L(s) = 1 | + 2.71·2-s + 5.39·4-s + 3.51·5-s − 3.83·7-s + 9.22·8-s + 9.54·10-s − 1.15·13-s − 10.4·14-s + 14.3·16-s + 5.40·17-s + 0.558·19-s + 18.9·20-s − 2.75·23-s + 7.32·25-s − 3.12·26-s − 20.6·28-s − 4.70·29-s + 8.76·31-s + 20.4·32-s + 14.6·34-s − 13.4·35-s − 4.31·37-s + 1.51·38-s + 32.3·40-s + 0.476·41-s + 3.24·43-s − 7.48·46-s + ⋯ |
L(s) = 1 | + 1.92·2-s + 2.69·4-s + 1.56·5-s − 1.44·7-s + 3.26·8-s + 3.01·10-s − 0.319·13-s − 2.78·14-s + 3.57·16-s + 1.31·17-s + 0.128·19-s + 4.23·20-s − 0.574·23-s + 1.46·25-s − 0.613·26-s − 3.90·28-s − 0.874·29-s + 1.57·31-s + 3.61·32-s + 2.52·34-s − 2.27·35-s − 0.709·37-s + 0.246·38-s + 5.12·40-s + 0.0743·41-s + 0.494·43-s − 1.10·46-s + ⋯ |
Λ(s)=(=(9801s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(9801s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
9.951835269 |
L(21) |
≈ |
9.951835269 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 11 | 1 |
good | 2 | 1−2.71T+2T2 |
| 5 | 1−3.51T+5T2 |
| 7 | 1+3.83T+7T2 |
| 13 | 1+1.15T+13T2 |
| 17 | 1−5.40T+17T2 |
| 19 | 1−0.558T+19T2 |
| 23 | 1+2.75T+23T2 |
| 29 | 1+4.70T+29T2 |
| 31 | 1−8.76T+31T2 |
| 37 | 1+4.31T+37T2 |
| 41 | 1−0.476T+41T2 |
| 43 | 1−3.24T+43T2 |
| 47 | 1−4.42T+47T2 |
| 53 | 1−11.2T+53T2 |
| 59 | 1−6.79T+59T2 |
| 61 | 1+5.53T+61T2 |
| 67 | 1−6.70T+67T2 |
| 71 | 1−5.88T+71T2 |
| 73 | 1+7.06T+73T2 |
| 79 | 1−5.84T+79T2 |
| 83 | 1−4.80T+83T2 |
| 89 | 1+11.1T+89T2 |
| 97 | 1+18.1T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.12527306787632070853049163389, −6.69762775099621185048652192472, −5.99787886799053135570753414126, −5.66559694426020150486267327587, −5.15221195108629837199008237344, −4.12464336872101141780216469509, −3.45796282069587645194193429798, −2.73088817251555242432180744253, −2.25163335850922367096809829080, −1.18792169670792347113174024706,
1.18792169670792347113174024706, 2.25163335850922367096809829080, 2.73088817251555242432180744253, 3.45796282069587645194193429798, 4.12464336872101141780216469509, 5.15221195108629837199008237344, 5.66559694426020150486267327587, 5.99787886799053135570753414126, 6.69762775099621185048652192472, 7.12527306787632070853049163389