Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [99,9,Mod(10,99)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(99, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1]))
N = Newforms(chi, 9, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("99.10");
S:= CuspForms(chi, 9);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 99.c (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 11) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10.1 |
|
− | 31.0620i | 0 | −708.845 | −583.097 | 0 | 1704.90i | 14066.3i | 0 | 18112.1i | |||||||||||||||||||||||||||||||||||
10.2 | − | 14.5774i | 0 | 43.4987 | 870.143 | 0 | − | 4079.11i | − | 4365.92i | 0 | − | 12684.4i | |||||||||||||||||||||||||||||||||
10.3 | − | 14.0233i | 0 | 59.3467 | −63.0464 | 0 | 1667.89i | − | 4422.21i | 0 | 884.120i | |||||||||||||||||||||||||||||||||||
10.4 | 14.0233i | 0 | 59.3467 | −63.0464 | 0 | − | 1667.89i | 4422.21i | 0 | − | 884.120i | |||||||||||||||||||||||||||||||||||
10.5 | 14.5774i | 0 | 43.4987 | 870.143 | 0 | 4079.11i | 4365.92i | 0 | 12684.4i | |||||||||||||||||||||||||||||||||||||
10.6 | 31.0620i | 0 | −708.845 | −583.097 | 0 | − | 1704.90i | − | 14066.3i | 0 | − | 18112.1i | ||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
11.b | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 99.9.c.b | 6 | |
3.b | odd | 2 | 1 | 11.9.b.b | ✓ | 6 | |
11.b | odd | 2 | 1 | inner | 99.9.c.b | 6 | |
12.b | even | 2 | 1 | 176.9.h.c | 6 | ||
33.d | even | 2 | 1 | 11.9.b.b | ✓ | 6 | |
132.d | odd | 2 | 1 | 176.9.h.c | 6 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
11.9.b.b | ✓ | 6 | 3.b | odd | 2 | 1 | |
11.9.b.b | ✓ | 6 | 33.d | even | 2 | 1 | |
99.9.c.b | 6 | 1.a | even | 1 | 1 | trivial | |
99.9.c.b | 6 | 11.b | odd | 2 | 1 | inner | |
176.9.h.c | 6 | 12.b | even | 2 | 1 | ||
176.9.h.c | 6 | 132.d | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .