L(s) = 1 | + 4·3-s − 5-s + 6·9-s + 4·13-s − 4·15-s + 25-s − 4·27-s + 8·31-s + 4·37-s + 16·39-s + 12·41-s + 20·43-s − 6·45-s − 10·49-s − 12·53-s − 4·65-s − 4·67-s + 24·71-s + 4·75-s − 16·79-s − 37·81-s − 12·83-s − 12·89-s + 32·93-s + 12·107-s + 16·111-s + 24·117-s + ⋯ |
L(s) = 1 | + 2.30·3-s − 0.447·5-s + 2·9-s + 1.10·13-s − 1.03·15-s + 1/5·25-s − 0.769·27-s + 1.43·31-s + 0.657·37-s + 2.56·39-s + 1.87·41-s + 3.04·43-s − 0.894·45-s − 1.42·49-s − 1.64·53-s − 0.496·65-s − 0.488·67-s + 2.84·71-s + 0.461·75-s − 1.80·79-s − 4.11·81-s − 1.31·83-s − 1.27·89-s + 3.31·93-s + 1.16·107-s + 1.51·111-s + 2.21·117-s + ⋯ |
Λ(s)=(=(128000s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(128000s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
128000
= 210⋅53
|
Sign: |
1
|
Analytic conductor: |
8.16139 |
Root analytic conductor: |
1.69021 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 128000, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
3.270950819 |
L(21) |
≈ |
3.270950819 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C1 | 1+T |
good | 3 | C2 | (1−2T+pT2)2 |
| 7 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 11 | C2 | (1+pT2)2 |
| 13 | C2 | (1−2T+pT2)2 |
| 17 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 19 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 23 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 29 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 31 | C2 | (1−4T+pT2)2 |
| 37 | C2 | (1−2T+pT2)2 |
| 41 | C2 | (1−6T+pT2)2 |
| 43 | C2 | (1−10T+pT2)2 |
| 47 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 53 | C2 | (1+6T+pT2)2 |
| 59 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 61 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 67 | C2 | (1+2T+pT2)2 |
| 71 | C2 | (1−12T+pT2)2 |
| 73 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 79 | C2 | (1+8T+pT2)2 |
| 83 | C2 | (1+6T+pT2)2 |
| 89 | C2 | (1+6T+pT2)2 |
| 97 | C2 | (1−2T+pT2)(1+2T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.249279365224539237566485048625, −8.740293324354028093320034492248, −8.550149092441660717391493732033, −7.950176007435402201982724906846, −7.71273110823499542846308181544, −7.33279621647751156873215628670, −6.27087624192875571051851265258, −6.14181160684855424693200797613, −5.25974231276140424950498810771, −4.19097847493160731891690631788, −4.12250433368686324236236368171, −3.32887958847832114233485788826, −2.76929890617261215013507568311, −2.41662881718811067600819256762, −1.26575059491370931038306222328,
1.26575059491370931038306222328, 2.41662881718811067600819256762, 2.76929890617261215013507568311, 3.32887958847832114233485788826, 4.12250433368686324236236368171, 4.19097847493160731891690631788, 5.25974231276140424950498810771, 6.14181160684855424693200797613, 6.27087624192875571051851265258, 7.33279621647751156873215628670, 7.71273110823499542846308181544, 7.950176007435402201982724906846, 8.550149092441660717391493732033, 8.740293324354028093320034492248, 9.249279365224539237566485048625