Properties

Label 980.4.i.d
Level 980980
Weight 44
Character orbit 980.i
Analytic conductor 57.82257.822
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [980,4,Mod(361,980)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(980, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("980.361"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 980=22572 980 = 2^{2} \cdot 5 \cdot 7^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 980.i (of order 33, degree 22, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-5,0,5,0,0,0,2,0,15] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 57.821871805657.8218718056
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a9]\Z[a_1, \ldots, a_{9}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(5ζ65)q3+5ζ6q5+2ζ6q9+(15ζ6+15)q11+13q1325q15+(27ζ627)q17154ζ6q19+186ζ6q23+(25ζ625)q25++30q99+O(q100) q + (5 \zeta_{6} - 5) q^{3} + 5 \zeta_{6} q^{5} + 2 \zeta_{6} q^{9} + ( - 15 \zeta_{6} + 15) q^{11} + 13 q^{13} - 25 q^{15} + (27 \zeta_{6} - 27) q^{17} - 154 \zeta_{6} q^{19} + 186 \zeta_{6} q^{23} + (25 \zeta_{6} - 25) q^{25} + \cdots + 30 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q5q3+5q5+2q9+15q11+26q1350q1527q17154q19+186q2325q25290q27+6q29328q31+75q33254q3765q39192q41++60q99+O(q100) 2 q - 5 q^{3} + 5 q^{5} + 2 q^{9} + 15 q^{11} + 26 q^{13} - 50 q^{15} - 27 q^{17} - 154 q^{19} + 186 q^{23} - 25 q^{25} - 290 q^{27} + 6 q^{29} - 328 q^{31} + 75 q^{33} - 254 q^{37} - 65 q^{39} - 192 q^{41}+ \cdots + 60 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/980Z)×\left(\mathbb{Z}/980\mathbb{Z}\right)^\times.

nn 101101 197197 491491
χ(n)\chi(n) ζ6-\zeta_{6} 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
361.1
0.500000 + 0.866025i
0.500000 0.866025i
0 −2.50000 + 4.33013i 0 2.50000 + 4.33013i 0 0 0 1.00000 + 1.73205i 0
961.1 0 −2.50000 4.33013i 0 2.50000 4.33013i 0 0 0 1.00000 1.73205i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 980.4.i.d 2
7.b odd 2 1 980.4.i.o 2
7.c even 3 1 980.4.a.l 1
7.c even 3 1 inner 980.4.i.d 2
7.d odd 6 1 140.4.a.b 1
7.d odd 6 1 980.4.i.o 2
21.g even 6 1 1260.4.a.e 1
28.f even 6 1 560.4.a.o 1
35.i odd 6 1 700.4.a.j 1
35.k even 12 2 700.4.e.d 2
56.j odd 6 1 2240.4.a.bd 1
56.m even 6 1 2240.4.a.g 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
140.4.a.b 1 7.d odd 6 1
560.4.a.o 1 28.f even 6 1
700.4.a.j 1 35.i odd 6 1
700.4.e.d 2 35.k even 12 2
980.4.a.l 1 7.c even 3 1
980.4.i.d 2 1.a even 1 1 trivial
980.4.i.d 2 7.c even 3 1 inner
980.4.i.o 2 7.b odd 2 1
980.4.i.o 2 7.d odd 6 1
1260.4.a.e 1 21.g even 6 1
2240.4.a.g 1 56.m even 6 1
2240.4.a.bd 1 56.j odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(980,[χ])S_{4}^{\mathrm{new}}(980, [\chi]):

T32+5T3+25 T_{3}^{2} + 5T_{3} + 25 Copy content Toggle raw display
T11215T11+225 T_{11}^{2} - 15T_{11} + 225 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+5T+25 T^{2} + 5T + 25 Copy content Toggle raw display
55 T25T+25 T^{2} - 5T + 25 Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T215T+225 T^{2} - 15T + 225 Copy content Toggle raw display
1313 (T13)2 (T - 13)^{2} Copy content Toggle raw display
1717 T2+27T+729 T^{2} + 27T + 729 Copy content Toggle raw display
1919 T2+154T+23716 T^{2} + 154T + 23716 Copy content Toggle raw display
2323 T2186T+34596 T^{2} - 186T + 34596 Copy content Toggle raw display
2929 (T3)2 (T - 3)^{2} Copy content Toggle raw display
3131 T2+328T+107584 T^{2} + 328T + 107584 Copy content Toggle raw display
3737 T2+254T+64516 T^{2} + 254T + 64516 Copy content Toggle raw display
4141 (T+96)2 (T + 96)^{2} Copy content Toggle raw display
4343 (T134)2 (T - 134)^{2} Copy content Toggle raw display
4747 T251T+2601 T^{2} - 51T + 2601 Copy content Toggle raw display
5353 T2+240T+57600 T^{2} + 240T + 57600 Copy content Toggle raw display
5959 T2+396T+156816 T^{2} + 396T + 156816 Copy content Toggle raw display
6161 T2+616T+379456 T^{2} + 616T + 379456 Copy content Toggle raw display
6767 T2+296T+87616 T^{2} + 296T + 87616 Copy content Toggle raw display
7171 (T+48)2 (T + 48)^{2} Copy content Toggle raw display
7373 T2+322T+103684 T^{2} + 322T + 103684 Copy content Toggle raw display
7979 T2+659T+434281 T^{2} + 659T + 434281 Copy content Toggle raw display
8383 (T+300)2 (T + 300)^{2} Copy content Toggle raw display
8989 T21020T+1040400 T^{2} - 1020 T + 1040400 Copy content Toggle raw display
9797 (T199)2 (T - 199)^{2} Copy content Toggle raw display
show more
show less