Properties

Label 2240.4.a.g
Level $2240$
Weight $4$
Character orbit 2240.a
Self dual yes
Analytic conductor $132.164$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2240,4,Mod(1,2240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2240, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2240.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2240 = 2^{6} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2240.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(132.164278413\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 140)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 5 q^{3} - 5 q^{5} - 7 q^{7} - 2 q^{9} - 15 q^{11} + 13 q^{13} + 25 q^{15} - 27 q^{17} - 154 q^{19} + 35 q^{21} + 186 q^{23} + 25 q^{25} + 145 q^{27} - 3 q^{29} + 328 q^{31} + 75 q^{33} + 35 q^{35}+ \cdots + 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −5.00000 0 −5.00000 0 −7.00000 0 −2.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2240.4.a.g 1
4.b odd 2 1 2240.4.a.bd 1
8.b even 2 1 560.4.a.o 1
8.d odd 2 1 140.4.a.b 1
24.f even 2 1 1260.4.a.e 1
40.e odd 2 1 700.4.a.j 1
40.k even 4 2 700.4.e.d 2
56.e even 2 1 980.4.a.l 1
56.k odd 6 2 980.4.i.o 2
56.m even 6 2 980.4.i.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
140.4.a.b 1 8.d odd 2 1
560.4.a.o 1 8.b even 2 1
700.4.a.j 1 40.e odd 2 1
700.4.e.d 2 40.k even 4 2
980.4.a.l 1 56.e even 2 1
980.4.i.d 2 56.m even 6 2
980.4.i.o 2 56.k odd 6 2
1260.4.a.e 1 24.f even 2 1
2240.4.a.g 1 1.a even 1 1 trivial
2240.4.a.bd 1 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2240))\):

\( T_{3} + 5 \) Copy content Toggle raw display
\( T_{11} + 15 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T + 5 \) Copy content Toggle raw display
$5$ \( T + 5 \) Copy content Toggle raw display
$7$ \( T + 7 \) Copy content Toggle raw display
$11$ \( T + 15 \) Copy content Toggle raw display
$13$ \( T - 13 \) Copy content Toggle raw display
$17$ \( T + 27 \) Copy content Toggle raw display
$19$ \( T + 154 \) Copy content Toggle raw display
$23$ \( T - 186 \) Copy content Toggle raw display
$29$ \( T + 3 \) Copy content Toggle raw display
$31$ \( T - 328 \) Copy content Toggle raw display
$37$ \( T + 254 \) Copy content Toggle raw display
$41$ \( T - 96 \) Copy content Toggle raw display
$43$ \( T - 134 \) Copy content Toggle raw display
$47$ \( T + 51 \) Copy content Toggle raw display
$53$ \( T + 240 \) Copy content Toggle raw display
$59$ \( T + 396 \) Copy content Toggle raw display
$61$ \( T - 616 \) Copy content Toggle raw display
$67$ \( T - 296 \) Copy content Toggle raw display
$71$ \( T - 48 \) Copy content Toggle raw display
$73$ \( T + 322 \) Copy content Toggle raw display
$79$ \( T + 659 \) Copy content Toggle raw display
$83$ \( T - 300 \) Copy content Toggle raw display
$89$ \( T - 1020 \) Copy content Toggle raw display
$97$ \( T + 199 \) Copy content Toggle raw display
show more
show less