Properties

Label 9801.2.a.bp
Level $9801$
Weight $2$
Character orbit 9801.a
Self dual yes
Analytic conductor $78.261$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9801,2,Mod(1,9801)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9801, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9801.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9801 = 3^{4} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9801.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.2613790211\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.5144904.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 9x^{3} + 4x^{2} + 20x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{2} + \beta_1 + 2) q^{4} + (\beta_{3} - 1) q^{5} + ( - \beta_{3} + \beta_{2}) q^{7} + (\beta_{3} + \beta_1 + 2) q^{8} + (\beta_{4} + \beta_{3} + \beta_{2} + 1) q^{10} + (\beta_{4} - \beta_{3}) q^{13}+ \cdots + (5 \beta_{3} - 3 \beta_{2} + 2 \beta_1 - 5) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + q^{2} + 9 q^{4} - 4 q^{5} - 3 q^{7} + 12 q^{8} + 5 q^{10} - 13 q^{14} + 9 q^{16} + 4 q^{17} + q^{19} + 7 q^{20} + q^{23} + 15 q^{25} - 7 q^{26} - q^{28} + 3 q^{29} + 24 q^{31} + 20 q^{32} + 25 q^{34}+ \cdots - 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - x^{4} - 9x^{3} + 4x^{2} + 20x + 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 5\nu - 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} - \nu^{3} - 6\nu^{2} + 3\nu + 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 5\beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} + \beta_{3} + 6\beta_{2} + 8\beta _1 + 21 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.17399
−1.52027
−0.156598
2.13163
2.71922
−2.17399 0 2.72621 −2.40479 0 4.30500 −1.57878 0 5.22799
1.2 −1.52027 0 0.311228 1.08767 0 −2.25617 2.56739 0 −1.65355
1.3 −0.156598 0 −1.97548 −2.22085 0 −2.59803 0.622551 0 0.347781
1.4 2.13163 0 2.54385 −3.97234 0 1.38456 1.15930 0 −8.46756
1.5 2.71922 0 5.39418 3.51032 0 −3.83536 9.22954 0 9.54534
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9801.2.a.bp yes 5
3.b odd 2 1 9801.2.a.bo yes 5
11.b odd 2 1 9801.2.a.bn 5
33.d even 2 1 9801.2.a.bq yes 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
9801.2.a.bn 5 11.b odd 2 1
9801.2.a.bo yes 5 3.b odd 2 1
9801.2.a.bp yes 5 1.a even 1 1 trivial
9801.2.a.bq yes 5 33.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9801))\):

\( T_{2}^{5} - T_{2}^{4} - 9T_{2}^{3} + 4T_{2}^{2} + 20T_{2} + 3 \) Copy content Toggle raw display
\( T_{5}^{5} + 4T_{5}^{4} - 12T_{5}^{3} - 55T_{5}^{2} - 7T_{5} + 81 \) Copy content Toggle raw display
\( T_{7}^{5} + 3T_{7}^{4} - 19T_{7}^{3} - 65T_{7}^{2} + 18T_{7} + 134 \) Copy content Toggle raw display
\( T_{17}^{5} - 4T_{17}^{4} - 60T_{17}^{3} + 109T_{17}^{2} + 809T_{17} + 717 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} - T^{4} - 9 T^{3} + \cdots + 3 \) Copy content Toggle raw display
$3$ \( T^{5} \) Copy content Toggle raw display
$5$ \( T^{5} + 4 T^{4} + \cdots + 81 \) Copy content Toggle raw display
$7$ \( T^{5} + 3 T^{4} + \cdots + 134 \) Copy content Toggle raw display
$11$ \( T^{5} \) Copy content Toggle raw display
$13$ \( T^{5} - 49 T^{3} + \cdots + 344 \) Copy content Toggle raw display
$17$ \( T^{5} - 4 T^{4} + \cdots + 717 \) Copy content Toggle raw display
$19$ \( T^{5} - T^{4} + \cdots - 162 \) Copy content Toggle raw display
$23$ \( T^{5} - T^{4} + \cdots + 1014 \) Copy content Toggle raw display
$29$ \( T^{5} - 3 T^{4} + \cdots - 5184 \) Copy content Toggle raw display
$31$ \( T^{5} - 24 T^{4} + \cdots + 2374 \) Copy content Toggle raw display
$37$ \( T^{5} + 13 T^{4} + \cdots + 216 \) Copy content Toggle raw display
$41$ \( T^{5} + 17 T^{4} + \cdots + 303 \) Copy content Toggle raw display
$43$ \( T^{5} - 4 T^{4} + \cdots - 144 \) Copy content Toggle raw display
$47$ \( T^{5} + 17 T^{4} + \cdots + 8046 \) Copy content Toggle raw display
$53$ \( T^{5} - 6 T^{4} + \cdots - 6453 \) Copy content Toggle raw display
$59$ \( T^{5} - 25 T^{4} + \cdots + 138 \) Copy content Toggle raw display
$61$ \( T^{5} + 17 T^{4} + \cdots + 13131 \) Copy content Toggle raw display
$67$ \( T^{5} - 7 T^{4} + \cdots + 1564 \) Copy content Toggle raw display
$71$ \( T^{5} - 6 T^{4} + \cdots - 22194 \) Copy content Toggle raw display
$73$ \( T^{5} - 15 T^{4} + \cdots + 1709 \) Copy content Toggle raw display
$79$ \( T^{5} + 19 T^{4} + \cdots + 5024 \) Copy content Toggle raw display
$83$ \( T^{5} + 3 T^{4} + \cdots + 1458 \) Copy content Toggle raw display
$89$ \( T^{5} - 3 T^{4} + \cdots - 15579 \) Copy content Toggle raw display
$97$ \( T^{5} - 4 T^{4} + \cdots - 2456 \) Copy content Toggle raw display
show more
show less