Properties

Label 2-990-33.32-c1-0-7
Degree $2$
Conductor $990$
Sign $0.978 + 0.207i$
Analytic cond. $7.90518$
Root an. cond. $2.81161$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + i·5-s − 1.67i·7-s − 8-s i·10-s + (2.25 + 2.43i)11-s − 2.95i·13-s + 1.67i·14-s + 16-s + 0.828·17-s − 2.26i·19-s + i·20-s + (−2.25 − 2.43i)22-s + 0.720i·23-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s + 0.447i·5-s − 0.632i·7-s − 0.353·8-s − 0.316i·10-s + (0.678 + 0.734i)11-s − 0.819i·13-s + 0.447i·14-s + 0.250·16-s + 0.200·17-s − 0.518i·19-s + 0.223i·20-s + (−0.480 − 0.519i)22-s + 0.150i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.978 + 0.207i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.978 + 0.207i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(990\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 11\)
Sign: $0.978 + 0.207i$
Analytic conductor: \(7.90518\)
Root analytic conductor: \(2.81161\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{990} (791, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 990,\ (\ :1/2),\ 0.978 + 0.207i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.17777 - 0.123619i\)
\(L(\frac12)\) \(\approx\) \(1.17777 - 0.123619i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 - iT \)
11 \( 1 + (-2.25 - 2.43i)T \)
good7 \( 1 + 1.67iT - 7T^{2} \)
13 \( 1 + 2.95iT - 13T^{2} \)
17 \( 1 - 0.828T + 17T^{2} \)
19 \( 1 + 2.26iT - 19T^{2} \)
23 \( 1 - 0.720iT - 23T^{2} \)
29 \( 1 - 2.36T + 29T^{2} \)
31 \( 1 - 4.36T + 31T^{2} \)
37 \( 1 - 4.69T + 37T^{2} \)
41 \( 1 - 1.21T + 41T^{2} \)
43 \( 1 + 5.08iT - 43T^{2} \)
47 \( 1 + 0.911iT - 47T^{2} \)
53 \( 1 + 3.71iT - 53T^{2} \)
59 \( 1 - 2.69iT - 59T^{2} \)
61 \( 1 - 8.74iT - 61T^{2} \)
67 \( 1 - 9.52T + 67T^{2} \)
71 \( 1 - 4.93iT - 71T^{2} \)
73 \( 1 + 6.36iT - 73T^{2} \)
79 \( 1 - 2.46iT - 79T^{2} \)
83 \( 1 - 8.85T + 83T^{2} \)
89 \( 1 + 7.84iT - 89T^{2} \)
97 \( 1 - 17.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.05479041889350996619595711669, −9.222337474597384034115657826187, −8.269855050199098254260972096690, −7.41427897254376522815932643601, −6.83705107803337846146619308688, −5.88268787245037051463225418828, −4.62092853677126427150565252560, −3.52076391008479936664220320579, −2.36520577366223383751054961149, −0.902693357665715264627831594843, 1.06783812362714290096090078442, 2.34362438418320770562685414790, 3.62801298228091702881509133188, 4.79534150361546660449232842774, 5.98163914456072388839402144006, 6.53627194577047402017788060981, 7.75544328902837023644801193553, 8.485787058703879294404583929847, 9.156371169053805923228651042827, 9.768106991128600612816903441741

Graph of the $Z$-function along the critical line