L(s) = 1 | + (−2.5 − 4.33i)3-s + (2.5 − 4.33i)5-s + (0.999 − 1.73i)9-s + (7.5 + 12.9i)11-s + 13·13-s − 25.0·15-s + (−13.5 − 23.3i)17-s + (−77 + 133. i)19-s + (93 − 161. i)23-s + (−12.5 − 21.6i)25-s − 144.·27-s + 3·29-s + (−164 − 284. i)31-s + (37.5 − 64.9i)33-s + (−127 + 219. i)37-s + ⋯ |
L(s) = 1 | + (−0.481 − 0.833i)3-s + (0.223 − 0.387i)5-s + (0.0370 − 0.0641i)9-s + (0.205 + 0.356i)11-s + 0.277·13-s − 0.430·15-s + (−0.192 − 0.333i)17-s + (−0.929 + 1.61i)19-s + (0.843 − 1.46i)23-s + (−0.100 − 0.173i)25-s − 1.03·27-s + 0.0192·29-s + (−0.950 − 1.64i)31-s + (0.197 − 0.342i)33-s + (−0.564 + 0.977i)37-s + ⋯ |
Λ(s)=(=(980s/2ΓC(s)L(s)(−0.701−0.712i)Λ(4−s)
Λ(s)=(=(980s/2ΓC(s+3/2)L(s)(−0.701−0.712i)Λ(1−s)
Degree: |
2 |
Conductor: |
980
= 22⋅5⋅72
|
Sign: |
−0.701−0.712i
|
Analytic conductor: |
57.8218 |
Root analytic conductor: |
7.60406 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ980(961,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 980, ( :3/2), −0.701−0.712i)
|
Particular Values
L(2) |
≈ |
0.3267582227 |
L(21) |
≈ |
0.3267582227 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(−2.5+4.33i)T |
| 7 | 1 |
good | 3 | 1+(2.5+4.33i)T+(−13.5+23.3i)T2 |
| 11 | 1+(−7.5−12.9i)T+(−665.5+1.15e3i)T2 |
| 13 | 1−13T+2.19e3T2 |
| 17 | 1+(13.5+23.3i)T+(−2.45e3+4.25e3i)T2 |
| 19 | 1+(77−133.i)T+(−3.42e3−5.94e3i)T2 |
| 23 | 1+(−93+161.i)T+(−6.08e3−1.05e4i)T2 |
| 29 | 1−3T+2.43e4T2 |
| 31 | 1+(164+284.i)T+(−1.48e4+2.57e4i)T2 |
| 37 | 1+(127−219.i)T+(−2.53e4−4.38e4i)T2 |
| 41 | 1+96T+6.89e4T2 |
| 43 | 1−134T+7.95e4T2 |
| 47 | 1+(−25.5+44.1i)T+(−5.19e4−8.99e4i)T2 |
| 53 | 1+(120+207.i)T+(−7.44e4+1.28e5i)T2 |
| 59 | 1+(198+342.i)T+(−1.02e5+1.77e5i)T2 |
| 61 | 1+(308−533.i)T+(−1.13e5−1.96e5i)T2 |
| 67 | 1+(148+256.i)T+(−1.50e5+2.60e5i)T2 |
| 71 | 1+48T+3.57e5T2 |
| 73 | 1+(161+278.i)T+(−1.94e5+3.36e5i)T2 |
| 79 | 1+(329.5−570.i)T+(−2.46e5−4.26e5i)T2 |
| 83 | 1+300T+5.71e5T2 |
| 89 | 1+(−510+883.i)T+(−3.52e5−6.10e5i)T2 |
| 97 | 1−199T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.045421544376108222864052123903, −8.207718243924617072248016641471, −7.31672064278767358603216596795, −6.43141615348541834869962123388, −5.90103358176555698201045829837, −4.72546423493906028613694773667, −3.75431605309231219861817224812, −2.20627018580590331258230655295, −1.27327542420351744444946177677, −0.088561251189226392705214232137,
1.61232492289303765167476126310, 2.99959866714197180010797992242, 3.99927793883202316040319704788, 4.96496748883927920799702953109, 5.69003541410506476139286667585, 6.72995060631504894236144495922, 7.47258036429880613369264215433, 8.815583880703080147166424819927, 9.255109555070225102644864004464, 10.32323225063286106676204367390