L(s) = 1 | − 14.5i·2-s + 43.4·4-s + 870.·5-s − 4.07e3i·7-s − 4.36e3i·8-s − 1.26e4i·10-s + (1.07e4 − 9.94e3i)11-s + 3.71e4i·13-s − 5.94e4·14-s − 5.25e4·16-s − 2.00e3i·17-s − 8.95e4i·19-s + 3.78e4·20-s + (−1.44e5 − 1.56e5i)22-s + 2.77e5·23-s + ⋯ |
L(s) = 1 | − 0.911i·2-s + 0.169·4-s + 1.39·5-s − 1.69i·7-s − 1.06i·8-s − 1.26i·10-s + (0.734 − 0.679i)11-s + 1.29i·13-s − 1.54·14-s − 0.801·16-s − 0.0239i·17-s − 0.686i·19-s + 0.236·20-s + (−0.618 − 0.668i)22-s + 0.991·23-s + ⋯ |
Λ(s)=(=(99s/2ΓC(s)L(s)(−0.734+0.679i)Λ(9−s)
Λ(s)=(=(99s/2ΓC(s+4)L(s)(−0.734+0.679i)Λ(1−s)
Degree: |
2 |
Conductor: |
99
= 32⋅11
|
Sign: |
−0.734+0.679i
|
Analytic conductor: |
40.3304 |
Root analytic conductor: |
6.35062 |
Motivic weight: |
8 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ99(10,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 99, ( :4), −0.734+0.679i)
|
Particular Values
L(29) |
≈ |
1.17000−2.98813i |
L(21) |
≈ |
1.17000−2.98813i |
L(5) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 11 | 1+(−1.07e4+9.94e3i)T |
good | 2 | 1+14.5iT−256T2 |
| 5 | 1−870.T+3.90e5T2 |
| 7 | 1+4.07e3iT−5.76e6T2 |
| 13 | 1−3.71e4iT−8.15e8T2 |
| 17 | 1+2.00e3iT−6.97e9T2 |
| 19 | 1+8.95e4iT−1.69e10T2 |
| 23 | 1−2.77e5T+7.83e10T2 |
| 29 | 1−3.25e5iT−5.00e11T2 |
| 31 | 1−4.44e5T+8.52e11T2 |
| 37 | 1+1.48e6T+3.51e12T2 |
| 41 | 1−1.84e6iT−7.98e12T2 |
| 43 | 1−3.67e6iT−1.16e13T2 |
| 47 | 1+3.89e6T+2.38e13T2 |
| 53 | 1−6.99e6T+6.22e13T2 |
| 59 | 1−4.71e6T+1.46e14T2 |
| 61 | 1+7.61e6iT−1.91e14T2 |
| 67 | 1+1.80e7T+4.06e14T2 |
| 71 | 1+4.47e6T+6.45e14T2 |
| 73 | 1−1.06e7iT−8.06e14T2 |
| 79 | 1+4.97e7iT−1.51e15T2 |
| 83 | 1+6.38e7iT−2.25e15T2 |
| 89 | 1−1.01e7T+3.93e15T2 |
| 97 | 1+1.28e8T+7.83e15T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.60092164781385075318535719148, −10.82351372757761911721038739892, −9.944993091021456841343648734977, −9.091886377470389108545928165433, −7.04159608087420884538579477258, −6.40321135869583151329936099388, −4.50102246356379774366585017404, −3.21478796037658261159979614970, −1.71502653057883163241973697329, −0.917956235821705968884873063862,
1.76080489384544735113173241391, 2.71050161091133845198043980041, 5.32114651511740927078072723390, 5.77935345543696829891306812546, 6.82273925341447463614359371851, 8.323401425096496482634023610927, 9.238099140431217054683070163791, 10.34209165488236186277411005704, 11.82399651328201115441416959545, 12.71732506944084370064933263246