L(s) = 1 | + (1.39 − 1.01i)2-s + (−1.54 + 4.76i)4-s + (3.78 + 2.75i)5-s + (−2.91 + 8.97i)7-s + (6.95 + 21.3i)8-s + 8.09·10-s + (20.8 + 29.9i)11-s + (−4.36 + 3.16i)13-s + (5.04 + 15.5i)14-s + (−0.939 − 0.682i)16-s + (68.6 + 49.8i)17-s + (−15.7 − 48.4i)19-s + (−18.9 + 13.7i)20-s + (59.6 + 20.5i)22-s + 52.9·23-s + ⋯ |
L(s) = 1 | + (0.494 − 0.359i)2-s + (−0.193 + 0.595i)4-s + (0.338 + 0.246i)5-s + (−0.157 + 0.484i)7-s + (0.307 + 0.945i)8-s + 0.256·10-s + (0.572 + 0.819i)11-s + (−0.0930 + 0.0676i)13-s + (0.0962 + 0.296i)14-s + (−0.0146 − 0.0106i)16-s + (0.979 + 0.711i)17-s + (−0.189 − 0.584i)19-s + (−0.212 + 0.154i)20-s + (0.577 + 0.199i)22-s + 0.480·23-s + ⋯ |
Λ(s)=(=(99s/2ΓC(s)L(s)(0.621−0.783i)Λ(4−s)
Λ(s)=(=(99s/2ΓC(s+3/2)L(s)(0.621−0.783i)Λ(1−s)
Degree: |
2 |
Conductor: |
99
= 32⋅11
|
Sign: |
0.621−0.783i
|
Analytic conductor: |
5.84118 |
Root analytic conductor: |
2.41685 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ99(91,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 99, ( :3/2), 0.621−0.783i)
|
Particular Values
L(2) |
≈ |
1.74802+0.844803i |
L(21) |
≈ |
1.74802+0.844803i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 11 | 1+(−20.8−29.9i)T |
good | 2 | 1+(−1.39+1.01i)T+(2.47−7.60i)T2 |
| 5 | 1+(−3.78−2.75i)T+(38.6+118.i)T2 |
| 7 | 1+(2.91−8.97i)T+(−277.−201.i)T2 |
| 13 | 1+(4.36−3.16i)T+(678.−2.08e3i)T2 |
| 17 | 1+(−68.6−49.8i)T+(1.51e3+4.67e3i)T2 |
| 19 | 1+(15.7+48.4i)T+(−5.54e3+4.03e3i)T2 |
| 23 | 1−52.9T+1.21e4T2 |
| 29 | 1+(−35.2+108.i)T+(−1.97e4−1.43e4i)T2 |
| 31 | 1+(67.7−49.2i)T+(9.20e3−2.83e4i)T2 |
| 37 | 1+(47.0−144.i)T+(−4.09e4−2.97e4i)T2 |
| 41 | 1+(56.9+175.i)T+(−5.57e4+4.05e4i)T2 |
| 43 | 1+46.4T+7.95e4T2 |
| 47 | 1+(120.+370.i)T+(−8.39e4+6.10e4i)T2 |
| 53 | 1+(−462.+336.i)T+(4.60e4−1.41e5i)T2 |
| 59 | 1+(24.4−75.2i)T+(−1.66e5−1.20e5i)T2 |
| 61 | 1+(584.+424.i)T+(7.01e4+2.15e5i)T2 |
| 67 | 1−608.T+3.00e5T2 |
| 71 | 1+(−740.−538.i)T+(1.10e5+3.40e5i)T2 |
| 73 | 1+(−186.+573.i)T+(−3.14e5−2.28e5i)T2 |
| 79 | 1+(−298.+216.i)T+(1.52e5−4.68e5i)T2 |
| 83 | 1+(−797.−579.i)T+(1.76e5+5.43e5i)T2 |
| 89 | 1−1.15e3T+7.04e5T2 |
| 97 | 1+(478.−347.i)T+(2.82e5−8.68e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.45028158035892843837904566938, −12.41702276478503258718022608606, −11.81907516287808221030057547472, −10.43489062497329870943098369671, −9.234975674565767722484226911202, −8.053650146343555596284019139384, −6.66525153679442087417661534095, −5.14325897101030735619610388746, −3.74787565407092752980227896322, −2.25502104823458872780668015815,
1.06963482785208819969545338532, 3.63739156235709203020585204622, 5.14285591681447946331404397706, 6.13359944450733873357708996610, 7.38807581628054247742677887034, 9.030866078188901265432637944387, 9.963521991545711654355383055948, 11.06367878001109718675575423498, 12.46926645368263375543629797042, 13.55900447301162316614800623418