Properties

Label 980.2.q.c
Level $980$
Weight $2$
Character orbit 980.q
Analytic conductor $7.825$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [980,2,Mod(569,980)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(980, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("980.569");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 3 \zeta_{12} q^{3} + (\zeta_{12}^{3} - 2 \zeta_{12}^{2} - \zeta_{12}) q^{5} + 6 \zeta_{12}^{2} q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 3 \zeta_{12} q^{3} + (\zeta_{12}^{3} - 2 \zeta_{12}^{2} - \zeta_{12}) q^{5} + 6 \zeta_{12}^{2} q^{9} + (3 \zeta_{12}^{2} - 3) q^{11} - \zeta_{12}^{3} q^{13} + ( - 6 \zeta_{12}^{3} - 3) q^{15} + 5 \zeta_{12} q^{17} + 8 \zeta_{12}^{2} q^{19} + ( - 2 \zeta_{12}^{3} + 2 \zeta_{12}) q^{23} + (3 \zeta_{12}^{2} + 4 \zeta_{12} - 3) q^{25} + 9 \zeta_{12}^{3} q^{27} + q^{29} + (2 \zeta_{12}^{2} - 2) q^{31} + (9 \zeta_{12}^{3} - 9 \zeta_{12}) q^{33} + (10 \zeta_{12}^{3} - 10 \zeta_{12}) q^{37} + ( - 3 \zeta_{12}^{2} + 3) q^{39} + 6 q^{41} - 4 \zeta_{12}^{3} q^{43} + ( - 12 \zeta_{12}^{2} - 6 \zeta_{12} + 12) q^{45} + ( - 11 \zeta_{12}^{3} + 11 \zeta_{12}) q^{47} + 15 \zeta_{12}^{2} q^{51} - 6 \zeta_{12} q^{53} + ( - 3 \zeta_{12}^{3} + 6) q^{55} + 24 \zeta_{12}^{3} q^{57} + ( - 10 \zeta_{12}^{2} + 10) q^{59} + (2 \zeta_{12}^{3} + \cdots - 2 \zeta_{12}) q^{65} + \cdots - 18 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{5} + 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{5} + 12 q^{9} - 6 q^{11} - 12 q^{15} + 16 q^{19} - 6 q^{25} + 4 q^{29} - 4 q^{31} + 6 q^{39} + 24 q^{41} + 24 q^{45} + 30 q^{51} + 24 q^{55} + 20 q^{59} + 2 q^{65} + 24 q^{69} + 24 q^{75} - 14 q^{79} - 18 q^{81} - 20 q^{85} - 16 q^{89} + 32 q^{95} - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(-\zeta_{12}^{2}\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
569.1
−0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 0.500000i
0.866025 + 0.500000i
0 −2.59808 + 1.50000i 0 −0.133975 + 2.23205i 0 0 0 3.00000 5.19615i 0
569.2 0 2.59808 1.50000i 0 −1.86603 + 1.23205i 0 0 0 3.00000 5.19615i 0
949.1 0 −2.59808 1.50000i 0 −0.133975 2.23205i 0 0 0 3.00000 + 5.19615i 0
949.2 0 2.59808 + 1.50000i 0 −1.86603 1.23205i 0 0 0 3.00000 + 5.19615i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
7.c even 3 1 inner
35.j even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 980.2.q.c 4
5.b even 2 1 inner 980.2.q.c 4
7.b odd 2 1 980.2.q.f 4
7.c even 3 1 980.2.e.b 2
7.c even 3 1 inner 980.2.q.c 4
7.d odd 6 1 140.2.e.a 2
7.d odd 6 1 980.2.q.f 4
21.g even 6 1 1260.2.k.c 2
28.f even 6 1 560.2.g.a 2
35.c odd 2 1 980.2.q.f 4
35.i odd 6 1 140.2.e.a 2
35.i odd 6 1 980.2.q.f 4
35.j even 6 1 980.2.e.b 2
35.j even 6 1 inner 980.2.q.c 4
35.k even 12 1 700.2.a.a 1
35.k even 12 1 700.2.a.j 1
35.l odd 12 1 4900.2.a.b 1
35.l odd 12 1 4900.2.a.w 1
56.j odd 6 1 2240.2.g.e 2
56.m even 6 1 2240.2.g.f 2
84.j odd 6 1 5040.2.t.s 2
105.p even 6 1 1260.2.k.c 2
105.w odd 12 1 6300.2.a.c 1
105.w odd 12 1 6300.2.a.t 1
140.s even 6 1 560.2.g.a 2
140.x odd 12 1 2800.2.a.a 1
140.x odd 12 1 2800.2.a.bf 1
280.ba even 6 1 2240.2.g.f 2
280.bk odd 6 1 2240.2.g.e 2
420.be odd 6 1 5040.2.t.s 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
140.2.e.a 2 7.d odd 6 1
140.2.e.a 2 35.i odd 6 1
560.2.g.a 2 28.f even 6 1
560.2.g.a 2 140.s even 6 1
700.2.a.a 1 35.k even 12 1
700.2.a.j 1 35.k even 12 1
980.2.e.b 2 7.c even 3 1
980.2.e.b 2 35.j even 6 1
980.2.q.c 4 1.a even 1 1 trivial
980.2.q.c 4 5.b even 2 1 inner
980.2.q.c 4 7.c even 3 1 inner
980.2.q.c 4 35.j even 6 1 inner
980.2.q.f 4 7.b odd 2 1
980.2.q.f 4 7.d odd 6 1
980.2.q.f 4 35.c odd 2 1
980.2.q.f 4 35.i odd 6 1
1260.2.k.c 2 21.g even 6 1
1260.2.k.c 2 105.p even 6 1
2240.2.g.e 2 56.j odd 6 1
2240.2.g.e 2 280.bk odd 6 1
2240.2.g.f 2 56.m even 6 1
2240.2.g.f 2 280.ba even 6 1
2800.2.a.a 1 140.x odd 12 1
2800.2.a.bf 1 140.x odd 12 1
4900.2.a.b 1 35.l odd 12 1
4900.2.a.w 1 35.l odd 12 1
5040.2.t.s 2 84.j odd 6 1
5040.2.t.s 2 420.be odd 6 1
6300.2.a.c 1 105.w odd 12 1
6300.2.a.t 1 105.w odd 12 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(980, [\chi])\):

\( T_{3}^{4} - 9T_{3}^{2} + 81 \) Copy content Toggle raw display
\( T_{11}^{2} + 3T_{11} + 9 \) Copy content Toggle raw display
\( T_{19}^{2} - 8T_{19} + 64 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 9T^{2} + 81 \) Copy content Toggle raw display
$5$ \( T^{4} + 4 T^{3} + \cdots + 25 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} + 3 T + 9)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} - 25T^{2} + 625 \) Copy content Toggle raw display
$19$ \( (T^{2} - 8 T + 64)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} - 4T^{2} + 16 \) Copy content Toggle raw display
$29$ \( (T - 1)^{4} \) Copy content Toggle raw display
$31$ \( (T^{2} + 2 T + 4)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} - 100 T^{2} + 10000 \) Copy content Toggle raw display
$41$ \( (T - 6)^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} + 16)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} - 121 T^{2} + 14641 \) Copy content Toggle raw display
$53$ \( T^{4} - 36T^{2} + 1296 \) Copy content Toggle raw display
$59$ \( (T^{2} - 10 T + 100)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( T^{4} - 100 T^{2} + 10000 \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( T^{4} - 100 T^{2} + 10000 \) Copy content Toggle raw display
$79$ \( (T^{2} + 7 T + 49)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} + 144)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 8 T + 64)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 9)^{2} \) Copy content Toggle raw display
show more
show less