Properties

Label 985.2.a.g
Level 985985
Weight 22
Character orbit 985.a
Self dual yes
Analytic conductor 7.8657.865
Analytic rank 00
Dimension 1717
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [985,2,Mod(1,985)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(985, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("985.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 985=5197 985 = 5 \cdot 197
Weight: k k == 2 2
Character orbit: [χ][\chi] == 985.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [17,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 7.865264599107.86526459910
Analytic rank: 00
Dimension: 1717
Coefficient field: Q[x]/(x17)\mathbb{Q}[x]/(x^{17} - \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x176x168x15+106x1460x13698x12+877x11+2076x103556x9++2 x^{17} - 6 x^{16} - 8 x^{15} + 106 x^{14} - 60 x^{13} - 698 x^{12} + 877 x^{11} + 2076 x^{10} - 3556 x^{9} + \cdots + 2 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 22 2^{2}
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β161,\beta_1,\ldots,\beta_{16} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q2β6q3+(β2+1)q4q5+(β15β13+β1)q6β10q7+(β3+β2+β1+1)q8+(2β15+β14++2)q9++(2β16+2β15+4)q99+O(q100) q + \beta_1 q^{2} - \beta_{6} q^{3} + (\beta_{2} + 1) q^{4} - q^{5} + ( - \beta_{15} - \beta_{13} + \beta_1) q^{6} - \beta_{10} q^{7} + (\beta_{3} + \beta_{2} + \beta_1 + 1) q^{8} + ( - 2 \beta_{15} + \beta_{14} + \cdots + 2) q^{9}+ \cdots + ( - 2 \beta_{16} + 2 \beta_{15} + \cdots - 4) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 17q+6q2+5q3+18q417q5+3q6+7q7+18q8+22q96q10+7q11+20q12+3q13+17q145q15+28q16+6q17+13q1823q19+46q99+O(q100) 17 q + 6 q^{2} + 5 q^{3} + 18 q^{4} - 17 q^{5} + 3 q^{6} + 7 q^{7} + 18 q^{8} + 22 q^{9} - 6 q^{10} + 7 q^{11} + 20 q^{12} + 3 q^{13} + 17 q^{14} - 5 q^{15} + 28 q^{16} + 6 q^{17} + 13 q^{18} - 23 q^{19}+ \cdots - 46 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x176x168x15+106x1460x13698x12+877x11+2076x103556x9++2 x^{17} - 6 x^{16} - 8 x^{15} + 106 x^{14} - 60 x^{13} - 698 x^{12} + 877 x^{11} + 2076 x^{10} - 3556 x^{9} + \cdots + 2 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν23 \nu^{2} - 3 Copy content Toggle raw display
β3\beta_{3}== ν3ν25ν+2 \nu^{3} - \nu^{2} - 5\nu + 2 Copy content Toggle raw display
β4\beta_{4}== (2191ν16+28927ν1560841ν14425083ν13+1562505ν12+270722)/245192 ( - 2191 \nu^{16} + 28927 \nu^{15} - 60841 \nu^{14} - 425083 \nu^{13} + 1562505 \nu^{12} + \cdots - 270722 ) / 245192 Copy content Toggle raw display
β5\beta_{5}== (54273ν1692866ν152278479ν14+5511036ν13+28342853ν12+24548096)/5639416 ( 54273 \nu^{16} - 92866 \nu^{15} - 2278479 \nu^{14} + 5511036 \nu^{13} + 28342853 \nu^{12} + \cdots - 24548096 ) / 5639416 Copy content Toggle raw display
β6\beta_{6}== (35046ν16+110817ν15+764848ν142404159ν136491506ν12+1062386)/2819708 ( - 35046 \nu^{16} + 110817 \nu^{15} + 764848 \nu^{14} - 2404159 \nu^{13} - 6491506 \nu^{12} + \cdots - 1062386 ) / 2819708 Copy content Toggle raw display
β7\beta_{7}== (100298ν16+181737ν15+3360696ν147555731ν1337921246ν12++48232934)/5639416 ( - 100298 \nu^{16} + 181737 \nu^{15} + 3360696 \nu^{14} - 7555731 \nu^{13} - 37921246 \nu^{12} + \cdots + 48232934 ) / 5639416 Copy content Toggle raw display
β8\beta_{8}== (241552ν16+806883ν15+5112434ν1417850929ν1342261732ν12++2082482)/5639416 ( - 241552 \nu^{16} + 806883 \nu^{15} + 5112434 \nu^{14} - 17850929 \nu^{13} - 42261732 \nu^{12} + \cdots + 2082482 ) / 5639416 Copy content Toggle raw display
β9\beta_{9}== (246041ν16+1704318ν15+66483ν1425609808ν13+46293035ν12+15791344)/5639416 ( - 246041 \nu^{16} + 1704318 \nu^{15} + 66483 \nu^{14} - 25609808 \nu^{13} + 46293035 \nu^{12} + \cdots - 15791344 ) / 5639416 Copy content Toggle raw display
β10\beta_{10}== (350679ν161997896ν153275133ν14+35199734ν1311047357ν12++5393812)/5639416 ( 350679 \nu^{16} - 1997896 \nu^{15} - 3275133 \nu^{14} + 35199734 \nu^{13} - 11047357 \nu^{12} + \cdots + 5393812 ) / 5639416 Copy content Toggle raw display
β11\beta_{11}== (522455ν16+3194212ν15+3528121ν1454341730ν13+40686141ν12+16088228)/5639416 ( - 522455 \nu^{16} + 3194212 \nu^{15} + 3528121 \nu^{14} - 54341730 \nu^{13} + 40686141 \nu^{12} + \cdots - 16088228 ) / 5639416 Copy content Toggle raw display
β12\beta_{12}== (596404ν163091147ν156671366ν14+54710157ν13+1577112ν12++11922902)/5639416 ( 596404 \nu^{16} - 3091147 \nu^{15} - 6671366 \nu^{14} + 54710157 \nu^{13} + 1577112 \nu^{12} + \cdots + 11922902 ) / 5639416 Copy content Toggle raw display
β13\beta_{13}== (34331ν16211845ν15220207ν14+3614653ν132959421ν12+823298)/245192 ( 34331 \nu^{16} - 211845 \nu^{15} - 220207 \nu^{14} + 3614653 \nu^{13} - 2959421 \nu^{12} + \cdots - 823298 ) / 245192 Copy content Toggle raw display
β14\beta_{14}== (984739ν16+4852934ν15+12396845ν1488461580ν1324382447ν12++16024912)/5639416 ( - 984739 \nu^{16} + 4852934 \nu^{15} + 12396845 \nu^{14} - 88461580 \nu^{13} - 24382447 \nu^{12} + \cdots + 16024912 ) / 5639416 Copy content Toggle raw display
β15\beta_{15}== (988531ν16+5841395ν15+7686195ν14100325551ν13+59472133ν12++19076038)/5639416 ( - 988531 \nu^{16} + 5841395 \nu^{15} + 7686195 \nu^{14} - 100325551 \nu^{13} + 59472133 \nu^{12} + \cdots + 19076038 ) / 5639416 Copy content Toggle raw display
β16\beta_{16}== (1136939ν167098868ν157090713ν14+121011790ν13101282793ν12+25816036)/5639416 ( 1136939 \nu^{16} - 7098868 \nu^{15} - 7090713 \nu^{14} + 121011790 \nu^{13} - 101282793 \nu^{12} + \cdots - 25816036 ) / 5639416 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+3 \beta_{2} + 3 Copy content Toggle raw display
ν3\nu^{3}== β3+β2+5β1+1 \beta_{3} + \beta_{2} + 5\beta _1 + 1 Copy content Toggle raw display
ν4\nu^{4}== β15+β13+β10+β82β6+β4+2β3+7β2+β1+16 \beta_{15} + \beta_{13} + \beta_{10} + \beta_{8} - 2\beta_{6} + \beta_{4} + 2\beta_{3} + 7\beta_{2} + \beta _1 + 16 Copy content Toggle raw display
ν5\nu^{5}== 2β15β14+2β13β12+β10β9+3β8+β7++12 2 \beta_{15} - \beta_{14} + 2 \beta_{13} - \beta_{12} + \beta_{10} - \beta_{9} + 3 \beta_{8} + \beta_{7} + \cdots + 12 Copy content Toggle raw display
ν6\nu^{6}== 2β16+9β15β14+13β13+2β11+9β10+13β8++99 - 2 \beta_{16} + 9 \beta_{15} - \beta_{14} + 13 \beta_{13} + 2 \beta_{11} + 9 \beta_{10} + 13 \beta_{8} + \cdots + 99 Copy content Toggle raw display
ν7\nu^{7}== 2β16+23β1512β14+27β1310β12+β11++112 - 2 \beta_{16} + 23 \beta_{15} - 12 \beta_{14} + 27 \beta_{13} - 10 \beta_{12} + \beta_{11} + \cdots + 112 Copy content Toggle raw display
ν8\nu^{8}== 29β16+69β1516β14+128β132β12+26β11++655 - 29 \beta_{16} + 69 \beta_{15} - 16 \beta_{14} + 128 \beta_{13} - 2 \beta_{12} + 26 \beta_{11} + \cdots + 655 Copy content Toggle raw display
ν9\nu^{9}== 38β16+201β15109β14+279β1379β12+17β11++954 - 38 \beta_{16} + 201 \beta_{15} - 109 \beta_{14} + 279 \beta_{13} - 79 \beta_{12} + 17 \beta_{11} + \cdots + 954 Copy content Toggle raw display
ν10\nu^{10}== 299β16+516β15175β14+1136β1336β12+243β11++4501 - 299 \beta_{16} + 516 \beta_{15} - 175 \beta_{14} + 1136 \beta_{13} - 36 \beta_{12} + 243 \beta_{11} + \cdots + 4501 Copy content Toggle raw display
ν11\nu^{11}== 475β16+1605β15897β14+2602β13583β12+203β11++7769 - 475 \beta_{16} + 1605 \beta_{15} - 897 \beta_{14} + 2602 \beta_{13} - 583 \beta_{12} + 203 \beta_{11} + \cdots + 7769 Copy content Toggle raw display
ν12\nu^{12}== 2703β16+3878β151639β14+9589β13428β12+2005β11++31689 - 2703 \beta_{16} + 3878 \beta_{15} - 1639 \beta_{14} + 9589 \beta_{13} - 428 \beta_{12} + 2005 \beta_{11} + \cdots + 31689 Copy content Toggle raw display
ν13\nu^{13}== 4948β16+12367β157054β14+22957β134204β12++61666 - 4948 \beta_{16} + 12367 \beta_{15} - 7054 \beta_{14} + 22957 \beta_{13} - 4204 \beta_{12} + \cdots + 61666 Copy content Toggle raw display
ν14\nu^{14}== 22922β16+29449β1514175β14+78742β134271β12++226889 - 22922 \beta_{16} + 29449 \beta_{15} - 14175 \beta_{14} + 78742 \beta_{13} - 4271 \beta_{12} + \cdots + 226889 Copy content Toggle raw display
ν15\nu^{15}== 46643β16+93975β1554224β14+195520β1330145β12++481705 - 46643 \beta_{16} + 93975 \beta_{15} - 54224 \beta_{14} + 195520 \beta_{13} - 30145 \beta_{12} + \cdots + 481705 Copy content Toggle raw display
ν16\nu^{16}== 187753β16+225590β15117146β14+635904β1338843β12++1644546 - 187753 \beta_{16} + 225590 \beta_{15} - 117146 \beta_{14} + 635904 \beta_{13} - 38843 \beta_{12} + \cdots + 1644546 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−2.37113
−2.21690
−2.06409
−1.51786
−0.695153
−0.589248
−0.369022
0.0270965
0.290121
0.704734
1.17487
1.68026
1.78623
2.22883
2.55893
2.61726
2.75509
−2.37113 3.22611 3.62225 −1.00000 −7.64953 −3.33938 −3.84656 7.40781 2.37113
1.2 −2.21690 0.781418 2.91464 −1.00000 −1.73232 −1.11516 −2.02767 −2.38939 2.21690
1.3 −2.06409 −1.71472 2.26049 −1.00000 3.53934 3.04480 −0.537666 −0.0597382 2.06409
1.4 −1.51786 −0.903960 0.303910 −1.00000 1.37209 −1.33147 2.57443 −2.18286 1.51786
1.5 −0.695153 −2.78934 −1.51676 −1.00000 1.93902 0.663651 2.44469 4.78042 0.695153
1.6 −0.589248 0.610291 −1.65279 −1.00000 −0.359613 3.82240 2.15240 −2.62754 0.589248
1.7 −0.369022 3.16939 −1.86382 −1.00000 −1.16957 3.62949 1.42584 7.04503 0.369022
1.8 0.0270965 0.151367 −1.99927 −1.00000 0.00410152 −1.42890 −0.108366 −2.97709 −0.0270965
1.9 0.290121 −0.916709 −1.91583 −1.00000 −0.265957 −4.90454 −1.13606 −2.15964 −0.290121
1.10 0.704734 1.91747 −1.50335 −1.00000 1.35131 0.223493 −2.46893 0.676708 −0.704734
1.11 1.17487 −1.75288 −0.619690 −1.00000 −2.05940 −0.641186 −3.07778 0.0725852 −1.17487
1.12 1.68026 −2.94614 0.823263 −1.00000 −4.95027 3.59992 −1.97722 5.67973 −1.68026
1.13 1.78623 2.62867 1.19063 −1.00000 4.69542 2.07657 −1.44572 3.90991 −1.78623
1.14 2.22883 3.02604 2.96767 −1.00000 6.74452 1.28446 2.15678 6.15690 −2.22883
1.15 2.55893 −1.95773 4.54812 −1.00000 −5.00969 −0.330398 6.52046 0.832702 −2.55893
1.16 2.61726 1.86075 4.85003 −1.00000 4.87007 −2.88349 7.45926 0.462402 −2.61726
1.17 2.75509 0.609959 5.59050 −1.00000 1.68049 4.62975 9.89214 −2.62795 −2.75509
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.17
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
55 +1 +1
197197 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 985.2.a.g 17
3.b odd 2 1 8865.2.a.z 17
5.b even 2 1 4925.2.a.l 17
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
985.2.a.g 17 1.a even 1 1 trivial
4925.2.a.l 17 5.b even 2 1
8865.2.a.z 17 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T2176T2168T215+106T21460T213698T212+877T211++2 T_{2}^{17} - 6 T_{2}^{16} - 8 T_{2}^{15} + 106 T_{2}^{14} - 60 T_{2}^{13} - 698 T_{2}^{12} + 877 T_{2}^{11} + \cdots + 2 acting on S2new(Γ0(985))S_{2}^{\mathrm{new}}(\Gamma_0(985)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T176T16++2 T^{17} - 6 T^{16} + \cdots + 2 Copy content Toggle raw display
33 T175T16++512 T^{17} - 5 T^{16} + \cdots + 512 Copy content Toggle raw display
55 (T+1)17 (T + 1)^{17} Copy content Toggle raw display
77 T177T16+5912 T^{17} - 7 T^{16} + \cdots - 5912 Copy content Toggle raw display
1111 T177T16++41153536 T^{17} - 7 T^{16} + \cdots + 41153536 Copy content Toggle raw display
1313 T173T16+310096 T^{17} - 3 T^{16} + \cdots - 310096 Copy content Toggle raw display
1717 T17+349688704 T^{17} + \cdots - 349688704 Copy content Toggle raw display
1919 T17+23T16++1915904 T^{17} + 23 T^{16} + \cdots + 1915904 Copy content Toggle raw display
2323 T1749T16++40562168 T^{17} - 49 T^{16} + \cdots + 40562168 Copy content Toggle raw display
2929 T17++5029285904 T^{17} + \cdots + 5029285904 Copy content Toggle raw display
3131 T17++14161566256 T^{17} + \cdots + 14161566256 Copy content Toggle raw display
3737 T17++376364288 T^{17} + \cdots + 376364288 Copy content Toggle raw display
4141 T17+4430614816 T^{17} + \cdots - 4430614816 Copy content Toggle raw display
4343 T17+278500548904 T^{17} + \cdots - 278500548904 Copy content Toggle raw display
4747 T17+62369461376 T^{17} + \cdots - 62369461376 Copy content Toggle raw display
5353 T17+17917124608 T^{17} + \cdots - 17917124608 Copy content Toggle raw display
5959 T17++2605268451328 T^{17} + \cdots + 2605268451328 Copy content Toggle raw display
6161 T17++3030799356 T^{17} + \cdots + 3030799356 Copy content Toggle raw display
6767 T17+275592380032 T^{17} + \cdots - 275592380032 Copy content Toggle raw display
7171 T17+2285257277264 T^{17} + \cdots - 2285257277264 Copy content Toggle raw display
7373 T17++25494443456 T^{17} + \cdots + 25494443456 Copy content Toggle raw display
7979 T17+17 ⁣ ⁣16 T^{17} + \cdots - 17\!\cdots\!16 Copy content Toggle raw display
8383 T17++574612307072 T^{17} + \cdots + 574612307072 Copy content Toggle raw display
8989 T17+1850800446976 T^{17} + \cdots - 1850800446976 Copy content Toggle raw display
9797 T17++3084621824 T^{17} + \cdots + 3084621824 Copy content Toggle raw display
show more
show less