Properties

Label 990.2.d.a
Level $990$
Weight $2$
Character orbit 990.d
Analytic conductor $7.905$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [990,2,Mod(791,990)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(990, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("990.791");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 990.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.90518980011\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.4328587264.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 18x^{6} + 109x^{4} + 260x^{2} + 196 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + q^{4} - \beta_1 q^{5} + ( - \beta_{7} - \beta_{5}) q^{7} - q^{8} + \beta_1 q^{10} + (\beta_{6} + \beta_{4} + \cdots + 2 \beta_1) q^{11} + (\beta_{7} + \beta_{5} + \cdots + \beta_{2}) q^{13}+ \cdots + (\beta_{7} - 2 \beta_{6} - \beta_{5} + \cdots + 3) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{2} + 8 q^{4} - 8 q^{8} + 8 q^{16} - 16 q^{17} - 8 q^{25} - 8 q^{29} + 8 q^{31} - 8 q^{32} + 16 q^{34} + 24 q^{37} - 8 q^{41} - 16 q^{49} + 8 q^{50} + 12 q^{55} + 8 q^{58} - 8 q^{62} + 8 q^{64}+ \cdots + 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 18x^{6} + 109x^{4} + 260x^{2} + 196 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -3\nu^{7} - 40\nu^{5} - 131\nu^{3} - 66\nu ) / 56 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{7} - 18\nu^{5} - 95\nu^{3} - 134\nu ) / 28 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 2\nu^{7} + 29\nu^{5} + 7\nu^{4} + 127\nu^{3} + 63\nu^{2} + 198\nu + 98 ) / 28 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -2\nu^{7} - 29\nu^{5} + 7\nu^{4} - 127\nu^{3} + 63\nu^{2} - 198\nu + 98 ) / 28 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{7} - 2\nu^{6} - 14\nu^{5} - 26\nu^{4} - 55\nu^{3} - 84\nu^{2} - 58\nu - 48 ) / 8 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( \nu^{6} + 14\nu^{4} + 55\nu^{2} + 58 ) / 4 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -\nu^{7} + 2\nu^{6} - 14\nu^{5} + 26\nu^{4} - 55\nu^{3} + 84\nu^{2} - 58\nu + 48 ) / 8 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{7} + \beta_{5} - \beta_{4} + \beta_{3} - 2\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{7} + 2\beta_{6} + \beta_{5} - \beta_{4} - \beta_{3} - 10 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -7\beta_{7} - 7\beta_{5} + 5\beta_{4} - 5\beta_{3} + 2\beta_{2} + 18\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 9\beta_{7} - 18\beta_{6} - 9\beta_{5} + 13\beta_{4} + 13\beta_{3} + 62 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 53\beta_{7} + 53\beta_{5} - 31\beta_{4} + 31\beta_{3} - 34\beta_{2} - 142\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( -71\beta_{7} + 150\beta_{6} + 71\beta_{5} - 127\beta_{4} - 127\beta_{3} - 434 ) / 2 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( -423\beta_{7} - 423\beta_{5} + 217\beta_{4} - 217\beta_{3} + 366\beta_{2} + 1114\beta_1 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/990\mathbb{Z}\right)^\times\).

\(n\) \(397\) \(541\) \(551\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
791.1
2.18398i
1.87996i
1.18398i
2.87996i
2.87996i
1.18398i
1.87996i
2.18398i
−1.00000 0 1.00000 1.00000i 0 3.08861i −1.00000 0 1.00000i
791.2 −1.00000 0 1.00000 1.00000i 0 2.65867i −1.00000 0 1.00000i
791.3 −1.00000 0 1.00000 1.00000i 0 1.67440i −1.00000 0 1.00000i
791.4 −1.00000 0 1.00000 1.00000i 0 4.07288i −1.00000 0 1.00000i
791.5 −1.00000 0 1.00000 1.00000i 0 4.07288i −1.00000 0 1.00000i
791.6 −1.00000 0 1.00000 1.00000i 0 1.67440i −1.00000 0 1.00000i
791.7 −1.00000 0 1.00000 1.00000i 0 2.65867i −1.00000 0 1.00000i
791.8 −1.00000 0 1.00000 1.00000i 0 3.08861i −1.00000 0 1.00000i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 791.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
33.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 990.2.d.a 8
3.b odd 2 1 990.2.d.b yes 8
4.b odd 2 1 7920.2.f.a 8
5.b even 2 1 4950.2.d.m 8
5.c odd 4 1 4950.2.f.d 8
5.c odd 4 1 4950.2.f.e 8
11.b odd 2 1 990.2.d.b yes 8
12.b even 2 1 7920.2.f.b 8
15.d odd 2 1 4950.2.d.h 8
15.e even 4 1 4950.2.f.c 8
15.e even 4 1 4950.2.f.f 8
33.d even 2 1 inner 990.2.d.a 8
44.c even 2 1 7920.2.f.b 8
55.d odd 2 1 4950.2.d.h 8
55.e even 4 1 4950.2.f.c 8
55.e even 4 1 4950.2.f.f 8
132.d odd 2 1 7920.2.f.a 8
165.d even 2 1 4950.2.d.m 8
165.l odd 4 1 4950.2.f.d 8
165.l odd 4 1 4950.2.f.e 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
990.2.d.a 8 1.a even 1 1 trivial
990.2.d.a 8 33.d even 2 1 inner
990.2.d.b yes 8 3.b odd 2 1
990.2.d.b yes 8 11.b odd 2 1
4950.2.d.h 8 15.d odd 2 1
4950.2.d.h 8 55.d odd 2 1
4950.2.d.m 8 5.b even 2 1
4950.2.d.m 8 165.d even 2 1
4950.2.f.c 8 15.e even 4 1
4950.2.f.c 8 55.e even 4 1
4950.2.f.d 8 5.c odd 4 1
4950.2.f.d 8 165.l odd 4 1
4950.2.f.e 8 5.c odd 4 1
4950.2.f.e 8 165.l odd 4 1
4950.2.f.f 8 15.e even 4 1
4950.2.f.f 8 55.e even 4 1
7920.2.f.a 8 4.b odd 2 1
7920.2.f.a 8 132.d odd 2 1
7920.2.f.b 8 12.b even 2 1
7920.2.f.b 8 44.c even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{17}^{2} + 4T_{17} - 4 \) acting on \(S_{2}^{\mathrm{new}}(990, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{8} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( (T^{2} + 1)^{4} \) Copy content Toggle raw display
$7$ \( T^{8} + 36 T^{6} + \cdots + 3136 \) Copy content Toggle raw display
$11$ \( T^{8} + 18 T^{6} + \cdots + 14641 \) Copy content Toggle raw display
$13$ \( T^{8} + 80 T^{6} + \cdots + 35344 \) Copy content Toggle raw display
$17$ \( (T^{2} + 4 T - 4)^{4} \) Copy content Toggle raw display
$19$ \( T^{8} + 68 T^{6} + \cdots + 1024 \) Copy content Toggle raw display
$23$ \( T^{8} + 140 T^{6} + \cdots + 16384 \) Copy content Toggle raw display
$29$ \( (T^{4} + 4 T^{3} + \cdots + 224)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} - 4 T^{3} + \cdots + 224)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} - 12 T^{3} + \cdots - 776)^{2} \) Copy content Toggle raw display
$41$ \( (T^{4} + 4 T^{3} - 54 T^{2} + \cdots - 56)^{2} \) Copy content Toggle raw display
$43$ \( T^{8} + 52 T^{6} + \cdots + 256 \) Copy content Toggle raw display
$47$ \( T^{8} + 100 T^{6} + \cdots + 3136 \) Copy content Toggle raw display
$53$ \( T^{8} + 184 T^{6} + \cdots + 4096 \) Copy content Toggle raw display
$59$ \( T^{8} + 140 T^{6} + \cdots + 16384 \) Copy content Toggle raw display
$61$ \( T^{8} + 196 T^{6} + \cdots + 1032256 \) Copy content Toggle raw display
$67$ \( (T^{4} - 272 T^{2} + 16448)^{2} \) Copy content Toggle raw display
$71$ \( T^{8} + 236 T^{6} + \cdots + 200704 \) Copy content Toggle raw display
$73$ \( T^{8} + 104 T^{6} + \cdots + 1024 \) Copy content Toggle raw display
$79$ \( T^{8} + 136 T^{6} + \cdots + 262144 \) Copy content Toggle raw display
$83$ \( (T^{4} + 12 T^{3} + \cdots + 2048)^{2} \) Copy content Toggle raw display
$89$ \( T^{8} + 424 T^{6} + \cdots + 36529936 \) Copy content Toggle raw display
$97$ \( (T^{4} + 4 T^{3} + \cdots + 4544)^{2} \) Copy content Toggle raw display
show more
show less