gp: [N,k,chi] = [980,4,Mod(361,980)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(980, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 4]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("980.361");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [2,0,-5,0,5,0,0,0,2,0,15]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a primitive root of unity ζ 6 \zeta_{6} ζ 6 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 980 Z ) × \left(\mathbb{Z}/980\mathbb{Z}\right)^\times ( Z / 9 8 0 Z ) × .
n n n
101 101 1 0 1
197 197 1 9 7
491 491 4 9 1
χ ( n ) \chi(n) χ ( n )
− ζ 6 -\zeta_{6} − ζ 6
1 1 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( 980 , [ χ ] ) S_{4}^{\mathrm{new}}(980, [\chi]) S 4 n e w ( 9 8 0 , [ χ ] ) :
T 3 2 + 5 T 3 + 25 T_{3}^{2} + 5T_{3} + 25 T 3 2 + 5 T 3 + 2 5
T3^2 + 5*T3 + 25
T 11 2 − 15 T 11 + 225 T_{11}^{2} - 15T_{11} + 225 T 1 1 2 − 1 5 T 1 1 + 2 2 5
T11^2 - 15*T11 + 225
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 T^{2} T 2
T^2
3 3 3
T 2 + 5 T + 25 T^{2} + 5T + 25 T 2 + 5 T + 2 5
T^2 + 5*T + 25
5 5 5
T 2 − 5 T + 25 T^{2} - 5T + 25 T 2 − 5 T + 2 5
T^2 - 5*T + 25
7 7 7
T 2 T^{2} T 2
T^2
11 11 1 1
T 2 − 15 T + 225 T^{2} - 15T + 225 T 2 − 1 5 T + 2 2 5
T^2 - 15*T + 225
13 13 1 3
( T − 13 ) 2 (T - 13)^{2} ( T − 1 3 ) 2
(T - 13)^2
17 17 1 7
T 2 + 27 T + 729 T^{2} + 27T + 729 T 2 + 2 7 T + 7 2 9
T^2 + 27*T + 729
19 19 1 9
T 2 + 154 T + 23716 T^{2} + 154T + 23716 T 2 + 1 5 4 T + 2 3 7 1 6
T^2 + 154*T + 23716
23 23 2 3
T 2 − 186 T + 34596 T^{2} - 186T + 34596 T 2 − 1 8 6 T + 3 4 5 9 6
T^2 - 186*T + 34596
29 29 2 9
( T − 3 ) 2 (T - 3)^{2} ( T − 3 ) 2
(T - 3)^2
31 31 3 1
T 2 + 328 T + 107584 T^{2} + 328T + 107584 T 2 + 3 2 8 T + 1 0 7 5 8 4
T^2 + 328*T + 107584
37 37 3 7
T 2 + 254 T + 64516 T^{2} + 254T + 64516 T 2 + 2 5 4 T + 6 4 5 1 6
T^2 + 254*T + 64516
41 41 4 1
( T + 96 ) 2 (T + 96)^{2} ( T + 9 6 ) 2
(T + 96)^2
43 43 4 3
( T − 134 ) 2 (T - 134)^{2} ( T − 1 3 4 ) 2
(T - 134)^2
47 47 4 7
T 2 − 51 T + 2601 T^{2} - 51T + 2601 T 2 − 5 1 T + 2 6 0 1
T^2 - 51*T + 2601
53 53 5 3
T 2 + 240 T + 57600 T^{2} + 240T + 57600 T 2 + 2 4 0 T + 5 7 6 0 0
T^2 + 240*T + 57600
59 59 5 9
T 2 + 396 T + 156816 T^{2} + 396T + 156816 T 2 + 3 9 6 T + 1 5 6 8 1 6
T^2 + 396*T + 156816
61 61 6 1
T 2 + 616 T + 379456 T^{2} + 616T + 379456 T 2 + 6 1 6 T + 3 7 9 4 5 6
T^2 + 616*T + 379456
67 67 6 7
T 2 + 296 T + 87616 T^{2} + 296T + 87616 T 2 + 2 9 6 T + 8 7 6 1 6
T^2 + 296*T + 87616
71 71 7 1
( T + 48 ) 2 (T + 48)^{2} ( T + 4 8 ) 2
(T + 48)^2
73 73 7 3
T 2 + 322 T + 103684 T^{2} + 322T + 103684 T 2 + 3 2 2 T + 1 0 3 6 8 4
T^2 + 322*T + 103684
79 79 7 9
T 2 + 659 T + 434281 T^{2} + 659T + 434281 T 2 + 6 5 9 T + 4 3 4 2 8 1
T^2 + 659*T + 434281
83 83 8 3
( T + 300 ) 2 (T + 300)^{2} ( T + 3 0 0 ) 2
(T + 300)^2
89 89 8 9
T 2 − 1020 T + 1040400 T^{2} - 1020 T + 1040400 T 2 − 1 0 2 0 T + 1 0 4 0 4 0 0
T^2 - 1020*T + 1040400
97 97 9 7
( T − 199 ) 2 (T - 199)^{2} ( T − 1 9 9 ) 2
(T - 199)^2
show more
show less