L(s) = 1 | − 2·5-s − 4·7-s − 2·9-s + 8·19-s + 3·25-s + 8·35-s + 4·37-s + 20·43-s + 4·45-s − 2·49-s − 12·53-s + 8·63-s − 16·79-s − 5·81-s − 12·83-s − 12·89-s − 16·95-s + 4·97-s + 12·107-s − 12·113-s − 11·121-s − 4·125-s + 127-s + 131-s − 32·133-s + 137-s + 139-s + ⋯ |
L(s) = 1 | − 0.894·5-s − 1.51·7-s − 2/3·9-s + 1.83·19-s + 3/5·25-s + 1.35·35-s + 0.657·37-s + 3.04·43-s + 0.596·45-s − 2/7·49-s − 1.64·53-s + 1.00·63-s − 1.80·79-s − 5/9·81-s − 1.31·83-s − 1.27·89-s − 1.64·95-s + 0.406·97-s + 1.16·107-s − 1.12·113-s − 121-s − 0.357·125-s + 0.0887·127-s + 0.0873·131-s − 2.77·133-s + 0.0854·137-s + 0.0848·139-s + ⋯ |
Λ(s)=(=(193600s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(193600s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
193600
= 26⋅52⋅112
|
Sign: |
−1
|
Analytic conductor: |
12.3441 |
Root analytic conductor: |
1.87441 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 193600, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C1 | (1+T)2 |
| 11 | C2 | 1+pT2 |
good | 3 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 7 | C2 | (1+2T+pT2)2 |
| 13 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 17 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 19 | C2 | (1−4T+pT2)2 |
| 23 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 29 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 31 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 37 | C2 | (1−2T+pT2)2 |
| 41 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 43 | C2 | (1−10T+pT2)2 |
| 47 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 53 | C2 | (1+6T+pT2)2 |
| 59 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 61 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 67 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 71 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 73 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 79 | C2 | (1+8T+pT2)2 |
| 83 | C2 | (1+6T+pT2)2 |
| 89 | C2 | (1+6T+pT2)2 |
| 97 | C2 | (1−2T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.740293324354028093320034492248, −8.597075432672291247955228431981, −7.71273110823499542846308181544, −7.48339952967373098458922175110, −7.12025897518162428207793885558, −6.27087624192875571051851265258, −6.09088770920212572077792597538, −5.46752609716119299096669229449, −4.83331995302090139893539895632, −4.12250433368686324236236368171, −3.61120105048083329633068803983, −2.90312545354050643736888796120, −2.76929890617261215013507568311, −1.17768193714929585417069498904, 0,
1.17768193714929585417069498904, 2.76929890617261215013507568311, 2.90312545354050643736888796120, 3.61120105048083329633068803983, 4.12250433368686324236236368171, 4.83331995302090139893539895632, 5.46752609716119299096669229449, 6.09088770920212572077792597538, 6.27087624192875571051851265258, 7.12025897518162428207793885558, 7.48339952967373098458922175110, 7.71273110823499542846308181544, 8.597075432672291247955228431981, 8.740293324354028093320034492248