Properties

Label 2-99e2-1.1-c1-0-115
Degree $2$
Conductor $9801$
Sign $1$
Analytic cond. $78.2613$
Root an. cond. $8.84654$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.17·2-s + 2.72·4-s − 2.40·5-s + 4.30·7-s − 1.57·8-s + 5.22·10-s + 4.13·13-s − 9.35·14-s − 2.02·16-s − 2.34·17-s + 6.03·19-s − 6.55·20-s + 4.18·23-s + 0.783·25-s − 8.99·26-s + 11.7·28-s − 8.53·29-s − 3.24·31-s + 7.54·32-s + 5.09·34-s − 10.3·35-s − 10.8·37-s − 13.1·38-s + 3.79·40-s − 3.39·41-s + 5.86·43-s − 9.08·46-s + ⋯
L(s)  = 1  − 1.53·2-s + 1.36·4-s − 1.07·5-s + 1.62·7-s − 0.558·8-s + 1.65·10-s + 1.14·13-s − 2.50·14-s − 0.505·16-s − 0.567·17-s + 1.38·19-s − 1.46·20-s + 0.871·23-s + 0.156·25-s − 1.76·26-s + 2.21·28-s − 1.58·29-s − 0.583·31-s + 1.33·32-s + 0.873·34-s − 1.74·35-s − 1.77·37-s − 2.12·38-s + 0.600·40-s − 0.530·41-s + 0.894·43-s − 1.33·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9801 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9801 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9801\)    =    \(3^{4} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(78.2613\)
Root analytic conductor: \(8.84654\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9801,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9449559015\)
\(L(\frac12)\) \(\approx\) \(0.9449559015\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
11 \( 1 \)
good2 \( 1 + 2.17T + 2T^{2} \)
5 \( 1 + 2.40T + 5T^{2} \)
7 \( 1 - 4.30T + 7T^{2} \)
13 \( 1 - 4.13T + 13T^{2} \)
17 \( 1 + 2.34T + 17T^{2} \)
19 \( 1 - 6.03T + 19T^{2} \)
23 \( 1 - 4.18T + 23T^{2} \)
29 \( 1 + 8.53T + 29T^{2} \)
31 \( 1 + 3.24T + 31T^{2} \)
37 \( 1 + 10.8T + 37T^{2} \)
41 \( 1 + 3.39T + 41T^{2} \)
43 \( 1 - 5.86T + 43T^{2} \)
47 \( 1 - 3.35T + 47T^{2} \)
53 \( 1 - 7.12T + 53T^{2} \)
59 \( 1 - 5.76T + 59T^{2} \)
61 \( 1 + 10.6T + 61T^{2} \)
67 \( 1 - 10.5T + 67T^{2} \)
71 \( 1 - 4.81T + 71T^{2} \)
73 \( 1 - 11.8T + 73T^{2} \)
79 \( 1 + 11.6T + 79T^{2} \)
83 \( 1 + 0.128T + 83T^{2} \)
89 \( 1 - 16.0T + 89T^{2} \)
97 \( 1 + 0.375T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.72551984693040624148601103577, −7.40708108380242858936490041721, −6.78971612428197162835122036083, −5.57924172058740117056291204058, −4.99628736929187293415891494797, −4.06277709148928576692927802689, −3.44749116562095788735826394133, −2.12931686193637134895596809659, −1.44479616380178818307670248672, −0.64172068790879128690482182511, 0.64172068790879128690482182511, 1.44479616380178818307670248672, 2.12931686193637134895596809659, 3.44749116562095788735826394133, 4.06277709148928576692927802689, 4.99628736929187293415891494797, 5.57924172058740117056291204058, 6.78971612428197162835122036083, 7.40708108380242858936490041721, 7.72551984693040624148601103577

Graph of the $Z$-function along the critical line