.g.e | 2 | ||
420.be | odd | 6 | 1 | 5040.2.t.s | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
140.2.e.a | ✓ | 2 | 7.d | odd | 6 | 1 | |
140.2.e.a | ✓ | 2 | 35.i | odd | 6 | 1 | |
560.2.g.a | 2 | 28.f | even | 6 | 1 | ||
560.2.g.a | 2 | 140.s | even | 6 | 1 | ||
700.2.a.a | 1 | 35.k | even | 12 | 1 | ||
700.2.a.j | 1 | 35.k | even | 12 | 1 | ||
980.2.e.b | 2 | 7.c | even | 3 | 1 | ||
980.2.e.b | 2 | 35.j | even | 6 | 1 | ||
980.2.q.c | 4 | 1.a | even | 1 | 1 | trivial | |
980.2.q.c | 4 | 5.b | even | 2 | 1 | inner | |
980.2.q.c | 4 | 7.c | even | 3 | 1 | inner | |
980.2.q.c | 4 | 35.j | even | 6 | 1 | inner | |
980.2.q.f | 4 | 7.b | odd | 2 | 1 | ||
980.2.q.f | 4 | 7.d | odd | 6 | 1 | ||
980.2.q.f | 4 | 35.c | odd | 2 | 1 | ||
980.2.q.f | 4 | 35.i | odd | 6 | 1 | ||
1260.2.k.c | 2 | 21.g | even | 6 | 1 | ||
1260.2.k.c | 2 | 105.p | even | 6 | 1 | ||
2240.2.g.e | 2 | 56.j | odd | 6 | 1 | ||
2240.2.g.e | 2 | 280.bk | odd | 6 | 1 | ||
2240.2.g.f | 2 | 56.m | even | 6 | 1 | ||
2240.2.g.f | 2 | 280.ba | even | 6 | 1 | ||
2800.2.a.a | 1 | 140.x | odd | 12 | 1 | ||
2800.2.a.bf | 1 | 140.x | odd | 12 | 1 | ||
4900.2.a.b | 1 | 35.l | odd | 12 | 1 | ||
4900.2.a.w | 1 | 35.l | odd | 12 | 1 | ||
5040.2.t.s | 2 | 84.j | odd | 6 | 1 | ||
5040.2.t.s | 2 | 420.be | odd | 6 | 1 | ||
6300.2.a.c | 1 | 105.w | odd | 12 | 1 | ||
6300.2.a.t | 1 | 105.w | odd | 12 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|
|