Properties

Label 985.2.a.g
Level $985$
Weight $2$
Character orbit 985.a
Self dual yes
Analytic conductor $7.865$
Analytic rank $0$
Dimension $17$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [985,2,Mod(1,985)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(985, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("985.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 985 = 5 \cdot 197 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 985.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.86526459910\)
Analytic rank: \(0\)
Dimension: \(17\)
Coefficient field: \(\mathbb{Q}[x]/(x^{17} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{17} - 6 x^{16} - 8 x^{15} + 106 x^{14} - 60 x^{13} - 698 x^{12} + 877 x^{11} + 2076 x^{10} - 3556 x^{9} + \cdots + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{16}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} - \beta_{6} q^{3} + (\beta_{2} + 1) q^{4} - q^{5} + ( - \beta_{15} - \beta_{13} + \beta_1) q^{6} - \beta_{10} q^{7} + (\beta_{3} + \beta_{2} + \beta_1 + 1) q^{8} + ( - 2 \beta_{15} + \beta_{14} + \cdots + 2) q^{9}+ \cdots + ( - 2 \beta_{16} + 2 \beta_{15} + \cdots - 4) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 17 q + 6 q^{2} + 5 q^{3} + 18 q^{4} - 17 q^{5} + 3 q^{6} + 7 q^{7} + 18 q^{8} + 22 q^{9} - 6 q^{10} + 7 q^{11} + 20 q^{12} + 3 q^{13} + 17 q^{14} - 5 q^{15} + 28 q^{16} + 6 q^{17} + 13 q^{18} - 23 q^{19}+ \cdots - 46 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{17} - 6 x^{16} - 8 x^{15} + 106 x^{14} - 60 x^{13} - 698 x^{12} + 877 x^{11} + 2076 x^{10} - 3556 x^{9} + \cdots + 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - \nu^{2} - 5\nu + 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 2191 \nu^{16} + 28927 \nu^{15} - 60841 \nu^{14} - 425083 \nu^{13} + 1562505 \nu^{12} + \cdots - 270722 ) / 245192 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 54273 \nu^{16} - 92866 \nu^{15} - 2278479 \nu^{14} + 5511036 \nu^{13} + 28342853 \nu^{12} + \cdots - 24548096 ) / 5639416 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 35046 \nu^{16} + 110817 \nu^{15} + 764848 \nu^{14} - 2404159 \nu^{13} - 6491506 \nu^{12} + \cdots - 1062386 ) / 2819708 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 100298 \nu^{16} + 181737 \nu^{15} + 3360696 \nu^{14} - 7555731 \nu^{13} - 37921246 \nu^{12} + \cdots + 48232934 ) / 5639416 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 241552 \nu^{16} + 806883 \nu^{15} + 5112434 \nu^{14} - 17850929 \nu^{13} - 42261732 \nu^{12} + \cdots + 2082482 ) / 5639416 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 246041 \nu^{16} + 1704318 \nu^{15} + 66483 \nu^{14} - 25609808 \nu^{13} + 46293035 \nu^{12} + \cdots - 15791344 ) / 5639416 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 350679 \nu^{16} - 1997896 \nu^{15} - 3275133 \nu^{14} + 35199734 \nu^{13} - 11047357 \nu^{12} + \cdots + 5393812 ) / 5639416 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 522455 \nu^{16} + 3194212 \nu^{15} + 3528121 \nu^{14} - 54341730 \nu^{13} + 40686141 \nu^{12} + \cdots - 16088228 ) / 5639416 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 596404 \nu^{16} - 3091147 \nu^{15} - 6671366 \nu^{14} + 54710157 \nu^{13} + 1577112 \nu^{12} + \cdots + 11922902 ) / 5639416 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( 34331 \nu^{16} - 211845 \nu^{15} - 220207 \nu^{14} + 3614653 \nu^{13} - 2959421 \nu^{12} + \cdots - 823298 ) / 245192 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 984739 \nu^{16} + 4852934 \nu^{15} + 12396845 \nu^{14} - 88461580 \nu^{13} - 24382447 \nu^{12} + \cdots + 16024912 ) / 5639416 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( - 988531 \nu^{16} + 5841395 \nu^{15} + 7686195 \nu^{14} - 100325551 \nu^{13} + 59472133 \nu^{12} + \cdots + 19076038 ) / 5639416 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( 1136939 \nu^{16} - 7098868 \nu^{15} - 7090713 \nu^{14} + 121011790 \nu^{13} - 101282793 \nu^{12} + \cdots - 25816036 ) / 5639416 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + \beta_{2} + 5\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{15} + \beta_{13} + \beta_{10} + \beta_{8} - 2\beta_{6} + \beta_{4} + 2\beta_{3} + 7\beta_{2} + \beta _1 + 16 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 2 \beta_{15} - \beta_{14} + 2 \beta_{13} - \beta_{12} + \beta_{10} - \beta_{9} + 3 \beta_{8} + \beta_{7} + \cdots + 12 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( - 2 \beta_{16} + 9 \beta_{15} - \beta_{14} + 13 \beta_{13} + 2 \beta_{11} + 9 \beta_{10} + 13 \beta_{8} + \cdots + 99 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( - 2 \beta_{16} + 23 \beta_{15} - 12 \beta_{14} + 27 \beta_{13} - 10 \beta_{12} + \beta_{11} + \cdots + 112 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( - 29 \beta_{16} + 69 \beta_{15} - 16 \beta_{14} + 128 \beta_{13} - 2 \beta_{12} + 26 \beta_{11} + \cdots + 655 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( - 38 \beta_{16} + 201 \beta_{15} - 109 \beta_{14} + 279 \beta_{13} - 79 \beta_{12} + 17 \beta_{11} + \cdots + 954 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( - 299 \beta_{16} + 516 \beta_{15} - 175 \beta_{14} + 1136 \beta_{13} - 36 \beta_{12} + 243 \beta_{11} + \cdots + 4501 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( - 475 \beta_{16} + 1605 \beta_{15} - 897 \beta_{14} + 2602 \beta_{13} - 583 \beta_{12} + 203 \beta_{11} + \cdots + 7769 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( - 2703 \beta_{16} + 3878 \beta_{15} - 1639 \beta_{14} + 9589 \beta_{13} - 428 \beta_{12} + 2005 \beta_{11} + \cdots + 31689 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( - 4948 \beta_{16} + 12367 \beta_{15} - 7054 \beta_{14} + 22957 \beta_{13} - 4204 \beta_{12} + \cdots + 61666 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( - 22922 \beta_{16} + 29449 \beta_{15} - 14175 \beta_{14} + 78742 \beta_{13} - 4271 \beta_{12} + \cdots + 226889 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( - 46643 \beta_{16} + 93975 \beta_{15} - 54224 \beta_{14} + 195520 \beta_{13} - 30145 \beta_{12} + \cdots + 481705 \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( - 187753 \beta_{16} + 225590 \beta_{15} - 117146 \beta_{14} + 635904 \beta_{13} - 38843 \beta_{12} + \cdots + 1644546 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.37113
−2.21690
−2.06409
−1.51786
−0.695153
−0.589248
−0.369022
0.0270965
0.290121
0.704734
1.17487
1.68026
1.78623
2.22883
2.55893
2.61726
2.75509
−2.37113 3.22611 3.62225 −1.00000 −7.64953 −3.33938 −3.84656 7.40781 2.37113
1.2 −2.21690 0.781418 2.91464 −1.00000 −1.73232 −1.11516 −2.02767 −2.38939 2.21690
1.3 −2.06409 −1.71472 2.26049 −1.00000 3.53934 3.04480 −0.537666 −0.0597382 2.06409
1.4 −1.51786 −0.903960 0.303910 −1.00000 1.37209 −1.33147 2.57443 −2.18286 1.51786
1.5 −0.695153 −2.78934 −1.51676 −1.00000 1.93902 0.663651 2.44469 4.78042 0.695153
1.6 −0.589248 0.610291 −1.65279 −1.00000 −0.359613 3.82240 2.15240 −2.62754 0.589248
1.7 −0.369022 3.16939 −1.86382 −1.00000 −1.16957 3.62949 1.42584 7.04503 0.369022
1.8 0.0270965 0.151367 −1.99927 −1.00000 0.00410152 −1.42890 −0.108366 −2.97709 −0.0270965
1.9 0.290121 −0.916709 −1.91583 −1.00000 −0.265957 −4.90454 −1.13606 −2.15964 −0.290121
1.10 0.704734 1.91747 −1.50335 −1.00000 1.35131 0.223493 −2.46893 0.676708 −0.704734
1.11 1.17487 −1.75288 −0.619690 −1.00000 −2.05940 −0.641186 −3.07778 0.0725852 −1.17487
1.12 1.68026 −2.94614 0.823263 −1.00000 −4.95027 3.59992 −1.97722 5.67973 −1.68026
1.13 1.78623 2.62867 1.19063 −1.00000 4.69542 2.07657 −1.44572 3.90991 −1.78623
1.14 2.22883 3.02604 2.96767 −1.00000 6.74452 1.28446 2.15678 6.15690 −2.22883
1.15 2.55893 −1.95773 4.54812 −1.00000 −5.00969 −0.330398 6.52046 0.832702 −2.55893
1.16 2.61726 1.86075 4.85003 −1.00000 4.87007 −2.88349 7.45926 0.462402 −2.61726
1.17 2.75509 0.609959 5.59050 −1.00000 1.68049 4.62975 9.89214 −2.62795 −2.75509
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.17
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(197\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 985.2.a.g 17
3.b odd 2 1 8865.2.a.z 17
5.b even 2 1 4925.2.a.l 17
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
985.2.a.g 17 1.a even 1 1 trivial
4925.2.a.l 17 5.b even 2 1
8865.2.a.z 17 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{17} - 6 T_{2}^{16} - 8 T_{2}^{15} + 106 T_{2}^{14} - 60 T_{2}^{13} - 698 T_{2}^{12} + 877 T_{2}^{11} + \cdots + 2 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(985))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{17} - 6 T^{16} + \cdots + 2 \) Copy content Toggle raw display
$3$ \( T^{17} - 5 T^{16} + \cdots + 512 \) Copy content Toggle raw display
$5$ \( (T + 1)^{17} \) Copy content Toggle raw display
$7$ \( T^{17} - 7 T^{16} + \cdots - 5912 \) Copy content Toggle raw display
$11$ \( T^{17} - 7 T^{16} + \cdots + 41153536 \) Copy content Toggle raw display
$13$ \( T^{17} - 3 T^{16} + \cdots - 310096 \) Copy content Toggle raw display
$17$ \( T^{17} + \cdots - 349688704 \) Copy content Toggle raw display
$19$ \( T^{17} + 23 T^{16} + \cdots + 1915904 \) Copy content Toggle raw display
$23$ \( T^{17} - 49 T^{16} + \cdots + 40562168 \) Copy content Toggle raw display
$29$ \( T^{17} + \cdots + 5029285904 \) Copy content Toggle raw display
$31$ \( T^{17} + \cdots + 14161566256 \) Copy content Toggle raw display
$37$ \( T^{17} + \cdots + 376364288 \) Copy content Toggle raw display
$41$ \( T^{17} + \cdots - 4430614816 \) Copy content Toggle raw display
$43$ \( T^{17} + \cdots - 278500548904 \) Copy content Toggle raw display
$47$ \( T^{17} + \cdots - 62369461376 \) Copy content Toggle raw display
$53$ \( T^{17} + \cdots - 17917124608 \) Copy content Toggle raw display
$59$ \( T^{17} + \cdots + 2605268451328 \) Copy content Toggle raw display
$61$ \( T^{17} + \cdots + 3030799356 \) Copy content Toggle raw display
$67$ \( T^{17} + \cdots - 275592380032 \) Copy content Toggle raw display
$71$ \( T^{17} + \cdots - 2285257277264 \) Copy content Toggle raw display
$73$ \( T^{17} + \cdots + 25494443456 \) Copy content Toggle raw display
$79$ \( T^{17} + \cdots - 17\!\cdots\!16 \) Copy content Toggle raw display
$83$ \( T^{17} + \cdots + 574612307072 \) Copy content Toggle raw display
$89$ \( T^{17} + \cdots - 1850800446976 \) Copy content Toggle raw display
$97$ \( T^{17} + \cdots + 3084621824 \) Copy content Toggle raw display
show more
show less