Properties

Label 980.2.q.c
Level 980980
Weight 22
Character orbit 980.q
Analytic conductor 7.8257.825
Analytic rank 00
Dimension 44
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [980,2,Mod(569,980)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(980, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("980.569");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 980=22572 980 = 2^{2} \cdot 5 \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 980.q (of order 66, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 7.825339398097.82533939809
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ12\zeta_{12}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+3ζ12q3+(ζ1232ζ122ζ12)q5+6ζ122q9+(3ζ1223)q11ζ123q13+(6ζ1233)q15+5ζ12q17+18q99+O(q100) q + 3 \zeta_{12} q^{3} + (\zeta_{12}^{3} - 2 \zeta_{12}^{2} - \zeta_{12}) q^{5} + 6 \zeta_{12}^{2} q^{9} + (3 \zeta_{12}^{2} - 3) q^{11} - \zeta_{12}^{3} q^{13} + ( - 6 \zeta_{12}^{3} - 3) q^{15} + 5 \zeta_{12} q^{17} + \cdots - 18 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q5+12q96q1112q15+16q196q25+4q294q31+6q39+24q41+24q45+30q51+24q55+20q59+2q65+24q69+24q7514q79+72q99+O(q100) 4 q - 4 q^{5} + 12 q^{9} - 6 q^{11} - 12 q^{15} + 16 q^{19} - 6 q^{25} + 4 q^{29} - 4 q^{31} + 6 q^{39} + 24 q^{41} + 24 q^{45} + 30 q^{51} + 24 q^{55} + 20 q^{59} + 2 q^{65} + 24 q^{69} + 24 q^{75} - 14 q^{79}+ \cdots - 72 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/980Z)×\left(\mathbb{Z}/980\mathbb{Z}\right)^\times.

nn 101101 197197 491491
χ(n)\chi(n) ζ122-\zeta_{12}^{2} 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
569.1
−0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 0.500000i
0.866025 + 0.500000i
0 −2.59808 + 1.50000i 0 −0.133975 + 2.23205i 0 0 0 3.00000 5.19615i 0
569.2 0 2.59808 1.50000i 0 −1.86603 + 1.23205i 0 0 0 3.00000 5.19615i 0
949.1 0 −2.59808 1.50000i 0 −0.133975 2.23205i 0 0 0 3.00000 + 5.19615i 0
949.2 0 2.59808 + 1.50000i 0 −1.86603 1.23205i 0 0 0 3.00000 + 5.19615i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
7.c even 3 1 inner
35.j even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 980.2.q.c 4
5.b even 2 1 inner 980.2.q.c 4
7.b odd 2 1 980.2.q.f 4
7.c even 3 1 980.2.e.b 2
7.c even 3 1 inner 980.2.q.c 4
7.d odd 6 1 140.2.e.a 2
7.d odd 6 1 980.2.q.f 4
21.g even 6 1 1260.2.k.c 2
28.f even 6 1 560.2.g.a 2
35.c odd 2 1 980.2.q.f 4
35.i odd 6 1 140.2.e.a 2
35.i odd 6 1 980.2.q.f 4
35.j even 6 1 980.2.e.b 2
35.j even 6 1 inner 980.2.q.c 4
35.k even 12 1 700.2.a.a 1
35.k even 12 1 700.2.a.j 1
35.l odd 12 1 4900.2.a.b 1
35.l odd 12 1 4900.2.a.w 1
56.j odd 6 1 2240.2.g.e 2
56.m even 6 1 2240.2.g.f 2
84.j odd 6 1 5040.2.t.s 2
105.p even 6 1 1260.2.k.c 2
105.w odd 12 1 6300.2.a.c 1
105.w odd 12 1 6300.2.a.t 1
140.s even 6 1 560.2.g.a 2
140.x odd 12 1 2800.2.a.a 1
140.x odd 12 1 2800.2.a.bf 1
280.ba even 6 1 2240.2.g.f 2
280.bk odd 6 1 2240.2.g.e 2
420.be odd 6 1 5040.2.t.s 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
140.2.e.a 2 7.d odd 6 1
140.2.e.a 2 35.i odd 6 1
560.2.g.a 2 28.f even 6 1
560.2.g.a 2 140.s even 6 1
700.2.a.a 1 35.k even 12 1
700.2.a.j 1 35.k even 12 1
980.2.e.b 2 7.c even 3 1
980.2.e.b 2 35.j even 6 1
980.2.q.c 4 1.a even 1 1 trivial
980.2.q.c 4 5.b even 2 1 inner
980.2.q.c 4 7.c even 3 1 inner
980.2.q.c 4 35.j even 6 1 inner
980.2.q.f 4 7.b odd 2 1
980.2.q.f 4 7.d odd 6 1
980.2.q.f 4 35.c odd 2 1
980.2.q.f 4 35.i odd 6 1
1260.2.k.c 2 21.g even 6 1
1260.2.k.c 2 105.p even 6 1
2240.2.g.e 2 56.j odd 6 1
2240.2.g.e 2 280.bk odd 6 1
2240.2.g.f 2 56.m even 6 1
2240.2.g.f 2 280.ba even 6 1
2800.2.a.a 1 140.x odd 12 1
2800.2.a.bf 1 140.x odd 12 1
4900.2.a.b 1 35.l odd 12 1
4900.2.a.w 1 35.l odd 12 1
5040.2.t.s 2 84.j odd 6 1
5040.2.t.s 2 420.be odd 6 1
6300.2.a.c 1 105.w odd 12 1
6300.2.a.t 1 105.w odd 12 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(980,[χ])S_{2}^{\mathrm{new}}(980, [\chi]):

T349T32+81 T_{3}^{4} - 9T_{3}^{2} + 81 Copy content Toggle raw display
T112+3T11+9 T_{11}^{2} + 3T_{11} + 9 Copy content Toggle raw display
T1928T19+64 T_{19}^{2} - 8T_{19} + 64 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T49T2+81 T^{4} - 9T^{2} + 81 Copy content Toggle raw display
55 T4+4T3++25 T^{4} + 4 T^{3} + \cdots + 25 Copy content Toggle raw display
77 T4 T^{4} Copy content Toggle raw display
1111 (T2+3T+9)2 (T^{2} + 3 T + 9)^{2} Copy content Toggle raw display
1313 (T2+1)2 (T^{2} + 1)^{2} Copy content Toggle raw display
1717 T425T2+625 T^{4} - 25T^{2} + 625 Copy content Toggle raw display
1919 (T28T+64)2 (T^{2} - 8 T + 64)^{2} Copy content Toggle raw display
2323 T44T2+16 T^{4} - 4T^{2} + 16 Copy content Toggle raw display
2929 (T1)4 (T - 1)^{4} Copy content Toggle raw display
3131 (T2+2T+4)2 (T^{2} + 2 T + 4)^{2} Copy content Toggle raw display
3737 T4100T2+10000 T^{4} - 100 T^{2} + 10000 Copy content Toggle raw display
4141 (T6)4 (T - 6)^{4} Copy content Toggle raw display
4343 (T2+16)2 (T^{2} + 16)^{2} Copy content Toggle raw display
4747 T4121T2+14641 T^{4} - 121 T^{2} + 14641 Copy content Toggle raw display
5353 T436T2+1296 T^{4} - 36T^{2} + 1296 Copy content Toggle raw display
5959 (T210T+100)2 (T^{2} - 10 T + 100)^{2} Copy content Toggle raw display
6161 T4 T^{4} Copy content Toggle raw display
6767 T4100T2+10000 T^{4} - 100 T^{2} + 10000 Copy content Toggle raw display
7171 T4 T^{4} Copy content Toggle raw display
7373 T4100T2+10000 T^{4} - 100 T^{2} + 10000 Copy content Toggle raw display
7979 (T2+7T+49)2 (T^{2} + 7 T + 49)^{2} Copy content Toggle raw display
8383 (T2+144)2 (T^{2} + 144)^{2} Copy content Toggle raw display
8989 (T2+8T+64)2 (T^{2} + 8 T + 64)^{2} Copy content Toggle raw display
9797 (T2+9)2 (T^{2} + 9)^{2} Copy content Toggle raw display
show more
show less