Properties

Label 2-990-33.32-c1-0-2
Degree $2$
Conductor $990$
Sign $0.351 - 0.936i$
Analytic cond. $7.90518$
Root an. cond. $2.81161$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s i·5-s − 2.65i·7-s − 8-s + i·10-s + (−2.74 + 1.86i)11-s + 7.17i·13-s + 2.65i·14-s + 16-s − 4.82·17-s + 0.755i·19-s i·20-s + (2.74 − 1.86i)22-s + 7.83i·23-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s − 0.447i·5-s − 1.00i·7-s − 0.353·8-s + 0.316i·10-s + (−0.827 + 0.561i)11-s + 1.98i·13-s + 0.710i·14-s + 0.250·16-s − 1.17·17-s + 0.173i·19-s − 0.223i·20-s + (0.584 − 0.397i)22-s + 1.63i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.351 - 0.936i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.351 - 0.936i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(990\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 11\)
Sign: $0.351 - 0.936i$
Analytic conductor: \(7.90518\)
Root analytic conductor: \(2.81161\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{990} (791, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 990,\ (\ :1/2),\ 0.351 - 0.936i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.650638 + 0.450953i\)
\(L(\frac12)\) \(\approx\) \(0.650638 + 0.450953i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 + iT \)
11 \( 1 + (2.74 - 1.86i)T \)
good7 \( 1 + 2.65iT - 7T^{2} \)
13 \( 1 - 7.17iT - 13T^{2} \)
17 \( 1 + 4.82T + 17T^{2} \)
19 \( 1 - 0.755iT - 19T^{2} \)
23 \( 1 - 7.83iT - 23T^{2} \)
29 \( 1 - 3.75T + 29T^{2} \)
31 \( 1 - 5.75T + 31T^{2} \)
37 \( 1 - 10.4T + 37T^{2} \)
41 \( 1 - 3.92T + 41T^{2} \)
43 \( 1 + 2.07iT - 43T^{2} \)
47 \( 1 - 8.07iT - 47T^{2} \)
53 \( 1 + 3.55iT - 53T^{2} \)
59 \( 1 + 8.41iT - 59T^{2} \)
61 \( 1 - 9.72iT - 61T^{2} \)
67 \( 1 + 13.4T + 67T^{2} \)
71 \( 1 + 2.17iT - 71T^{2} \)
73 \( 1 - 7.75iT - 73T^{2} \)
79 \( 1 - 4.58iT - 79T^{2} \)
83 \( 1 + 6.72T + 83T^{2} \)
89 \( 1 - 10.4iT - 89T^{2} \)
97 \( 1 + 15.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.895691957725307157357648004570, −9.452841362094192413345825349154, −8.547190602698300232879208768057, −7.60485330753149111793101889216, −7.00688887495891682059687304375, −6.11064432371435588215087756508, −4.68564553100735863492217598611, −4.09433088161964445099026593853, −2.45356787564394560523801387518, −1.30139547143764523110528677050, 0.48276501800401486827803001585, 2.58654373685677541256496386481, 2.85275326564997821076252045390, 4.65268888974632945287253736229, 5.79056069276133141759178151024, 6.33085986921118478027619181227, 7.54573261305548565901528587860, 8.329882235321117927176568355317, 8.768186495116050188744284059696, 9.962692383734088161617816470989

Graph of the $Z$-function along the critical line