L(s) = 1 | − 2-s + 4-s + i·5-s − 1.67i·7-s − 8-s − i·10-s + (2.25 + 2.43i)11-s − 2.95i·13-s + 1.67i·14-s + 16-s + 0.828·17-s − 2.26i·19-s + i·20-s + (−2.25 − 2.43i)22-s + 0.720i·23-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.5·4-s + 0.447i·5-s − 0.632i·7-s − 0.353·8-s − 0.316i·10-s + (0.678 + 0.734i)11-s − 0.819i·13-s + 0.447i·14-s + 0.250·16-s + 0.200·17-s − 0.518i·19-s + 0.223i·20-s + (−0.480 − 0.519i)22-s + 0.150i·23-s + ⋯ |
Λ(s)=(=(990s/2ΓC(s)L(s)(0.978+0.207i)Λ(2−s)
Λ(s)=(=(990s/2ΓC(s+1/2)L(s)(0.978+0.207i)Λ(1−s)
Degree: |
2 |
Conductor: |
990
= 2⋅32⋅5⋅11
|
Sign: |
0.978+0.207i
|
Analytic conductor: |
7.90518 |
Root analytic conductor: |
2.81161 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ990(791,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 990, ( :1/2), 0.978+0.207i)
|
Particular Values
L(1) |
≈ |
1.17777−0.123619i |
L(21) |
≈ |
1.17777−0.123619i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1 |
| 5 | 1−iT |
| 11 | 1+(−2.25−2.43i)T |
good | 7 | 1+1.67iT−7T2 |
| 13 | 1+2.95iT−13T2 |
| 17 | 1−0.828T+17T2 |
| 19 | 1+2.26iT−19T2 |
| 23 | 1−0.720iT−23T2 |
| 29 | 1−2.36T+29T2 |
| 31 | 1−4.36T+31T2 |
| 37 | 1−4.69T+37T2 |
| 41 | 1−1.21T+41T2 |
| 43 | 1+5.08iT−43T2 |
| 47 | 1+0.911iT−47T2 |
| 53 | 1+3.71iT−53T2 |
| 59 | 1−2.69iT−59T2 |
| 61 | 1−8.74iT−61T2 |
| 67 | 1−9.52T+67T2 |
| 71 | 1−4.93iT−71T2 |
| 73 | 1+6.36iT−73T2 |
| 79 | 1−2.46iT−79T2 |
| 83 | 1−8.85T+83T2 |
| 89 | 1+7.84iT−89T2 |
| 97 | 1−17.5T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.05479041889350996619595711669, −9.222337474597384034115657826187, −8.269855050199098254260972096690, −7.41427897254376522815932643601, −6.83705107803337846146619308688, −5.88268787245037051463225418828, −4.62092853677126427150565252560, −3.52076391008479936664220320579, −2.36520577366223383751054961149, −0.902693357665715264627831594843,
1.06783812362714290096090078442, 2.34362438418320770562685414790, 3.62801298228091702881509133188, 4.79534150361546660449232842774, 5.98163914456072388839402144006, 6.53627194577047402017788060981, 7.75544328902837023644801193553, 8.485787058703879294404583929847, 9.156371169053805923228651042827, 9.768106991128600612816903441741