L(s) = 1 | − 2-s + 4-s − i·5-s − 2.65i·7-s − 8-s + i·10-s + (−2.74 + 1.86i)11-s + 7.17i·13-s + 2.65i·14-s + 16-s − 4.82·17-s + 0.755i·19-s − i·20-s + (2.74 − 1.86i)22-s + 7.83i·23-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.5·4-s − 0.447i·5-s − 1.00i·7-s − 0.353·8-s + 0.316i·10-s + (−0.827 + 0.561i)11-s + 1.98i·13-s + 0.710i·14-s + 0.250·16-s − 1.17·17-s + 0.173i·19-s − 0.223i·20-s + (0.584 − 0.397i)22-s + 1.63i·23-s + ⋯ |
Λ(s)=(=(990s/2ΓC(s)L(s)(0.351−0.936i)Λ(2−s)
Λ(s)=(=(990s/2ΓC(s+1/2)L(s)(0.351−0.936i)Λ(1−s)
Degree: |
2 |
Conductor: |
990
= 2⋅32⋅5⋅11
|
Sign: |
0.351−0.936i
|
Analytic conductor: |
7.90518 |
Root analytic conductor: |
2.81161 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ990(791,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 990, ( :1/2), 0.351−0.936i)
|
Particular Values
L(1) |
≈ |
0.650638+0.450953i |
L(21) |
≈ |
0.650638+0.450953i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1 |
| 5 | 1+iT |
| 11 | 1+(2.74−1.86i)T |
good | 7 | 1+2.65iT−7T2 |
| 13 | 1−7.17iT−13T2 |
| 17 | 1+4.82T+17T2 |
| 19 | 1−0.755iT−19T2 |
| 23 | 1−7.83iT−23T2 |
| 29 | 1−3.75T+29T2 |
| 31 | 1−5.75T+31T2 |
| 37 | 1−10.4T+37T2 |
| 41 | 1−3.92T+41T2 |
| 43 | 1+2.07iT−43T2 |
| 47 | 1−8.07iT−47T2 |
| 53 | 1+3.55iT−53T2 |
| 59 | 1+8.41iT−59T2 |
| 61 | 1−9.72iT−61T2 |
| 67 | 1+13.4T+67T2 |
| 71 | 1+2.17iT−71T2 |
| 73 | 1−7.75iT−73T2 |
| 79 | 1−4.58iT−79T2 |
| 83 | 1+6.72T+83T2 |
| 89 | 1−10.4iT−89T2 |
| 97 | 1+15.3T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.895691957725307157357648004570, −9.452841362094192413345825349154, −8.547190602698300232879208768057, −7.60485330753149111793101889216, −7.00688887495891682059687304375, −6.11064432371435588215087756508, −4.68564553100735863492217598611, −4.09433088161964445099026593853, −2.45356787564394560523801387518, −1.30139547143764523110528677050,
0.48276501800401486827803001585, 2.58654373685677541256496386481, 2.85275326564997821076252045390, 4.65268888974632945287253736229, 5.79056069276133141759178151024, 6.33085986921118478027619181227, 7.54573261305548565901528587860, 8.329882235321117927176568355317, 8.768186495116050188744284059696, 9.962692383734088161617816470989