Properties

Label 99.4.f.e.91.4
Level $99$
Weight $4$
Character 99.91
Analytic conductor $5.841$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [99,4,Mod(37,99)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(99, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("99.37");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 99 = 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 99.f (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.84118909057\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{5})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 91.4
Character \(\chi\) \(=\) 99.91
Dual form 99.4.f.e.37.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.39917 - 1.01656i) q^{2} +(-1.54785 + 4.76378i) q^{4} +(3.78707 + 2.75147i) q^{5} +(-2.91496 + 8.97133i) q^{7} +(6.95243 + 21.3974i) q^{8} +O(q^{10})\) \(q+(1.39917 - 1.01656i) q^{2} +(-1.54785 + 4.76378i) q^{4} +(3.78707 + 2.75147i) q^{5} +(-2.91496 + 8.97133i) q^{7} +(6.95243 + 21.3974i) q^{8} +8.09578 q^{10} +(20.8997 + 29.9032i) q^{11} +(-4.36138 + 3.16873i) q^{13} +(5.04133 + 15.5156i) q^{14} +(-0.939252 - 0.682406i) q^{16} +(68.6535 + 49.8797i) q^{17} +(-15.7316 - 48.4167i) q^{19} +(-18.9692 + 13.7819i) q^{20} +(59.6405 + 20.5940i) q^{22} +52.9969 q^{23} +(-31.8558 - 98.0420i) q^{25} +(-2.88112 + 8.86717i) q^{26} +(-38.2256 - 27.7725i) q^{28} +(35.2655 - 108.536i) q^{29} +(-67.7468 + 49.2209i) q^{31} -181.996 q^{32} +146.763 q^{34} +(-35.7235 + 25.9547i) q^{35} +(-47.0244 + 144.726i) q^{37} +(-71.2294 - 51.7512i) q^{38} +(-32.5449 + 100.163i) q^{40} +(-56.9163 - 175.170i) q^{41} -46.4843 q^{43} +(-174.802 + 53.2758i) q^{44} +(74.1517 - 53.8744i) q^{46} +(-120.309 - 370.274i) q^{47} +(205.505 + 149.308i) q^{49} +(-144.237 - 104.794i) q^{50} +(-8.34438 - 25.6814i) q^{52} +(462.541 - 336.055i) q^{53} +(-3.12935 + 170.751i) q^{55} -212.229 q^{56} +(-60.9906 - 187.710i) q^{58} +(-24.4445 + 75.2324i) q^{59} +(-584.546 - 424.697i) q^{61} +(-44.7534 + 137.737i) q^{62} +(-247.130 + 179.550i) q^{64} -25.2355 q^{65} +608.961 q^{67} +(-343.881 + 249.844i) q^{68} +(-23.5989 + 72.6299i) q^{70} +(740.521 + 538.020i) q^{71} +(186.265 - 573.266i) q^{73} +(81.3272 + 250.299i) q^{74} +254.997 q^{76} +(-329.194 + 100.331i) q^{77} +(298.418 - 216.813i) q^{79} +(-1.67939 - 5.16865i) q^{80} +(-257.706 - 187.234i) q^{82} +(797.245 + 579.233i) q^{83} +(122.753 + 377.796i) q^{85} +(-65.0394 + 47.2539i) q^{86} +(-494.548 + 655.099i) q^{88} +1156.34 q^{89} +(-15.7144 - 48.3641i) q^{91} +(-82.0312 + 252.466i) q^{92} +(-544.737 - 395.775i) q^{94} +(73.6406 - 226.643i) q^{95} +(-478.658 + 347.765i) q^{97} +439.317 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 4 q^{4} - 28 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 24 q - 4 q^{4} - 28 q^{7} + 208 q^{10} + 20 q^{13} - 224 q^{16} - 40 q^{19} - 586 q^{22} + 362 q^{25} - 150 q^{28} + 670 q^{31} - 2520 q^{34} - 516 q^{37} + 2002 q^{40} + 4008 q^{43} + 2174 q^{46} + 342 q^{49} - 1894 q^{52} - 3300 q^{55} + 22 q^{58} - 2952 q^{61} - 3992 q^{64} - 1936 q^{67} - 1024 q^{70} + 2194 q^{73} + 15336 q^{76} + 1524 q^{79} + 2898 q^{82} - 7428 q^{85} - 3936 q^{88} - 6460 q^{91} - 16982 q^{94} - 1224 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/99\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.39917 1.01656i 0.494681 0.359407i −0.312301 0.949983i \(-0.601100\pi\)
0.806982 + 0.590577i \(0.201100\pi\)
\(3\) 0 0
\(4\) −1.54785 + 4.76378i −0.193481 + 0.595473i
\(5\) 3.78707 + 2.75147i 0.338726 + 0.246099i 0.744124 0.668041i \(-0.232867\pi\)
−0.405398 + 0.914140i \(0.632867\pi\)
\(6\) 0 0
\(7\) −2.91496 + 8.97133i −0.157393 + 0.484406i −0.998396 0.0566252i \(-0.981966\pi\)
0.841002 + 0.541031i \(0.181966\pi\)
\(8\) 6.95243 + 21.3974i 0.307257 + 0.945640i
\(9\) 0 0
\(10\) 8.09578 0.256011
\(11\) 20.8997 + 29.9032i 0.572862 + 0.819652i
\(12\) 0 0
\(13\) −4.36138 + 3.16873i −0.0930483 + 0.0676036i −0.633337 0.773876i \(-0.718315\pi\)
0.540288 + 0.841480i \(0.318315\pi\)
\(14\) 5.04133 + 15.5156i 0.0962395 + 0.296195i
\(15\) 0 0
\(16\) −0.939252 0.682406i −0.0146758 0.0106626i
\(17\) 68.6535 + 49.8797i 0.979466 + 0.711623i 0.957589 0.288137i \(-0.0930359\pi\)
0.0218765 + 0.999761i \(0.493036\pi\)
\(18\) 0 0
\(19\) −15.7316 48.4167i −0.189951 0.584608i 0.810048 0.586364i \(-0.199441\pi\)
−0.999998 + 0.00175558i \(0.999441\pi\)
\(20\) −18.9692 + 13.7819i −0.212082 + 0.154087i
\(21\) 0 0
\(22\) 59.6405 + 20.5940i 0.577973 + 0.199576i
\(23\) 52.9969 0.480462 0.240231 0.970716i \(-0.422777\pi\)
0.240231 + 0.970716i \(0.422777\pi\)
\(24\) 0 0
\(25\) −31.8558 98.0420i −0.254846 0.784336i
\(26\) −2.88112 + 8.86717i −0.0217321 + 0.0668844i
\(27\) 0 0
\(28\) −38.2256 27.7725i −0.257998 0.187447i
\(29\) 35.2655 108.536i 0.225815 0.694988i −0.772393 0.635145i \(-0.780940\pi\)
0.998208 0.0598424i \(-0.0190598\pi\)
\(30\) 0 0
\(31\) −67.7468 + 49.2209i −0.392506 + 0.285172i −0.766482 0.642266i \(-0.777994\pi\)
0.373976 + 0.927439i \(0.377994\pi\)
\(32\) −181.996 −1.00540
\(33\) 0 0
\(34\) 146.763 0.740285
\(35\) −35.7235 + 25.9547i −0.172525 + 0.125347i
\(36\) 0 0
\(37\) −47.0244 + 144.726i −0.208939 + 0.643049i 0.790589 + 0.612347i \(0.209774\pi\)
−0.999529 + 0.0307025i \(0.990226\pi\)
\(38\) −71.2294 51.7512i −0.304077 0.220925i
\(39\) 0 0
\(40\) −32.5449 + 100.163i −0.128645 + 0.395929i
\(41\) −56.9163 175.170i −0.216801 0.667244i −0.999021 0.0442420i \(-0.985913\pi\)
0.782220 0.623002i \(-0.214087\pi\)
\(42\) 0 0
\(43\) −46.4843 −0.164856 −0.0824278 0.996597i \(-0.526267\pi\)
−0.0824278 + 0.996597i \(0.526267\pi\)
\(44\) −174.802 + 53.2758i −0.598918 + 0.182537i
\(45\) 0 0
\(46\) 74.1517 53.8744i 0.237675 0.172681i
\(47\) −120.309 370.274i −0.373381 1.14915i −0.944564 0.328326i \(-0.893515\pi\)
0.571183 0.820823i \(-0.306485\pi\)
\(48\) 0 0
\(49\) 205.505 + 149.308i 0.599140 + 0.435301i
\(50\) −144.237 104.794i −0.407963 0.296403i
\(51\) 0 0
\(52\) −8.34438 25.6814i −0.0222530 0.0684878i
\(53\) 462.541 336.055i 1.19877 0.870958i 0.204607 0.978844i \(-0.434408\pi\)
0.994163 + 0.107887i \(0.0344083\pi\)
\(54\) 0 0
\(55\) −3.12935 + 170.751i −0.00767204 + 0.418618i
\(56\) −212.229 −0.506434
\(57\) 0 0
\(58\) −60.9906 187.710i −0.138077 0.424957i
\(59\) −24.4445 + 75.2324i −0.0539390 + 0.166007i −0.974397 0.224834i \(-0.927816\pi\)
0.920458 + 0.390841i \(0.127816\pi\)
\(60\) 0 0
\(61\) −584.546 424.697i −1.22694 0.891425i −0.230284 0.973123i \(-0.573966\pi\)
−0.996657 + 0.0816982i \(0.973966\pi\)
\(62\) −44.7534 + 137.737i −0.0916724 + 0.282139i
\(63\) 0 0
\(64\) −247.130 + 179.550i −0.482675 + 0.350684i
\(65\) −25.2355 −0.0481551
\(66\) 0 0
\(67\) 608.961 1.11039 0.555197 0.831719i \(-0.312643\pi\)
0.555197 + 0.831719i \(0.312643\pi\)
\(68\) −343.881 + 249.844i −0.613260 + 0.445560i
\(69\) 0 0
\(70\) −23.5989 + 72.6299i −0.0402944 + 0.124013i
\(71\) 740.521 + 538.020i 1.23780 + 0.899313i 0.997450 0.0713741i \(-0.0227384\pi\)
0.240348 + 0.970687i \(0.422738\pi\)
\(72\) 0 0
\(73\) 186.265 573.266i 0.298640 0.919119i −0.683335 0.730105i \(-0.739471\pi\)
0.981975 0.189013i \(-0.0605290\pi\)
\(74\) 81.3272 + 250.299i 0.127758 + 0.393199i
\(75\) 0 0
\(76\) 254.997 0.384870
\(77\) −329.194 + 100.331i −0.487209 + 0.148490i
\(78\) 0 0
\(79\) 298.418 216.813i 0.424996 0.308777i −0.354649 0.935000i \(-0.615400\pi\)
0.779645 + 0.626222i \(0.215400\pi\)
\(80\) −1.67939 5.16865i −0.00234703 0.00722340i
\(81\) 0 0
\(82\) −257.706 187.234i −0.347059 0.252153i
\(83\) 797.245 + 579.233i 1.05433 + 0.766012i 0.973030 0.230678i \(-0.0740943\pi\)
0.0812954 + 0.996690i \(0.474094\pi\)
\(84\) 0 0
\(85\) 122.753 + 377.796i 0.156641 + 0.482091i
\(86\) −65.0394 + 47.2539i −0.0815510 + 0.0592502i
\(87\) 0 0
\(88\) −494.548 + 655.099i −0.599080 + 0.793565i
\(89\) 1156.34 1.37721 0.688605 0.725137i \(-0.258224\pi\)
0.688605 + 0.725137i \(0.258224\pi\)
\(90\) 0 0
\(91\) −15.7144 48.3641i −0.0181024 0.0557135i
\(92\) −82.0312 + 252.466i −0.0929602 + 0.286102i
\(93\) 0 0
\(94\) −544.737 395.775i −0.597717 0.434266i
\(95\) 73.6406 226.643i 0.0795302 0.244769i
\(96\) 0 0
\(97\) −478.658 + 347.765i −0.501035 + 0.364023i −0.809412 0.587241i \(-0.800214\pi\)
0.308377 + 0.951264i \(0.400214\pi\)
\(98\) 439.317 0.452833
\(99\) 0 0
\(100\) 516.359 0.516359
\(101\) −662.096 + 481.041i −0.652287 + 0.473915i −0.864050 0.503407i \(-0.832080\pi\)
0.211762 + 0.977321i \(0.432080\pi\)
\(102\) 0 0
\(103\) −463.889 + 1427.70i −0.443770 + 1.36578i 0.440057 + 0.897970i \(0.354958\pi\)
−0.883827 + 0.467814i \(0.845042\pi\)
\(104\) −98.1246 71.2917i −0.0925184 0.0672185i
\(105\) 0 0
\(106\) 305.553 940.397i 0.279981 0.861692i
\(107\) 204.593 + 629.673i 0.184848 + 0.568904i 0.999946 0.0104195i \(-0.00331668\pi\)
−0.815097 + 0.579324i \(0.803317\pi\)
\(108\) 0 0
\(109\) 1666.14 1.46411 0.732053 0.681247i \(-0.238562\pi\)
0.732053 + 0.681247i \(0.238562\pi\)
\(110\) 169.199 + 242.090i 0.146659 + 0.209840i
\(111\) 0 0
\(112\) 8.85998 6.43715i 0.00747490 0.00543083i
\(113\) −440.511 1355.75i −0.366723 1.12866i −0.948895 0.315593i \(-0.897797\pi\)
0.582171 0.813066i \(-0.302203\pi\)
\(114\) 0 0
\(115\) 200.703 + 145.819i 0.162745 + 0.118241i
\(116\) 462.457 + 335.995i 0.370156 + 0.268934i
\(117\) 0 0
\(118\) 42.2760 + 130.112i 0.0329815 + 0.101507i
\(119\) −647.609 + 470.516i −0.498876 + 0.362455i
\(120\) 0 0
\(121\) −457.409 + 1249.94i −0.343658 + 0.939095i
\(122\) −1249.61 −0.927329
\(123\) 0 0
\(124\) −129.616 398.918i −0.0938700 0.288902i
\(125\) 329.936 1015.44i 0.236083 0.726589i
\(126\) 0 0
\(127\) −1998.96 1452.33i −1.39668 1.01475i −0.995095 0.0989279i \(-0.968459\pi\)
−0.401587 0.915821i \(-0.631541\pi\)
\(128\) 286.666 882.268i 0.197953 0.609236i
\(129\) 0 0
\(130\) −35.3087 + 25.6533i −0.0238214 + 0.0173073i
\(131\) −1695.42 −1.13076 −0.565380 0.824831i \(-0.691270\pi\)
−0.565380 + 0.824831i \(0.691270\pi\)
\(132\) 0 0
\(133\) 480.219 0.313085
\(134\) 852.040 619.043i 0.549291 0.399083i
\(135\) 0 0
\(136\) −589.986 + 1815.79i −0.371992 + 1.14487i
\(137\) −1029.78 748.176i −0.642187 0.466576i 0.218414 0.975856i \(-0.429912\pi\)
−0.860601 + 0.509280i \(0.829912\pi\)
\(138\) 0 0
\(139\) 999.189 3075.19i 0.609713 1.87650i 0.149319 0.988789i \(-0.452292\pi\)
0.460394 0.887715i \(-0.347708\pi\)
\(140\) −68.3478 210.353i −0.0412603 0.126986i
\(141\) 0 0
\(142\) 1583.04 0.935534
\(143\) −185.906 64.1940i −0.108715 0.0375397i
\(144\) 0 0
\(145\) 432.187 314.002i 0.247525 0.179838i
\(146\) −322.140 991.445i −0.182606 0.562004i
\(147\) 0 0
\(148\) −616.657 448.028i −0.342493 0.248836i
\(149\) −1327.84 964.731i −0.730072 0.530428i 0.159514 0.987196i \(-0.449007\pi\)
−0.889586 + 0.456767i \(0.849007\pi\)
\(150\) 0 0
\(151\) −20.2191 62.2281i −0.0108967 0.0335367i 0.945460 0.325737i \(-0.105613\pi\)
−0.956357 + 0.292201i \(0.905613\pi\)
\(152\) 926.619 673.228i 0.494465 0.359250i
\(153\) 0 0
\(154\) −358.606 + 475.024i −0.187645 + 0.248562i
\(155\) −391.992 −0.203133
\(156\) 0 0
\(157\) −429.420 1321.62i −0.218290 0.671826i −0.998904 0.0468130i \(-0.985094\pi\)
0.780614 0.625013i \(-0.214906\pi\)
\(158\) 197.134 606.718i 0.0992606 0.305493i
\(159\) 0 0
\(160\) −689.233 500.757i −0.340554 0.247427i
\(161\) −154.484 + 475.453i −0.0756214 + 0.232739i
\(162\) 0 0
\(163\) −2018.89 + 1466.81i −0.970134 + 0.704844i −0.955482 0.295049i \(-0.904664\pi\)
−0.0146519 + 0.999893i \(0.504664\pi\)
\(164\) 922.571 0.439273
\(165\) 0 0
\(166\) 1704.30 0.796865
\(167\) −893.670 + 649.289i −0.414097 + 0.300859i −0.775259 0.631644i \(-0.782380\pi\)
0.361161 + 0.932503i \(0.382380\pi\)
\(168\) 0 0
\(169\) −669.930 + 2061.83i −0.304929 + 0.938476i
\(170\) 555.804 + 403.815i 0.250754 + 0.182183i
\(171\) 0 0
\(172\) 71.9506 221.441i 0.0318964 0.0981671i
\(173\) −850.878 2618.73i −0.373937 1.15086i −0.944193 0.329393i \(-0.893156\pi\)
0.570256 0.821467i \(-0.306844\pi\)
\(174\) 0 0
\(175\) 972.426 0.420048
\(176\) 0.776128 42.3487i 0.000332402 0.0181373i
\(177\) 0 0
\(178\) 1617.91 1175.48i 0.681279 0.494978i
\(179\) 1317.84 + 4055.88i 0.550277 + 1.69358i 0.708100 + 0.706112i \(0.249553\pi\)
−0.157823 + 0.987467i \(0.550447\pi\)
\(180\) 0 0
\(181\) 983.685 + 714.689i 0.403960 + 0.293494i 0.771152 0.636651i \(-0.219681\pi\)
−0.367192 + 0.930145i \(0.619681\pi\)
\(182\) −71.1519 51.6949i −0.0289787 0.0210543i
\(183\) 0 0
\(184\) 368.458 + 1134.00i 0.147625 + 0.454344i
\(185\) −576.294 + 418.702i −0.229027 + 0.166398i
\(186\) 0 0
\(187\) −56.7301 + 3095.43i −0.0221846 + 1.21048i
\(188\) 1950.13 0.756529
\(189\) 0 0
\(190\) −127.359 391.971i −0.0486295 0.149666i
\(191\) −1378.93 + 4243.91i −0.522387 + 1.60774i 0.247040 + 0.969005i \(0.420542\pi\)
−0.769427 + 0.638735i \(0.779458\pi\)
\(192\) 0 0
\(193\) −3934.29 2858.43i −1.46734 1.06608i −0.981374 0.192105i \(-0.938469\pi\)
−0.485964 0.873979i \(-0.661531\pi\)
\(194\) −316.201 + 973.165i −0.117020 + 0.360151i
\(195\) 0 0
\(196\) −1029.36 + 747.876i −0.375132 + 0.272549i
\(197\) 1082.10 0.391353 0.195677 0.980668i \(-0.437310\pi\)
0.195677 + 0.980668i \(0.437310\pi\)
\(198\) 0 0
\(199\) 3503.59 1.24805 0.624027 0.781403i \(-0.285496\pi\)
0.624027 + 0.781403i \(0.285496\pi\)
\(200\) 1876.37 1363.26i 0.663396 0.481986i
\(201\) 0 0
\(202\) −437.379 + 1346.12i −0.152346 + 0.468873i
\(203\) 870.915 + 632.757i 0.301115 + 0.218773i
\(204\) 0 0
\(205\) 266.430 819.986i 0.0907720 0.279367i
\(206\) 802.281 + 2469.17i 0.271348 + 0.835122i
\(207\) 0 0
\(208\) 6.25879 0.00208639
\(209\) 1119.03 1482.32i 0.370360 0.490594i
\(210\) 0 0
\(211\) −1346.68 + 978.420i −0.439380 + 0.319229i −0.785389 0.619003i \(-0.787537\pi\)
0.346008 + 0.938231i \(0.387537\pi\)
\(212\) 884.953 + 2723.61i 0.286693 + 0.882349i
\(213\) 0 0
\(214\) 926.358 + 673.038i 0.295909 + 0.214990i
\(215\) −176.040 127.900i −0.0558409 0.0405708i
\(216\) 0 0
\(217\) −244.098 751.256i −0.0763615 0.235017i
\(218\) 2331.22 1693.73i 0.724266 0.526210i
\(219\) 0 0
\(220\) −808.575 279.203i −0.247791 0.0855631i
\(221\) −457.479 −0.139246
\(222\) 0 0
\(223\) −299.904 923.008i −0.0900584 0.277171i 0.895876 0.444304i \(-0.146549\pi\)
−0.985934 + 0.167133i \(0.946549\pi\)
\(224\) 530.512 1632.75i 0.158243 0.487021i
\(225\) 0 0
\(226\) −1994.55 1449.12i −0.587059 0.426523i
\(227\) −926.181 + 2850.49i −0.270805 + 0.833452i 0.719494 + 0.694499i \(0.244374\pi\)
−0.990299 + 0.138954i \(0.955626\pi\)
\(228\) 0 0
\(229\) 65.2714 47.4224i 0.0188352 0.0136846i −0.578328 0.815804i \(-0.696295\pi\)
0.597163 + 0.802120i \(0.296295\pi\)
\(230\) 429.052 0.123004
\(231\) 0 0
\(232\) 2567.57 0.726592
\(233\) 1982.72 1440.53i 0.557477 0.405031i −0.273058 0.961998i \(-0.588035\pi\)
0.830535 + 0.556967i \(0.188035\pi\)
\(234\) 0 0
\(235\) 563.177 1733.28i 0.156330 0.481135i
\(236\) −320.555 232.897i −0.0884166 0.0642384i
\(237\) 0 0
\(238\) −427.810 + 1316.66i −0.116516 + 0.358599i
\(239\) −28.2604 86.9764i −0.00764858 0.0235399i 0.947159 0.320763i \(-0.103939\pi\)
−0.954808 + 0.297223i \(0.903939\pi\)
\(240\) 0 0
\(241\) 189.338 0.0506073 0.0253036 0.999680i \(-0.491945\pi\)
0.0253036 + 0.999680i \(0.491945\pi\)
\(242\) 630.637 + 2213.85i 0.167516 + 0.588065i
\(243\) 0 0
\(244\) 2927.95 2127.28i 0.768209 0.558137i
\(245\) 367.446 + 1130.88i 0.0958174 + 0.294896i
\(246\) 0 0
\(247\) 222.031 + 161.315i 0.0571962 + 0.0415555i
\(248\) −1524.21 1107.40i −0.390271 0.283548i
\(249\) 0 0
\(250\) −570.614 1756.17i −0.144355 0.444280i
\(251\) −4126.35 + 2997.97i −1.03766 + 0.753905i −0.969828 0.243792i \(-0.921609\pi\)
−0.0678331 + 0.997697i \(0.521609\pi\)
\(252\) 0 0
\(253\) 1107.62 + 1584.78i 0.275238 + 0.393811i
\(254\) −4273.25 −1.05562
\(255\) 0 0
\(256\) −1250.94 3850.00i −0.305406 0.939941i
\(257\) 791.745 2436.74i 0.192170 0.591439i −0.807828 0.589418i \(-0.799357\pi\)
0.999998 0.00202014i \(-0.000643032\pi\)
\(258\) 0 0
\(259\) −1161.31 843.742i −0.278612 0.202423i
\(260\) 39.0607 120.216i 0.00931708 0.0286750i
\(261\) 0 0
\(262\) −2372.18 + 1723.49i −0.559365 + 0.406403i
\(263\) 2068.82 0.485052 0.242526 0.970145i \(-0.422024\pi\)
0.242526 + 0.970145i \(0.422024\pi\)
\(264\) 0 0
\(265\) 2676.32 0.620397
\(266\) 671.908 488.170i 0.154877 0.112525i
\(267\) 0 0
\(268\) −942.579 + 2900.96i −0.214840 + 0.661210i
\(269\) −5574.83 4050.35i −1.26358 0.918045i −0.264653 0.964344i \(-0.585257\pi\)
−0.998928 + 0.0462986i \(0.985257\pi\)
\(270\) 0 0
\(271\) 65.7913 202.485i 0.0147474 0.0453878i −0.943412 0.331623i \(-0.892404\pi\)
0.958159 + 0.286235i \(0.0924038\pi\)
\(272\) −30.4447 93.6992i −0.00678670 0.0208873i
\(273\) 0 0
\(274\) −2201.39 −0.485369
\(275\) 2266.00 3001.64i 0.496891 0.658202i
\(276\) 0 0
\(277\) −999.154 + 725.928i −0.216727 + 0.157461i −0.690852 0.722996i \(-0.742764\pi\)
0.474125 + 0.880457i \(0.342764\pi\)
\(278\) −1728.07 5318.44i −0.372815 1.14741i
\(279\) 0 0
\(280\) −803.727 583.942i −0.171542 0.124633i
\(281\) −1117.78 812.117i −0.237300 0.172409i 0.462779 0.886473i \(-0.346852\pi\)
−0.700080 + 0.714065i \(0.746852\pi\)
\(282\) 0 0
\(283\) 540.993 + 1665.00i 0.113635 + 0.349732i 0.991660 0.128883i \(-0.0411390\pi\)
−0.878025 + 0.478615i \(0.841139\pi\)
\(284\) −3709.22 + 2694.91i −0.775007 + 0.563075i
\(285\) 0 0
\(286\) −325.371 + 99.1660i −0.0672714 + 0.0205028i
\(287\) 1737.42 0.357340
\(288\) 0 0
\(289\) 707.119 + 2176.29i 0.143928 + 0.442965i
\(290\) 285.502 878.684i 0.0578112 0.177925i
\(291\) 0 0
\(292\) 2442.60 + 1774.66i 0.489529 + 0.355664i
\(293\) 2551.21 7851.82i 0.508680 1.56556i −0.285814 0.958285i \(-0.592264\pi\)
0.794495 0.607271i \(-0.207736\pi\)
\(294\) 0 0
\(295\) −299.573 + 217.652i −0.0591247 + 0.0429566i
\(296\) −3423.70 −0.672291
\(297\) 0 0
\(298\) −2838.57 −0.551792
\(299\) −231.140 + 167.933i −0.0447062 + 0.0324809i
\(300\) 0 0
\(301\) 135.500 417.026i 0.0259471 0.0798571i
\(302\) −91.5483 66.5137i −0.0174438 0.0126736i
\(303\) 0 0
\(304\) −18.2640 + 56.2108i −0.00344576 + 0.0106050i
\(305\) −1045.18 3216.72i −0.196218 0.603898i
\(306\) 0 0
\(307\) 3649.18 0.678403 0.339201 0.940714i \(-0.389843\pi\)
0.339201 + 0.940714i \(0.389843\pi\)
\(308\) 31.5867 1723.50i 0.00584358 0.318850i
\(309\) 0 0
\(310\) −548.463 + 398.482i −0.100486 + 0.0730073i
\(311\) 1416.80 + 4360.46i 0.258326 + 0.795045i 0.993156 + 0.116794i \(0.0372617\pi\)
−0.734830 + 0.678251i \(0.762738\pi\)
\(312\) 0 0
\(313\) 2506.95 + 1821.41i 0.452720 + 0.328920i 0.790669 0.612244i \(-0.209733\pi\)
−0.337949 + 0.941165i \(0.609733\pi\)
\(314\) −1944.33 1412.64i −0.349443 0.253885i
\(315\) 0 0
\(316\) 570.947 + 1757.19i 0.101640 + 0.312816i
\(317\) −2004.46 + 1456.33i −0.355148 + 0.258030i −0.751025 0.660273i \(-0.770440\pi\)
0.395878 + 0.918303i \(0.370440\pi\)
\(318\) 0 0
\(319\) 3982.62 1213.81i 0.699009 0.213042i
\(320\) −1429.92 −0.249798
\(321\) 0 0
\(322\) 267.175 + 822.281i 0.0462394 + 0.142310i
\(323\) 1334.99 4108.66i 0.229971 0.707777i
\(324\) 0 0
\(325\) 449.603 + 326.656i 0.0767369 + 0.0557527i
\(326\) −1333.68 + 4104.63i −0.226581 + 0.697346i
\(327\) 0 0
\(328\) 3352.48 2435.72i 0.564359 0.410031i
\(329\) 3672.55 0.615423
\(330\) 0 0
\(331\) −7320.24 −1.21558 −0.607790 0.794098i \(-0.707944\pi\)
−0.607790 + 0.794098i \(0.707944\pi\)
\(332\) −3993.35 + 2901.34i −0.660132 + 0.479614i
\(333\) 0 0
\(334\) −590.357 + 1816.93i −0.0967153 + 0.297659i
\(335\) 2306.18 + 1675.54i 0.376120 + 0.273267i
\(336\) 0 0
\(337\) 110.688 340.662i 0.0178918 0.0550654i −0.941712 0.336420i \(-0.890784\pi\)
0.959604 + 0.281355i \(0.0907838\pi\)
\(338\) 1158.62 + 3565.87i 0.186452 + 0.573840i
\(339\) 0 0
\(340\) −1989.74 −0.317379
\(341\) −2887.75 997.149i −0.458594 0.158354i
\(342\) 0 0
\(343\) −4556.13 + 3310.22i −0.717224 + 0.521093i
\(344\) −323.179 994.643i −0.0506531 0.155894i
\(345\) 0 0
\(346\) −3852.61 2799.09i −0.598606 0.434913i
\(347\) 4305.99 + 3128.49i 0.666161 + 0.483994i 0.868738 0.495272i \(-0.164932\pi\)
−0.202577 + 0.979266i \(0.564932\pi\)
\(348\) 0 0
\(349\) −2741.98 8438.95i −0.420559 1.29435i −0.907184 0.420735i \(-0.861772\pi\)
0.486625 0.873611i \(-0.338228\pi\)
\(350\) 1360.59 988.525i 0.207790 0.150968i
\(351\) 0 0
\(352\) −3803.66 5442.28i −0.575954 0.824075i
\(353\) 6975.14 1.05170 0.525849 0.850578i \(-0.323748\pi\)
0.525849 + 0.850578i \(0.323748\pi\)
\(354\) 0 0
\(355\) 1324.06 + 4075.04i 0.197955 + 0.609241i
\(356\) −1789.83 + 5508.55i −0.266464 + 0.820091i
\(357\) 0 0
\(358\) 5966.90 + 4335.21i 0.880896 + 0.640008i
\(359\) −1504.86 + 4631.50i −0.221236 + 0.680894i 0.777416 + 0.628987i \(0.216530\pi\)
−0.998652 + 0.0519074i \(0.983470\pi\)
\(360\) 0 0
\(361\) 3452.35 2508.28i 0.503331 0.365692i
\(362\) 2102.86 0.305315
\(363\) 0 0
\(364\) 254.719 0.0366784
\(365\) 2282.72 1658.50i 0.327351 0.237835i
\(366\) 0 0
\(367\) 2530.11 7786.88i 0.359866 1.10755i −0.593268 0.805005i \(-0.702163\pi\)
0.953134 0.302548i \(-0.0978373\pi\)
\(368\) −49.7775 36.1654i −0.00705117 0.00512297i
\(369\) 0 0
\(370\) −380.699 + 1171.67i −0.0534908 + 0.164628i
\(371\) 1666.58 + 5129.19i 0.233219 + 0.717775i
\(372\) 0 0
\(373\) −817.268 −0.113449 −0.0567246 0.998390i \(-0.518066\pi\)
−0.0567246 + 0.998390i \(0.518066\pi\)
\(374\) 3067.30 + 4388.70i 0.424082 + 0.606776i
\(375\) 0 0
\(376\) 7086.45 5148.61i 0.971957 0.706168i
\(377\) 190.115 + 585.113i 0.0259719 + 0.0799334i
\(378\) 0 0
\(379\) −78.6699 57.1570i −0.0106623 0.00774660i 0.582441 0.812873i \(-0.302098\pi\)
−0.593104 + 0.805126i \(0.702098\pi\)
\(380\) 965.692 + 701.616i 0.130366 + 0.0947162i
\(381\) 0 0
\(382\) 2384.82 + 7339.71i 0.319418 + 0.983068i
\(383\) 9880.66 7178.72i 1.31822 0.957743i 0.318267 0.948001i \(-0.396899\pi\)
0.999953 0.00974165i \(-0.00310091\pi\)
\(384\) 0 0
\(385\) −1522.74 525.806i −0.201574 0.0696040i
\(386\) −8410.49 −1.10902
\(387\) 0 0
\(388\) −915.790 2818.51i −0.119825 0.368784i
\(389\) −1344.09 + 4136.69i −0.175188 + 0.539174i −0.999642 0.0267554i \(-0.991482\pi\)
0.824454 + 0.565929i \(0.191482\pi\)
\(390\) 0 0
\(391\) 3638.42 + 2643.47i 0.470596 + 0.341908i
\(392\) −1766.05 + 5435.33i −0.227548 + 0.700320i
\(393\) 0 0
\(394\) 1514.04 1100.02i 0.193595 0.140655i
\(395\) 1726.69 0.219947
\(396\) 0 0
\(397\) −11423.8 −1.44420 −0.722098 0.691791i \(-0.756822\pi\)
−0.722098 + 0.691791i \(0.756822\pi\)
\(398\) 4902.11 3561.59i 0.617388 0.448559i
\(399\) 0 0
\(400\) −36.9839 + 113.825i −0.00462299 + 0.0142281i
\(401\) 12585.5 + 9143.87i 1.56730 + 1.13871i 0.929684 + 0.368359i \(0.120080\pi\)
0.637618 + 0.770352i \(0.279920\pi\)
\(402\) 0 0
\(403\) 139.502 429.342i 0.0172434 0.0530696i
\(404\) −1266.75 3898.66i −0.155998 0.480113i
\(405\) 0 0
\(406\) 1861.79 0.227584
\(407\) −5310.57 + 1618.55i −0.646770 + 0.197121i
\(408\) 0 0
\(409\) −9197.12 + 6682.10i −1.11190 + 0.807845i −0.982962 0.183808i \(-0.941158\pi\)
−0.128940 + 0.991652i \(0.541158\pi\)
\(410\) −460.782 1418.14i −0.0555034 0.170822i
\(411\) 0 0
\(412\) −6083.24 4419.73i −0.727427 0.528506i
\(413\) −603.680 438.599i −0.0719253 0.0522568i
\(414\) 0 0
\(415\) 1425.48 + 4387.19i 0.168613 + 0.518937i
\(416\) 793.754 576.696i 0.0935505 0.0679684i
\(417\) 0 0
\(418\) 58.8587 3211.57i 0.00688725 0.375797i
\(419\) 3798.45 0.442880 0.221440 0.975174i \(-0.428924\pi\)
0.221440 + 0.975174i \(0.428924\pi\)
\(420\) 0 0
\(421\) 4277.70 + 13165.4i 0.495208 + 1.52409i 0.816633 + 0.577157i \(0.195838\pi\)
−0.321425 + 0.946935i \(0.604162\pi\)
\(422\) −889.614 + 2737.95i −0.102620 + 0.315833i
\(423\) 0 0
\(424\) 10406.5 + 7560.76i 1.19194 + 0.865997i
\(425\) 2703.29 8319.88i 0.308539 0.949585i
\(426\) 0 0
\(427\) 5514.03 4006.18i 0.624924 0.454034i
\(428\) −3316.30 −0.374532
\(429\) 0 0
\(430\) −376.327 −0.0422049
\(431\) −10280.2 + 7469.03i −1.14891 + 0.834735i −0.988336 0.152289i \(-0.951336\pi\)
−0.160578 + 0.987023i \(0.551336\pi\)
\(432\) 0 0
\(433\) 5000.41 15389.7i 0.554975 1.70804i −0.141034 0.990005i \(-0.545043\pi\)
0.696009 0.718033i \(-0.254957\pi\)
\(434\) −1105.23 802.995i −0.122241 0.0888134i
\(435\) 0 0
\(436\) −2578.94 + 7937.15i −0.283277 + 0.871836i
\(437\) −833.724 2565.94i −0.0912641 0.280882i
\(438\) 0 0
\(439\) −14356.7 −1.56084 −0.780419 0.625256i \(-0.784994\pi\)
−0.780419 + 0.625256i \(0.784994\pi\)
\(440\) −3675.37 + 1120.17i −0.398219 + 0.121368i
\(441\) 0 0
\(442\) −640.090 + 465.053i −0.0688823 + 0.0500459i
\(443\) −1131.96 3483.80i −0.121401 0.373635i 0.871827 0.489814i \(-0.162935\pi\)
−0.993228 + 0.116179i \(0.962935\pi\)
\(444\) 0 0
\(445\) 4379.14 + 3181.63i 0.466497 + 0.338930i
\(446\) −1357.91 986.576i −0.144167 0.104744i
\(447\) 0 0
\(448\) −890.430 2740.46i −0.0939037 0.289006i
\(449\) 2659.66 1932.36i 0.279548 0.203104i −0.439172 0.898403i \(-0.644728\pi\)
0.718720 + 0.695299i \(0.244728\pi\)
\(450\) 0 0
\(451\) 4048.63 5362.98i 0.422711 0.559940i
\(452\) 7140.35 0.743040
\(453\) 0 0
\(454\) 1601.80 + 4929.83i 0.165586 + 0.509622i
\(455\) 73.5605 226.396i 0.00757928 0.0233266i
\(456\) 0 0
\(457\) 6050.71 + 4396.10i 0.619344 + 0.449980i 0.852692 0.522413i \(-0.174968\pi\)
−0.233348 + 0.972393i \(0.574968\pi\)
\(458\) 43.1182 132.704i 0.00439908 0.0135390i
\(459\) 0 0
\(460\) −1005.31 + 730.401i −0.101897 + 0.0740328i
\(461\) −16077.1 −1.62427 −0.812134 0.583471i \(-0.801694\pi\)
−0.812134 + 0.583471i \(0.801694\pi\)
\(462\) 0 0
\(463\) −8332.21 −0.836352 −0.418176 0.908366i \(-0.637330\pi\)
−0.418176 + 0.908366i \(0.637330\pi\)
\(464\) −107.189 + 77.8773i −0.0107244 + 0.00779173i
\(465\) 0 0
\(466\) 1309.78 4031.08i 0.130202 0.400722i
\(467\) −14316.8 10401.7i −1.41863 1.03070i −0.991995 0.126274i \(-0.959698\pi\)
−0.426637 0.904423i \(-0.640302\pi\)
\(468\) 0 0
\(469\) −1775.10 + 5463.19i −0.174769 + 0.537882i
\(470\) −973.997 2997.66i −0.0955897 0.294195i
\(471\) 0 0
\(472\) −1779.73 −0.173556
\(473\) −971.506 1390.03i −0.0944395 0.135124i
\(474\) 0 0
\(475\) −4245.73 + 3084.71i −0.410121 + 0.297971i
\(476\) −1239.03 3813.36i −0.119309 0.367195i
\(477\) 0 0
\(478\) −127.957 92.9665i −0.0122440 0.00889579i
\(479\) 6413.14 + 4659.42i 0.611741 + 0.444456i 0.850027 0.526739i \(-0.176586\pi\)
−0.238286 + 0.971195i \(0.576586\pi\)
\(480\) 0 0
\(481\) −253.506 780.212i −0.0240310 0.0739597i
\(482\) 264.916 192.473i 0.0250345 0.0181886i
\(483\) 0 0
\(484\) −5246.42 4113.70i −0.492714 0.386336i
\(485\) −2769.58 −0.259299
\(486\) 0 0
\(487\) −848.093 2610.16i −0.0789133 0.242870i 0.903815 0.427923i \(-0.140754\pi\)
−0.982729 + 0.185053i \(0.940754\pi\)
\(488\) 5023.40 15460.4i 0.465981 1.43414i
\(489\) 0 0
\(490\) 1663.72 + 1208.77i 0.153386 + 0.111442i
\(491\) 4252.16 13086.8i 0.390830 1.20285i −0.541332 0.840809i \(-0.682080\pi\)
0.932162 0.362042i \(-0.117920\pi\)
\(492\) 0 0
\(493\) 7834.85 5692.35i 0.715748 0.520021i
\(494\) 474.644 0.0432292
\(495\) 0 0
\(496\) 97.2200 0.00880102
\(497\) −6985.34 + 5075.15i −0.630454 + 0.458051i
\(498\) 0 0
\(499\) 3285.52 10111.8i 0.294750 0.907147i −0.688555 0.725184i \(-0.741755\pi\)
0.983305 0.181963i \(-0.0582452\pi\)
\(500\) 4326.64 + 3143.49i 0.386987 + 0.281162i
\(501\) 0 0
\(502\) −2725.86 + 8389.33i −0.242353 + 0.745885i
\(503\) −3896.04 11990.8i −0.345360 1.06291i −0.961391 0.275186i \(-0.911261\pi\)
0.616032 0.787721i \(-0.288739\pi\)
\(504\) 0 0
\(505\) −3830.98 −0.337577
\(506\) 3160.76 + 1091.42i 0.277694 + 0.0958885i
\(507\) 0 0
\(508\) 10012.6 7274.61i 0.874487 0.635352i
\(509\) −3953.17 12166.6i −0.344246 1.05948i −0.961986 0.273099i \(-0.911951\pi\)
0.617740 0.786383i \(-0.288049\pi\)
\(510\) 0 0
\(511\) 4600.00 + 3342.09i 0.398223 + 0.289326i
\(512\) 339.995 + 247.021i 0.0293472 + 0.0213220i
\(513\) 0 0
\(514\) −1369.30 4214.27i −0.117504 0.361641i
\(515\) −5685.06 + 4130.44i −0.486435 + 0.353415i
\(516\) 0 0
\(517\) 8557.97 11336.2i 0.728006 0.964346i
\(518\) −2482.58 −0.210576
\(519\) 0 0
\(520\) −175.448 539.974i −0.0147960 0.0455374i
\(521\) −3241.09 + 9975.04i −0.272542 + 0.838799i 0.717317 + 0.696747i \(0.245370\pi\)
−0.989859 + 0.142052i \(0.954630\pi\)
\(522\) 0 0
\(523\) 5438.69 + 3951.44i 0.454718 + 0.330372i 0.791456 0.611227i \(-0.209324\pi\)
−0.336738 + 0.941598i \(0.609324\pi\)
\(524\) 2624.25 8076.61i 0.218780 0.673337i
\(525\) 0 0
\(526\) 2894.63 2103.07i 0.239946 0.174331i
\(527\) −7106.18 −0.587382
\(528\) 0 0
\(529\) −9358.32 −0.769156
\(530\) 3744.63 2720.63i 0.306898 0.222975i
\(531\) 0 0
\(532\) −743.306 + 2287.66i −0.0605760 + 0.186434i
\(533\) 803.300 + 583.632i 0.0652810 + 0.0474294i
\(534\) 0 0
\(535\) −957.717 + 2947.55i −0.0773938 + 0.238194i
\(536\) 4233.76 + 13030.2i 0.341177 + 1.05003i
\(537\) 0 0
\(538\) −11917.5 −0.955021
\(539\) −169.814 + 9265.76i −0.0135703 + 0.740454i
\(540\) 0 0
\(541\) −10028.7 + 7286.29i −0.796984 + 0.579042i −0.910028 0.414547i \(-0.863940\pi\)
0.113044 + 0.993590i \(0.463940\pi\)
\(542\) −113.784 350.191i −0.00901742 0.0277528i
\(543\) 0 0
\(544\) −12494.7 9077.92i −0.984752 0.715464i
\(545\) 6309.81 + 4584.34i 0.495931 + 0.360315i
\(546\) 0 0
\(547\) −1865.99 5742.92i −0.145857 0.448902i 0.851263 0.524739i \(-0.175837\pi\)
−0.997120 + 0.0758369i \(0.975837\pi\)
\(548\) 5158.08 3747.57i 0.402085 0.292132i
\(549\) 0 0
\(550\) 119.187 6503.31i 0.00924024 0.504186i
\(551\) −5809.74 −0.449190
\(552\) 0 0
\(553\) 1075.23 + 3309.21i 0.0826823 + 0.254470i
\(554\) −660.039 + 2031.39i −0.0506180 + 0.155786i
\(555\) 0 0
\(556\) 13102.9 + 9519.84i 0.999439 + 0.726135i
\(557\) −4667.78 + 14365.9i −0.355081 + 1.09283i 0.600882 + 0.799338i \(0.294816\pi\)
−0.955963 + 0.293488i \(0.905184\pi\)
\(558\) 0 0
\(559\) 202.736 147.296i 0.0153395 0.0111448i
\(560\) 51.2650 0.00386847
\(561\) 0 0
\(562\) −2389.53 −0.179353
\(563\) 1735.56 1260.96i 0.129920 0.0943927i −0.520927 0.853601i \(-0.674414\pi\)
0.650848 + 0.759208i \(0.274414\pi\)
\(564\) 0 0
\(565\) 2062.06 6346.38i 0.153543 0.472556i
\(566\) 2449.51 + 1779.67i 0.181909 + 0.132165i
\(567\) 0 0
\(568\) −6363.80 + 19585.8i −0.470104 + 1.44683i
\(569\) 6431.23 + 19793.3i 0.473833 + 1.45831i 0.847525 + 0.530755i \(0.178092\pi\)
−0.373692 + 0.927553i \(0.621908\pi\)
\(570\) 0 0
\(571\) −4825.78 −0.353683 −0.176841 0.984239i \(-0.556588\pi\)
−0.176841 + 0.984239i \(0.556588\pi\)
\(572\) 593.561 786.256i 0.0433882 0.0574738i
\(573\) 0 0
\(574\) 2430.94 1766.18i 0.176769 0.128431i
\(575\) −1688.26 5195.93i −0.122444 0.376844i
\(576\) 0 0
\(577\) 16941.5 + 12308.7i 1.22233 + 0.888073i 0.996291 0.0860455i \(-0.0274230\pi\)
0.226037 + 0.974119i \(0.427423\pi\)
\(578\) 3201.70 + 2326.17i 0.230403 + 0.167398i
\(579\) 0 0
\(580\) 826.879 + 2544.87i 0.0591970 + 0.182190i
\(581\) −7520.42 + 5463.91i −0.537005 + 0.390157i
\(582\) 0 0
\(583\) 19716.1 + 6808.02i 1.40061 + 0.483635i
\(584\) 13561.4 0.960915
\(585\) 0 0
\(586\) −4412.24 13579.5i −0.311037 0.957274i
\(587\) 1727.29 5316.06i 0.121453 0.373794i −0.871785 0.489889i \(-0.837037\pi\)
0.993238 + 0.116094i \(0.0370375\pi\)
\(588\) 0 0
\(589\) 3448.88 + 2505.76i 0.241271 + 0.175294i
\(590\) −197.897 + 609.065i −0.0138090 + 0.0424997i
\(591\) 0 0
\(592\) 142.930 103.845i 0.00992293 0.00720943i
\(593\) 21114.0 1.46214 0.731069 0.682303i \(-0.239022\pi\)
0.731069 + 0.682303i \(0.239022\pi\)
\(594\) 0 0
\(595\) −3747.15 −0.258182
\(596\) 6651.06 4832.28i 0.457111 0.332110i
\(597\) 0 0
\(598\) −152.690 + 469.933i −0.0104414 + 0.0321354i
\(599\) 6571.14 + 4774.21i 0.448229 + 0.325658i 0.788896 0.614526i \(-0.210653\pi\)
−0.340667 + 0.940184i \(0.610653\pi\)
\(600\) 0 0
\(601\) 489.767 1507.35i 0.0332413 0.102306i −0.933059 0.359723i \(-0.882871\pi\)
0.966301 + 0.257417i \(0.0828713\pi\)
\(602\) −234.343 721.234i −0.0158656 0.0488294i
\(603\) 0 0
\(604\) 327.737 0.0220785
\(605\) −5171.40 + 3475.05i −0.347516 + 0.233522i
\(606\) 0 0
\(607\) −13583.2 + 9868.80i −0.908281 + 0.659905i −0.940579 0.339574i \(-0.889717\pi\)
0.0322987 + 0.999478i \(0.489717\pi\)
\(608\) 2863.08 + 8811.67i 0.190976 + 0.587764i
\(609\) 0 0
\(610\) −4732.35 3438.26i −0.314111 0.228215i
\(611\) 1698.01 + 1233.68i 0.112429 + 0.0816845i
\(612\) 0 0
\(613\) −1429.28 4398.87i −0.0941731 0.289835i 0.892864 0.450326i \(-0.148692\pi\)
−0.987037 + 0.160491i \(0.948692\pi\)
\(614\) 5105.82 3709.60i 0.335593 0.243823i
\(615\) 0 0
\(616\) −4435.52 6346.34i −0.290117 0.415100i
\(617\) −581.103 −0.0379163 −0.0189581 0.999820i \(-0.506035\pi\)
−0.0189581 + 0.999820i \(0.506035\pi\)
\(618\) 0 0
\(619\) 5742.03 + 17672.2i 0.372846 + 1.14750i 0.944920 + 0.327301i \(0.106139\pi\)
−0.572074 + 0.820202i \(0.693861\pi\)
\(620\) 606.744 1867.37i 0.0393023 0.120960i
\(621\) 0 0
\(622\) 6414.99 + 4660.76i 0.413533 + 0.300450i
\(623\) −3370.68 + 10373.9i −0.216763 + 0.667129i
\(624\) 0 0
\(625\) −6381.50 + 4636.43i −0.408416 + 0.296732i
\(626\) 5359.22 0.342168
\(627\) 0 0
\(628\) 6960.59 0.442289
\(629\) −10447.3 + 7590.39i −0.662258 + 0.481159i
\(630\) 0 0
\(631\) 3758.79 11568.4i 0.237139 0.729840i −0.759691 0.650284i \(-0.774650\pi\)
0.996830 0.0795558i \(-0.0253502\pi\)
\(632\) 6713.98 + 4877.99i 0.422575 + 0.307019i
\(633\) 0 0
\(634\) −1324.15 + 4075.30i −0.0829472 + 0.255285i
\(635\) −3574.16 11000.1i −0.223364 0.687444i
\(636\) 0 0
\(637\) −1369.40 −0.0851769
\(638\) 4338.45 5746.89i 0.269218 0.356617i
\(639\) 0 0
\(640\) 3513.16 2552.46i 0.216984 0.157648i
\(641\) 5677.31 + 17473.0i 0.349829 + 1.07666i 0.958948 + 0.283583i \(0.0915232\pi\)
−0.609119 + 0.793079i \(0.708477\pi\)
\(642\) 0 0
\(643\) −370.655 269.297i −0.0227328 0.0165164i 0.576361 0.817195i \(-0.304472\pi\)
−0.599094 + 0.800679i \(0.704472\pi\)
\(644\) −2025.84 1471.86i −0.123958 0.0900610i
\(645\) 0 0
\(646\) −2308.82 7105.80i −0.140618 0.432777i
\(647\) 6335.74 4603.19i 0.384983 0.279706i −0.378414 0.925637i \(-0.623530\pi\)
0.763396 + 0.645930i \(0.223530\pi\)
\(648\) 0 0
\(649\) −2760.57 + 841.362i −0.166968 + 0.0508880i
\(650\) 961.135 0.0579982
\(651\) 0 0
\(652\) −3862.63 11888.0i −0.232013 0.714062i
\(653\) −4743.85 + 14600.1i −0.284289 + 0.874953i 0.702321 + 0.711860i \(0.252147\pi\)
−0.986611 + 0.163093i \(0.947853\pi\)
\(654\) 0 0
\(655\) −6420.68 4664.89i −0.383018 0.278279i
\(656\) −66.0786 + 203.369i −0.00393283 + 0.0121040i
\(657\) 0 0
\(658\) 5138.51 3733.35i 0.304438 0.221187i
\(659\) −5177.35 −0.306041 −0.153020 0.988223i \(-0.548900\pi\)
−0.153020 + 0.988223i \(0.548900\pi\)
\(660\) 0 0
\(661\) −11234.4 −0.661073 −0.330536 0.943793i \(-0.607230\pi\)
−0.330536 + 0.943793i \(0.607230\pi\)
\(662\) −10242.3 + 7441.43i −0.601324 + 0.436887i
\(663\) 0 0
\(664\) −6851.27 + 21086.0i −0.400423 + 1.23238i
\(665\) 1818.63 + 1321.31i 0.106050 + 0.0770499i
\(666\) 0 0
\(667\) 1868.96 5752.08i 0.108496 0.333915i
\(668\) −1709.81 5262.25i −0.0990337 0.304794i
\(669\) 0 0
\(670\) 4930.02 0.284273
\(671\) 483.025 26355.9i 0.0277898 1.51633i
\(672\) 0 0
\(673\) 7158.27 5200.79i 0.410002 0.297884i −0.363601 0.931555i \(-0.618453\pi\)
0.773603 + 0.633671i \(0.218453\pi\)
\(674\) −191.431 589.165i −0.0109401 0.0336703i
\(675\) 0 0
\(676\) −8785.17 6382.80i −0.499839 0.363154i
\(677\) −22816.5 16577.2i −1.29529 0.941082i −0.295391 0.955377i \(-0.595450\pi\)
−0.999898 + 0.0142945i \(0.995450\pi\)
\(678\) 0 0
\(679\) −1724.65 5307.92i −0.0974756 0.299999i
\(680\) −7230.41 + 5253.20i −0.407755 + 0.296252i
\(681\) 0 0
\(682\) −5054.11 + 1540.38i −0.283771 + 0.0864871i
\(683\) 1139.02 0.0638117 0.0319058 0.999491i \(-0.489842\pi\)
0.0319058 + 0.999491i \(0.489842\pi\)
\(684\) 0 0
\(685\) −1841.25 5666.79i −0.102702 0.316083i
\(686\) −3009.77 + 9263.11i −0.167512 + 0.515550i
\(687\) 0 0
\(688\) 43.6605 + 31.7212i 0.00241939 + 0.00175779i
\(689\) −952.446 + 2931.33i −0.0526637 + 0.162082i
\(690\) 0 0
\(691\) 15183.7 11031.6i 0.835909 0.607324i −0.0853155 0.996354i \(-0.527190\pi\)
0.921225 + 0.389030i \(0.127190\pi\)
\(692\) 13792.1 0.757655
\(693\) 0 0
\(694\) 9205.09 0.503488
\(695\) 12245.3 8896.72i 0.668331 0.485571i
\(696\) 0 0
\(697\) 4829.94 14865.0i 0.262478 0.807823i
\(698\) −12415.2 9020.15i −0.673239 0.489137i
\(699\) 0 0
\(700\) −1505.17 + 4632.43i −0.0812714 + 0.250128i
\(701\) −1169.64 3599.79i −0.0630196 0.193955i 0.914589 0.404384i \(-0.132514\pi\)
−0.977609 + 0.210429i \(0.932514\pi\)
\(702\) 0 0
\(703\) 7746.93 0.415620
\(704\) −10534.1 3637.44i −0.563945 0.194732i
\(705\) 0 0
\(706\) 9759.41 7090.63i 0.520255 0.377988i
\(707\) −2385.59 7342.10i −0.126902 0.390563i
\(708\) 0 0
\(709\) −1462.15 1062.32i −0.0774503 0.0562709i 0.548386 0.836225i \(-0.315242\pi\)
−0.625837 + 0.779954i \(0.715242\pi\)
\(710\) 5995.09 + 4355.69i 0.316890 + 0.230234i
\(711\) 0 0
\(712\) 8039.37 + 24742.6i 0.423157 + 1.30234i
\(713\) −3590.37 + 2608.56i −0.188584 + 0.137014i
\(714\) 0 0
\(715\) −527.413 754.624i −0.0275862 0.0394704i
\(716\) −21361.1 −1.11495
\(717\) 0 0
\(718\) 2602.62 + 8010.03i 0.135277 + 0.416339i
\(719\) 10208.8 31419.5i 0.529520 1.62970i −0.225680 0.974202i \(-0.572460\pi\)
0.755200 0.655494i \(-0.227540\pi\)
\(720\) 0 0
\(721\) −11456.2 8323.40i −0.591748 0.429930i
\(722\) 2280.62 7019.01i 0.117556 0.361801i
\(723\) 0 0
\(724\) −4927.22 + 3579.83i −0.252926 + 0.183762i
\(725\) −11764.5 −0.602652
\(726\) 0 0
\(727\) 1906.51 0.0972606 0.0486303 0.998817i \(-0.484514\pi\)
0.0486303 + 0.998817i \(0.484514\pi\)
\(728\) 925.611 672.496i 0.0471228 0.0342367i
\(729\) 0 0
\(730\) 1507.96 4641.03i 0.0764551 0.235305i
\(731\) −3191.31 2318.62i −0.161470 0.117315i
\(732\) 0 0
\(733\) 2986.92 9192.78i 0.150511 0.463224i −0.847168 0.531325i \(-0.821694\pi\)
0.997678 + 0.0681014i \(0.0216941\pi\)
\(734\) −4375.75 13467.2i −0.220043 0.677224i
\(735\) 0 0
\(736\) −9645.24 −0.483055
\(737\) 12727.1 + 18209.9i 0.636103 + 0.910137i
\(738\) 0 0
\(739\) −20359.0 + 14791.7i −1.01342 + 0.736293i −0.964924 0.262531i \(-0.915443\pi\)
−0.0484964 + 0.998823i \(0.515443\pi\)
\(740\) −1102.59 3393.43i −0.0547731 0.168574i
\(741\) 0 0
\(742\) 7545.93 + 5482.44i 0.373342 + 0.271249i
\(743\) −25301.6 18382.7i −1.24930 0.907667i −0.251115 0.967957i \(-0.580797\pi\)
−0.998181 + 0.0602905i \(0.980797\pi\)
\(744\) 0 0
\(745\) −2374.19 7307.01i −0.116757 0.359340i
\(746\) −1143.50 + 830.799i −0.0561212 + 0.0407744i
\(747\) 0 0
\(748\) −14658.2 5061.50i −0.716518 0.247416i
\(749\) −6245.38 −0.304675
\(750\) 0 0
\(751\) 4771.36 + 14684.7i 0.231837 + 0.713520i 0.997525 + 0.0703084i \(0.0223983\pi\)
−0.765689 + 0.643211i \(0.777602\pi\)
\(752\) −139.677 + 429.880i −0.00677325 + 0.0208459i
\(753\) 0 0
\(754\) 860.804 + 625.410i 0.0415764 + 0.0302070i
\(755\) 94.6473 291.295i 0.00456234 0.0140414i
\(756\) 0 0
\(757\) −23225.1 + 16874.0i −1.11510 + 0.810167i −0.983459 0.181130i \(-0.942024\pi\)
−0.131641 + 0.991298i \(0.542024\pi\)
\(758\) −168.176 −0.00805861
\(759\) 0 0
\(760\) 5361.54 0.255899
\(761\) 31306.9 22745.8i 1.49129 1.08349i 0.517602 0.855622i \(-0.326825\pi\)
0.973692 0.227867i \(-0.0731751\pi\)
\(762\) 0 0
\(763\) −4856.74 + 14947.5i −0.230440 + 0.709222i
\(764\) −18082.7 13137.8i −0.856294 0.622134i
\(765\) 0 0
\(766\) 6527.15 20088.5i 0.307879 0.947554i
\(767\) −131.779 405.575i −0.00620374 0.0190932i
\(768\) 0 0
\(769\) 9520.91 0.446467 0.223233 0.974765i \(-0.428339\pi\)
0.223233 + 0.974765i \(0.428339\pi\)
\(770\) −2665.08 + 812.257i −0.124731 + 0.0380152i
\(771\) 0 0
\(772\) 19706.6 14317.7i 0.918726 0.667494i
\(773\) 6442.57 + 19828.2i 0.299771 + 0.922601i 0.981577 + 0.191067i \(0.0611949\pi\)
−0.681806 + 0.731533i \(0.738805\pi\)
\(774\) 0 0
\(775\) 6983.85 + 5074.06i 0.323700 + 0.235182i
\(776\) −10769.1 7824.22i −0.498181 0.361950i
\(777\) 0 0
\(778\) 2324.57 + 7154.28i 0.107120 + 0.329683i
\(779\) −7585.79 + 5511.40i −0.348895 + 0.253487i
\(780\) 0 0
\(781\) −611.911 + 33388.4i −0.0280357 + 1.52975i
\(782\) 7778.01 0.355679
\(783\) 0 0
\(784\) −91.1322 280.476i −0.00415143 0.0127768i
\(785\) 2010.15 6186.61i 0.0913954 0.281286i
\(786\) 0 0
\(787\) −22007.2 15989.1i −0.996786 0.724207i −0.0353890 0.999374i \(-0.511267\pi\)
−0.961397 + 0.275166i \(0.911267\pi\)
\(788\) −1674.93 + 5154.90i −0.0757194 + 0.233040i
\(789\) 0 0
\(790\) 2415.93 1755.27i 0.108804 0.0790504i
\(791\) 13447.0 0.604449
\(792\) 0 0
\(793\) 3895.17 0.174428
\(794\) −15983.9 + 11613.0i −0.714417 + 0.519054i
\(795\) 0 0
\(796\) −5423.02 + 16690.3i −0.241474 + 0.743182i
\(797\) −10894.2 7915.11i −0.484182 0.351778i 0.318761 0.947835i \(-0.396733\pi\)
−0.802942 + 0.596057i \(0.796733\pi\)
\(798\) 0 0
\(799\) 10209.5 31421.6i 0.452047 1.39126i
\(800\) 5797.63 + 17843.3i 0.256222 + 0.788569i
\(801\) 0 0
\(802\) 26904.5 1.18458
\(803\) 21035.4 6411.12i 0.924437 0.281748i
\(804\) 0 0
\(805\) −1893.24 + 1375.52i −0.0828917 + 0.0602244i
\(806\) −241.264 742.534i −0.0105436 0.0324499i
\(807\) 0 0
\(808\) −14896.2 10822.7i −0.648572 0.471215i
\(809\) 26245.3 + 19068.3i 1.14059 + 0.828686i 0.987201 0.159481i \(-0.0509819\pi\)
0.153387 + 0.988166i \(0.450982\pi\)
\(810\) 0 0
\(811\) 8831.27 + 27179.8i 0.382377 + 1.17684i 0.938365 + 0.345645i \(0.112340\pi\)
−0.555988 + 0.831190i \(0.687660\pi\)
\(812\) −4362.36 + 3169.44i −0.188533 + 0.136977i
\(813\) 0 0
\(814\) −5785.05 + 7663.12i −0.249098 + 0.329966i
\(815\) −11681.6 −0.502071
\(816\) 0 0
\(817\) 731.270 + 2250.62i 0.0313145 + 0.0963760i
\(818\) −6075.60 + 18698.8i −0.259692 + 0.799251i
\(819\) 0 0
\(820\) 3493.85 + 2538.43i 0.148793 + 0.108105i
\(821\) −2345.53 + 7218.81i −0.0997072 + 0.306867i −0.988452 0.151535i \(-0.951578\pi\)
0.888745 + 0.458403i \(0.151578\pi\)
\(822\) 0 0
\(823\) −3277.29 + 2381.09i −0.138808 + 0.100850i −0.655022 0.755609i \(-0.727341\pi\)
0.516214 + 0.856460i \(0.327341\pi\)
\(824\) −33774.3 −1.42789
\(825\) 0 0
\(826\) −1290.51 −0.0543615
\(827\) 23949.1 17400.0i 1.00700 0.731630i 0.0434246 0.999057i \(-0.486173\pi\)
0.963578 + 0.267426i \(0.0861732\pi\)
\(828\) 0 0
\(829\) 65.8920 202.795i 0.00276058 0.00849621i −0.949667 0.313262i \(-0.898578\pi\)
0.952427 + 0.304766i \(0.0985782\pi\)
\(830\) 6454.32 + 4689.34i 0.269919 + 0.196108i
\(831\) 0 0
\(832\) 508.880 1566.17i 0.0212046 0.0652611i
\(833\) 6661.20 + 20501.1i 0.277067 + 0.852724i
\(834\) 0 0
\(835\) −5170.89 −0.214307
\(836\) 5329.35 + 7625.24i 0.220478 + 0.315460i
\(837\) 0 0
\(838\) 5314.68 3861.34i 0.219084 0.159174i
\(839\) 3132.38 + 9640.46i 0.128893 + 0.396693i 0.994590 0.103875i \(-0.0331243\pi\)
−0.865697 + 0.500569i \(0.833124\pi\)
\(840\) 0 0
\(841\) 9194.69 + 6680.33i 0.377001 + 0.273908i
\(842\) 19368.6 + 14072.1i 0.792739 + 0.575959i
\(843\) 0 0
\(844\) −2576.53 7929.74i −0.105080 0.323404i
\(845\) −8210.14 + 5965.01i −0.334245 + 0.242843i
\(846\) 0 0
\(847\) −9880.25 7747.08i −0.400814 0.314277i
\(848\) −663.768 −0.0268796
\(849\) 0 0
\(850\) −4675.26 14389.0i −0.188659 0.580633i
\(851\) −2492.15 + 7670.04i −0.100387 + 0.308961i
\(852\) 0 0
\(853\) −23714.3 17229.4i −0.951888 0.691587i −0.000635352 1.00000i \(-0.500202\pi\)
−0.951253 + 0.308413i \(0.900202\pi\)
\(854\) 3642.56 11210.6i 0.145955 0.449204i
\(855\) 0 0
\(856\) −12050.9 + 8755.52i −0.481183 + 0.349600i
\(857\) 22219.3 0.885642 0.442821 0.896610i \(-0.353978\pi\)
0.442821 + 0.896610i \(0.353978\pi\)
\(858\) 0 0
\(859\) 25401.2 1.00894 0.504468 0.863430i \(-0.331689\pi\)
0.504468 + 0.863430i \(0.331689\pi\)
\(860\) 881.771 640.644i 0.0349630 0.0254021i
\(861\) 0 0
\(862\) −6791.11 + 20900.9i −0.268337 + 0.825855i
\(863\) 2925.53 + 2125.52i 0.115395 + 0.0838395i 0.643986 0.765037i \(-0.277279\pi\)
−0.528591 + 0.848877i \(0.677279\pi\)
\(864\) 0 0
\(865\) 3983.03 12258.5i 0.156563 0.481852i
\(866\) −8648.05 26616.0i −0.339345 1.04440i
\(867\) 0 0
\(868\) 3956.65 0.154721
\(869\) 12720.3 + 4392.35i 0.496554 + 0.171462i
\(870\) 0 0
\(871\) −2655.91 + 1929.63i −0.103320 + 0.0750666i
\(872\) 11583.8 + 35651.1i 0.449857 + 1.38452i
\(873\) 0 0
\(874\) −3774.94 2742.66i −0.146098 0.106146i
\(875\) 8148.09 + 5919.93i 0.314806 + 0.228720i
\(876\) 0 0
\(877\) −4644.26 14293.6i −0.178820 0.550352i 0.820967 0.570976i \(-0.193435\pi\)
−0.999787 + 0.0206233i \(0.993435\pi\)
\(878\) −20087.5 + 14594.4i −0.772117 + 0.560976i
\(879\) 0 0
\(880\) 119.461 158.242i 0.00457615 0.00606176i
\(881\) 41424.1 1.58412 0.792062 0.610440i \(-0.209008\pi\)
0.792062 + 0.610440i \(0.209008\pi\)
\(882\) 0 0
\(883\) −9718.72 29911.2i −0.370398 1.13997i −0.946532 0.322611i \(-0.895439\pi\)
0.576134 0.817355i \(-0.304561\pi\)
\(884\) 708.107 2179.33i 0.0269414 0.0829172i
\(885\) 0 0
\(886\) −5125.28 3723.73i −0.194342 0.141198i
\(887\) 3774.50 11616.7i 0.142881 0.439742i −0.853851 0.520517i \(-0.825739\pi\)
0.996732 + 0.0807744i \(0.0257393\pi\)
\(888\) 0 0
\(889\) 18856.2 13699.8i 0.711379 0.516847i
\(890\) 9361.46 0.352581
\(891\) 0 0
\(892\) 4861.22 0.182473
\(893\) −16034.8 + 11650.0i −0.600878 + 0.436564i
\(894\) 0 0
\(895\) −6168.89 + 18985.9i −0.230395 + 0.709082i
\(896\) 7079.49 + 5143.55i 0.263961 + 0.191779i
\(897\) 0 0
\(898\) 1756.97 5407.39i 0.0652904 0.200943i
\(899\) 2953.12 + 9088.78i 0.109557 + 0.337183i
\(900\) 0 0
\(901\) 48517.4 1.79395
\(902\) 212.949 11619.4i 0.00786078 0.428917i
\(903\) 0 0
\(904\) 25946.9 18851.6i 0.954626 0.693577i
\(905\) 1758.84 + 5413.16i 0.0646032 + 0.198828i
\(906\) 0 0
\(907\) −9356.29 6797.74i −0.342525 0.248859i 0.403201 0.915111i \(-0.367897\pi\)
−0.745727 + 0.666252i \(0.767897\pi\)
\(908\) −12145.5 8824.25i −0.443903 0.322514i
\(909\) 0 0
\(910\) −127.221 391.545i −0.00463442 0.0142633i
\(911\) 22625.1 16438.1i 0.822836 0.597826i −0.0946871 0.995507i \(-0.530185\pi\)
0.917524 + 0.397681i \(0.130185\pi\)
\(912\) 0 0
\(913\) −658.784 + 35946.0i −0.0238801 + 1.30300i
\(914\) 12934.9 0.468104
\(915\) 0 0
\(916\) 124.880 + 384.342i 0.00450454 + 0.0138635i
\(917\) 4942.08 15210.2i 0.177974 0.547747i
\(918\) 0 0
\(919\) −36164.5 26275.1i −1.29810 0.943128i −0.298170 0.954513i \(-0.596376\pi\)
−0.999935 + 0.0113846i \(0.996376\pi\)
\(920\) −1724.78 + 5308.33i −0.0618090 + 0.190229i
\(921\) 0 0
\(922\) −22494.6 + 16343.3i −0.803494 + 0.583773i
\(923\) −4934.53 −0.175972
\(924\) 0 0
\(925\) 15687.2 0.557614
\(926\) −11658.2 + 8470.16i −0.413727 + 0.300591i
\(927\) 0 0
\(928\) −6418.19 + 19753.2i −0.227034 + 0.698739i
\(929\) −532.665 387.004i −0.0188118 0.0136676i 0.578340 0.815796i \(-0.303701\pi\)
−0.597151 + 0.802129i \(0.703701\pi\)
\(930\) 0 0
\(931\) 3996.10 12298.7i 0.140673 0.432948i
\(932\) 3793.42 + 11674.9i 0.133324 + 0.410328i
\(933\) 0 0
\(934\) −30605.6 −1.07221
\(935\) −8731.82 + 11566.5i −0.305413 + 0.404563i
\(936\) 0 0
\(937\) −14039.2 + 10200.1i −0.489479 + 0.355627i −0.804984 0.593297i \(-0.797826\pi\)
0.315505 + 0.948924i \(0.397826\pi\)
\(938\) 3069.98 + 9448.42i 0.106864 + 0.328893i
\(939\) 0 0
\(940\) 7385.27 + 5365.71i 0.256256 + 0.186181i
\(941\) −14197.6 10315.1i −0.491847 0.357348i 0.314047 0.949407i \(-0.398315\pi\)
−0.805894 + 0.592060i \(0.798315\pi\)
\(942\) 0 0
\(943\) −3016.39 9283.49i −0.104165 0.320585i
\(944\) 74.2986 53.9811i 0.00256167 0.00186116i
\(945\) 0 0
\(946\) −2772.35 957.300i −0.0952820 0.0329012i
\(947\) −27129.0 −0.930912 −0.465456 0.885071i \(-0.654110\pi\)
−0.465456 + 0.885071i \(0.654110\pi\)
\(948\) 0 0
\(949\) 1004.15 + 3090.45i 0.0343478 + 0.105712i
\(950\) −2804.72 + 8632.05i −0.0957866 + 0.294801i
\(951\) 0 0
\(952\) −14570.3 10585.9i −0.496035 0.360390i
\(953\) −11526.6 + 35475.1i −0.391797 + 1.20583i 0.539631 + 0.841901i \(0.318564\pi\)
−0.931428 + 0.363925i \(0.881436\pi\)
\(954\) 0 0
\(955\) −16899.1 + 12277.9i −0.572609 + 0.416025i
\(956\) 458.080 0.0154972
\(957\) 0 0
\(958\) 13709.6 0.462357
\(959\) 9713.89 7057.55i 0.327088 0.237644i
\(960\) 0 0
\(961\) −7039.00 + 21663.8i −0.236279 + 0.727193i
\(962\) −1147.83 833.946i −0.0384693 0.0279496i
\(963\) 0 0
\(964\) −293.067 + 901.967i −0.00979154 + 0.0301353i
\(965\) −7034.56 21650.2i −0.234664 0.722221i
\(966\) 0 0
\(967\) 48055.1 1.59809 0.799043 0.601274i \(-0.205340\pi\)
0.799043 + 0.601274i \(0.205340\pi\)
\(968\) −29925.5 1097.26i −0.993637 0.0364331i
\(969\) 0 0
\(970\) −3875.11 + 2815.43i −0.128270 + 0.0931939i
\(971\) −11666.7 35906.3i −0.385583 1.18670i −0.936056 0.351850i \(-0.885553\pi\)
0.550473 0.834853i \(-0.314447\pi\)
\(972\) 0 0
\(973\) 24675.9 + 17928.1i 0.813025 + 0.590698i
\(974\) −3840.00 2789.93i −0.126326 0.0917813i
\(975\) 0 0
\(976\) 259.220 + 797.796i 0.00850145 + 0.0261648i
\(977\) 24275.8 17637.4i 0.794935 0.577554i −0.114489 0.993425i \(-0.536523\pi\)
0.909424 + 0.415870i \(0.136523\pi\)
\(978\) 0 0
\(979\) 24167.1 + 34578.3i 0.788951 + 1.12883i
\(980\) −5956.03 −0.194141
\(981\) 0 0
\(982\) −7353.98 22633.2i −0.238977 0.735494i
\(983\) −11384.0 + 35036.3i −0.369372 + 1.13681i 0.577825 + 0.816161i \(0.303902\pi\)
−0.947198 + 0.320651i \(0.896098\pi\)
\(984\) 0 0
\(985\) 4098.00 + 2977.37i 0.132562 + 0.0963117i
\(986\) 5175.68 15929.1i 0.167168 0.514489i
\(987\) 0 0
\(988\) −1112.14 + 808.015i −0.0358115 + 0.0260186i
\(989\) −2463.53 −0.0792069
\(990\) 0 0
\(991\) 22406.6 0.718233 0.359117 0.933293i \(-0.383078\pi\)
0.359117 + 0.933293i \(0.383078\pi\)
\(992\) 12329.7 8958.03i 0.394624 0.286711i
\(993\) 0 0
\(994\) −4614.50 + 14202.0i −0.147247 + 0.453179i
\(995\) 13268.3 + 9640.01i 0.422748 + 0.307145i
\(996\) 0 0
\(997\) 5913.47 18199.8i 0.187845 0.578127i −0.812141 0.583462i \(-0.801698\pi\)
0.999986 + 0.00533409i \(0.00169790\pi\)
\(998\) −5682.21 17488.0i −0.180228 0.554684i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 99.4.f.e.91.4 yes 24
3.2 odd 2 inner 99.4.f.e.91.3 yes 24
11.2 odd 10 1089.4.a.bl.1.8 12
11.4 even 5 inner 99.4.f.e.37.4 yes 24
11.9 even 5 1089.4.a.bm.1.5 12
33.2 even 10 1089.4.a.bl.1.5 12
33.20 odd 10 1089.4.a.bm.1.8 12
33.26 odd 10 inner 99.4.f.e.37.3 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.4.f.e.37.3 24 33.26 odd 10 inner
99.4.f.e.37.4 yes 24 11.4 even 5 inner
99.4.f.e.91.3 yes 24 3.2 odd 2 inner
99.4.f.e.91.4 yes 24 1.1 even 1 trivial
1089.4.a.bl.1.5 12 33.2 even 10
1089.4.a.bl.1.8 12 11.2 odd 10
1089.4.a.bm.1.5 12 11.9 even 5
1089.4.a.bm.1.8 12 33.20 odd 10