Properties

Label 2-985-1.1-c1-0-0
Degree $2$
Conductor $985$
Sign $1$
Analytic cond. $7.86526$
Root an. cond. $2.80450$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.695·2-s − 2.78·3-s − 1.51·4-s − 5-s + 1.93·6-s + 0.663·7-s + 2.44·8-s + 4.78·9-s + 0.695·10-s − 6.07·11-s + 4.23·12-s − 4.04·13-s − 0.461·14-s + 2.78·15-s + 1.33·16-s − 8.04·17-s − 3.32·18-s − 7.85·19-s + 1.51·20-s − 1.85·21-s + 4.22·22-s + 8.37·23-s − 6.81·24-s + 25-s + 2.80·26-s − 4.96·27-s − 1.00·28-s + ⋯
L(s)  = 1  − 0.491·2-s − 1.61·3-s − 0.758·4-s − 0.447·5-s + 0.791·6-s + 0.250·7-s + 0.864·8-s + 1.59·9-s + 0.219·10-s − 1.83·11-s + 1.22·12-s − 1.12·13-s − 0.123·14-s + 0.720·15-s + 0.333·16-s − 1.95·17-s − 0.783·18-s − 1.80·19-s + 0.339·20-s − 0.403·21-s + 0.900·22-s + 1.74·23-s − 1.39·24-s + 0.200·25-s + 0.551·26-s − 0.955·27-s − 0.190·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 985 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 985 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(985\)    =    \(5 \cdot 197\)
Sign: $1$
Analytic conductor: \(7.86526\)
Root analytic conductor: \(2.80450\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 985,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.08554926856\)
\(L(\frac12)\) \(\approx\) \(0.08554926856\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + T \)
197 \( 1 - T \)
good2 \( 1 + 0.695T + 2T^{2} \)
3 \( 1 + 2.78T + 3T^{2} \)
7 \( 1 - 0.663T + 7T^{2} \)
11 \( 1 + 6.07T + 11T^{2} \)
13 \( 1 + 4.04T + 13T^{2} \)
17 \( 1 + 8.04T + 17T^{2} \)
19 \( 1 + 7.85T + 19T^{2} \)
23 \( 1 - 8.37T + 23T^{2} \)
29 \( 1 + 3.97T + 29T^{2} \)
31 \( 1 + 6.14T + 31T^{2} \)
37 \( 1 + 8.99T + 37T^{2} \)
41 \( 1 + 1.01T + 41T^{2} \)
43 \( 1 - 5.57T + 43T^{2} \)
47 \( 1 - 3.08T + 47T^{2} \)
53 \( 1 - 9.11T + 53T^{2} \)
59 \( 1 + 1.93T + 59T^{2} \)
61 \( 1 + 0.0788T + 61T^{2} \)
67 \( 1 - 10.4T + 67T^{2} \)
71 \( 1 - 12.7T + 71T^{2} \)
73 \( 1 + 3.41T + 73T^{2} \)
79 \( 1 - 4.66T + 79T^{2} \)
83 \( 1 + 0.535T + 83T^{2} \)
89 \( 1 - 0.626T + 89T^{2} \)
97 \( 1 + 0.616T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.30443568541006611605833223350, −9.162790287665994712529184460673, −8.388178585660965855963120659894, −7.36484338308494893289986077505, −6.75031280469994919133043036440, −5.31007977731491231373690870311, −4.99446303678337175469996409529, −4.17860568271955509075066930277, −2.22674035838056613497884799487, −0.25159990013742396285648068960, 0.25159990013742396285648068960, 2.22674035838056613497884799487, 4.17860568271955509075066930277, 4.99446303678337175469996409529, 5.31007977731491231373690870311, 6.75031280469994919133043036440, 7.36484338308494893289986077505, 8.388178585660965855963120659894, 9.162790287665994712529184460673, 10.30443568541006611605833223350

Graph of the $Z$-function along the critical line