Properties

Label 980.4.i.d
Level $980$
Weight $4$
Character orbit 980.i
Analytic conductor $57.822$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [980,4,Mod(361,980)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(980, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("980.361");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 980.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(57.8218718056\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (5 \zeta_{6} - 5) q^{3} + 5 \zeta_{6} q^{5} + 2 \zeta_{6} q^{9} + ( - 15 \zeta_{6} + 15) q^{11} + 13 q^{13} - 25 q^{15} + (27 \zeta_{6} - 27) q^{17} - 154 \zeta_{6} q^{19} + 186 \zeta_{6} q^{23} + (25 \zeta_{6} - 25) q^{25} + \cdots + 30 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 5 q^{3} + 5 q^{5} + 2 q^{9} + 15 q^{11} + 26 q^{13} - 50 q^{15} - 27 q^{17} - 154 q^{19} + 186 q^{23} - 25 q^{25} - 290 q^{27} + 6 q^{29} - 328 q^{31} + 75 q^{33} - 254 q^{37} - 65 q^{39} - 192 q^{41}+ \cdots + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
361.1
0.500000 + 0.866025i
0.500000 0.866025i
0 −2.50000 + 4.33013i 0 2.50000 + 4.33013i 0 0 0 1.00000 + 1.73205i 0
961.1 0 −2.50000 4.33013i 0 2.50000 4.33013i 0 0 0 1.00000 1.73205i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 980.4.i.d 2
7.b odd 2 1 980.4.i.o 2
7.c even 3 1 980.4.a.l 1
7.c even 3 1 inner 980.4.i.d 2
7.d odd 6 1 140.4.a.b 1
7.d odd 6 1 980.4.i.o 2
21.g even 6 1 1260.4.a.e 1
28.f even 6 1 560.4.a.o 1
35.i odd 6 1 700.4.a.j 1
35.k even 12 2 700.4.e.d 2
56.j odd 6 1 2240.4.a.bd 1
56.m even 6 1 2240.4.a.g 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
140.4.a.b 1 7.d odd 6 1
560.4.a.o 1 28.f even 6 1
700.4.a.j 1 35.i odd 6 1
700.4.e.d 2 35.k even 12 2
980.4.a.l 1 7.c even 3 1
980.4.i.d 2 1.a even 1 1 trivial
980.4.i.d 2 7.c even 3 1 inner
980.4.i.o 2 7.b odd 2 1
980.4.i.o 2 7.d odd 6 1
1260.4.a.e 1 21.g even 6 1
2240.4.a.g 1 56.m even 6 1
2240.4.a.bd 1 56.j odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(980, [\chi])\):

\( T_{3}^{2} + 5T_{3} + 25 \) Copy content Toggle raw display
\( T_{11}^{2} - 15T_{11} + 225 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 5T + 25 \) Copy content Toggle raw display
$5$ \( T^{2} - 5T + 25 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 15T + 225 \) Copy content Toggle raw display
$13$ \( (T - 13)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 27T + 729 \) Copy content Toggle raw display
$19$ \( T^{2} + 154T + 23716 \) Copy content Toggle raw display
$23$ \( T^{2} - 186T + 34596 \) Copy content Toggle raw display
$29$ \( (T - 3)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 328T + 107584 \) Copy content Toggle raw display
$37$ \( T^{2} + 254T + 64516 \) Copy content Toggle raw display
$41$ \( (T + 96)^{2} \) Copy content Toggle raw display
$43$ \( (T - 134)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 51T + 2601 \) Copy content Toggle raw display
$53$ \( T^{2} + 240T + 57600 \) Copy content Toggle raw display
$59$ \( T^{2} + 396T + 156816 \) Copy content Toggle raw display
$61$ \( T^{2} + 616T + 379456 \) Copy content Toggle raw display
$67$ \( T^{2} + 296T + 87616 \) Copy content Toggle raw display
$71$ \( (T + 48)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 322T + 103684 \) Copy content Toggle raw display
$79$ \( T^{2} + 659T + 434281 \) Copy content Toggle raw display
$83$ \( (T + 300)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - 1020 T + 1040400 \) Copy content Toggle raw display
$97$ \( (T - 199)^{2} \) Copy content Toggle raw display
show more
show less