Maass form invariants
Level: | \( 13 \) |
Weight: | \( 0 \) |
Character: | 13.1 |
Symmetry: | even |
Fricke sign: | $-1$ |
Spectral parameter: | \(14.6718170691001421911597173815 \pm 3 \cdot 10^{-7}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -0.85454918 \pm 6.8 \cdot 10^{-6} \) | \(a_{3}= +1.18939602 \pm 5.2 \cdot 10^{-6} \) |
\(a_{4}= -0.26974569 \pm 7.3 \cdot 10^{-6} \) | \(a_{5}= +0.75803629 \pm 5.7 \cdot 10^{-6} \) | \(a_{6}= -1.01639740 \pm 6.6 \cdot 10^{-6} \) |
\(a_{7}= -0.88638633 \pm 5.2 \cdot 10^{-6} \) | \(a_{8}= +1.08506015 \pm 6.7 \cdot 10^{-6} \) | \(a_{9}= +0.41466289 \pm 4.6 \cdot 10^{-6} \) |
\(a_{10}= -0.64777929 \pm 5.2 \cdot 10^{-6} \) | \(a_{11}= +0.37806249 \pm 3.9 \cdot 10^{-6} \) | \(a_{12}= -0.32083445 \pm 6.5 \cdot 10^{-6} \) |
\(a_{13}= +0.27735010 \pm 1.0 \cdot 10^{-8} \) | \(a_{14}= +0.75746072 \pm 7.4 \cdot 10^{-6} \) | \(a_{15}= +0.90160535 \pm 4.2 \cdot 10^{-6} \) |
\(a_{16}= -0.65749157 \pm 4.7 \cdot 10^{-6} \) | \(a_{17}= +0.37829645 \pm 5.1 \cdot 10^{-6} \) | \(a_{18}= -0.35434983 \pm 5.4 \cdot 10^{-6} \) |
\(a_{19}= -1.82298932 \pm 5.5 \cdot 10^{-6} \) | \(a_{20}= -0.20447702 \pm 6.3 \cdot 10^{-6} \) | \(a_{21}= -1.05426437 \pm 4.2 \cdot 10^{-6} \) |
\(a_{22}= -0.32307300 \pm 3.7 \cdot 10^{-6} \) | \(a_{23}= -0.06393740 \pm 3.7 \cdot 10^{-6} \) | \(a_{24}= +1.29056622 \pm 6.1 \cdot 10^{-6} \) |
\(a_{25}= -0.42538098 \pm 6.3 \cdot 10^{-6} \) | \(a_{26}= -0.23700930 \pm 6.8 \cdot 10^{-6} \) | \(a_{27}= -0.69619763 \pm 5.6 \cdot 10^{-6} \) |
\(a_{28}= +0.23909889 \pm 8.0 \cdot 10^{-6} \) | \(a_{29}= +0.06231457 \pm 4.9 \cdot 10^{-6} \) | \(a_{30}= -0.77046611 \pm 3.5 \cdot 10^{-6} \) |
\(a_{31}= +1.72167118 \pm 3.8 \cdot 10^{-6} \) | \(a_{32}= -0.52320126 \pm 5.1 \cdot 10^{-6} \) | \(a_{33}= +0.44966603 \pm 4.6 \cdot 10^{-6} \) |
\(a_{34}= -0.32327292 \pm 6.5 \cdot 10^{-6} \) | \(a_{35}= -0.67191301 \pm 4.7 \cdot 10^{-6} \) | \(a_{36}= -0.11185353 \pm 4.5 \cdot 10^{-6} \) |
\(a_{37}= +1.57690600 \pm 4.5 \cdot 10^{-6} \) | \(a_{38}= +1.55783404 \pm 7.4 \cdot 10^{-6} \) | \(a_{39}= +0.32987910 \pm 5.2 \cdot 10^{-6} \) |
\(a_{40}= +0.82251497 \pm 6.1 \cdot 10^{-6} \) | \(a_{41}= -1.00557767 \pm 7.6 \cdot 10^{-6} \) | \(a_{42}= +0.90092076 \pm 6.1 \cdot 10^{-6} \) |
\(a_{43}= -0.03451455 \pm 4.3 \cdot 10^{-6} \) | \(a_{44}= -0.10198073 \pm 3.0 \cdot 10^{-6} \) | \(a_{45}= +0.31432952 \pm 3.9 \cdot 10^{-6} \) |
\(a_{46}= +0.05463765 \pm 4.4 \cdot 10^{-6} \) | \(a_{47}= +0.00747220 \pm 4.0 \cdot 10^{-6} \) | \(a_{48}= -0.78201786 \pm 4.2 \cdot 10^{-6} \) |
\(a_{49}= -0.21431927 \pm 3.9 \cdot 10^{-6} \) | \(a_{50}= +0.36350897 \pm 5.1 \cdot 10^{-6} \) | \(a_{51}= +0.44994429 \pm 5.5 \cdot 10^{-6} \) |
\(a_{52}= -0.07481399 \pm 7.3 \cdot 10^{-6} \) | \(a_{53}= +0.41581193 \pm 5.4 \cdot 10^{-6} \) | \(a_{54}= +0.59493512 \pm 5.9 \cdot 10^{-6} \) |
\(a_{55}= +0.28658509 \pm 3.6 \cdot 10^{-6} \) | \(a_{56}= -0.96178248 \pm 6.3 \cdot 10^{-6} \) | \(a_{57}= -2.16825624 \pm 3.1 \cdot 10^{-6} \) |
\(a_{58}= -0.05325087 \pm 7.9 \cdot 10^{-6} \) | \(a_{59}= -1.56038292 \pm 4.5 \cdot 10^{-6} \) | \(a_{60}= -0.24320416 \pm 4.1 \cdot 10^{-6} \) |
\(a_{61}= -0.54719878 \pm 5.0 \cdot 10^{-6} \) | \(a_{62}= -1.47125270 \pm 3.3 \cdot 10^{-6} \) | \(a_{63}= -0.36755152 \pm 3.8 \cdot 10^{-6} \) |
\(a_{64}= +1.10459278 \pm 6.6 \cdot 10^{-6} \) | \(a_{65}= +0.21024144 \pm 5.7 \cdot 10^{-6} \) | \(a_{66}= -0.38426174 \pm 4.8 \cdot 10^{-6} \) |
\(a_{67}= -0.38087693 \pm 4.3 \cdot 10^{-6} \) | \(a_{68}= -0.10204384 \pm 6.8 \cdot 10^{-6} \) | \(a_{69}= -0.07604689 \pm 3.4 \cdot 10^{-6} \) |
\(a_{70}= +0.57418271 \pm 5.5 \cdot 10^{-6} \) | \(a_{71}= +0.00181103 \pm 4.2 \cdot 10^{-6} \) | \(a_{72}= +0.44993418 \pm 5.2 \cdot 10^{-6} \) |
\(a_{73}= -1.01555986 \pm 4.3 \cdot 10^{-6} \) | \(a_{74}= -1.34754374 \pm 5.4 \cdot 10^{-6} \) | \(a_{75}= -0.50594645 \pm 5.5 \cdot 10^{-6} \) |
\(a_{76}= +0.49174352 \pm 7.4 \cdot 10^{-6} \) | \(a_{77}= -0.33510943 \pm 3.5 \cdot 10^{-6} \) | \(a_{78}= -0.28189792 \pm 1.2 \cdot 10^{-5} \) |
\(a_{79}= -0.60193971 \pm 4.0 \cdot 10^{-6} \) | \(a_{80}= -0.49840247 \pm 5.4 \cdot 10^{-6} \) | \(a_{81}= -1.24271758 \pm 5.5 \cdot 10^{-6} \) |
\(a_{82}= +0.85931558 \pm 1.0 \cdot 10^{-5} \) | \(a_{83}= -0.22044764 \pm 6.0 \cdot 10^{-6} \) | \(a_{84}= +0.28438327 \pm 6.6 \cdot 10^{-6} \) |
\(a_{85}= +0.28676244 \pm 3.7 \cdot 10^{-6} \) | \(a_{86}= +0.02949438 \pm 4.1 \cdot 10^{-6} \) | \(a_{87}= +0.07411670 \pm 5.1 \cdot 10^{-6} \) |
\(a_{88}= +0.41022055 \pm 3.8 \cdot 10^{-6} \) | \(a_{89}= -0.88814506 \pm 4.8 \cdot 10^{-6} \) | \(a_{90}= -0.26861003 \pm 4.3 \cdot 10^{-6} \) |
\(a_{91}= -0.24583934 \pm 5.2 \cdot 10^{-6} \) | \(a_{92}= +0.01724684 \pm 4.4 \cdot 10^{-6} \) | \(a_{93}= +2.04774885 \pm 3.7 \cdot 10^{-6} \) |
\(a_{94}= -0.00638536 \pm 5.5 \cdot 10^{-6} \) | \(a_{95}= -1.38189206 \pm 5.6 \cdot 10^{-6} \) | \(a_{96}= -0.62229350 \pm 3.4 \cdot 10^{-6} \) |
\(a_{97}= +0.82789519 \pm 5.7 \cdot 10^{-6} \) | \(a_{98}= +0.18314636 \pm 4.8 \cdot 10^{-6} \) | \(a_{99}= +0.15676849 \pm 5.1 \cdot 10^{-6} \) |
\(a_{100}= +0.11474469 \pm 6.7 \cdot 10^{-6} \) | \(a_{101}= +0.50803551 \pm 5.1 \cdot 10^{-6} \) | \(a_{102}= -0.38449953 \pm 7.3 \cdot 10^{-6} \) |
\(a_{103}= -0.11561269 \pm 5.9 \cdot 10^{-6} \) | \(a_{104}= +0.30094154 \pm 6.7 \cdot 10^{-6} \) | \(a_{105}= -0.79917066 \pm 3.3 \cdot 10^{-6} \) |
\(a_{106}= -0.35533174 \pm 4.0 \cdot 10^{-6} \) | \(a_{107}= -1.33889385 \pm 5.1 \cdot 10^{-6} \) | \(a_{108}= +0.18779631 \pm 5.5 \cdot 10^{-6} \) |
\(a_{109}= -1.60991385 \pm 6.4 \cdot 10^{-6} \) | \(a_{110}= -0.24490106 \pm 3.0 \cdot 10^{-6} \) | \(a_{111}= +1.87556572 \pm 5.0 \cdot 10^{-6} \) |
\(a_{112}= +0.58279154 \pm 3.2 \cdot 10^{-6} \) | \(a_{113}= -1.63525916 \pm 3.7 \cdot 10^{-6} \) | \(a_{114}= +1.85288160 \pm 2.9 \cdot 10^{-6} \) |
\(a_{115}= -0.04846687 \pm 3.7 \cdot 10^{-6} \) | \(a_{116}= -0.01680909 \pm 8.8 \cdot 10^{-6} \) | \(a_{117}= +0.11500679 \pm 4.6 \cdot 10^{-6} \) |
\(a_{118}= +1.33342395 \pm 3.5 \cdot 10^{-6} \) | \(a_{119}= -0.33531680 \pm 4.4 \cdot 10^{-6} \) | \(a_{120}= +0.97829603 \pm 4.0 \cdot 10^{-6} \) |
\(a_{121}= -0.85706875 \pm 5.2 \cdot 10^{-6} \) | \(a_{122}= +0.46760827 \pm 5.8 \cdot 10^{-6} \) | \(a_{123}= -1.19603007 \pm 7.6 \cdot 10^{-6} \) |
\(a_{124}= -0.46441338 \pm 2.9 \cdot 10^{-6} \) | \(a_{125}= -1.08049051 \pm 6.7 \cdot 10^{-6} \) | \(a_{126}= +0.31409085 \pm 5.4 \cdot 10^{-6} \) |
\(a_{127}= +1.48698862 \pm 6.0 \cdot 10^{-6} \) | \(a_{128}= -0.42072760 \pm 7.6 \cdot 10^{-6} \) | \(a_{129}= -0.04105147 \pm 3.8 \cdot 10^{-6} \) |
\(a_{130}= -0.17966165 \pm 1.2 \cdot 10^{-5} \) | \(a_{131}= -0.02260106 \pm 3.8 \cdot 10^{-6} \) | \(a_{132}= -0.12129547 \pm 2.2 \cdot 10^{-6} \) |
\(a_{133}= +1.61587282 \pm 6.2 \cdot 10^{-6} \) | \(a_{134}= +0.32547807 \pm 5.0 \cdot 10^{-6} \) | \(a_{135}= -0.52774307 \pm 5.4 \cdot 10^{-6} \) |
\(a_{136}= +0.41047440 \pm 6.1 \cdot 10^{-6} \) | \(a_{137}= -1.26328630 \pm 3.1 \cdot 10^{-6} \) | \(a_{138}= +0.06498580 \pm 4.1 \cdot 10^{-6} \) |
\(a_{139}= -1.36361403 \pm 4.0 \cdot 10^{-6} \) | \(a_{140}= +0.18124564 \pm 6.2 \cdot 10^{-6} \) | \(a_{141}= +0.00888741 \pm 4.4 \cdot 10^{-6} \) |
\(a_{142}= -0.00154762 \pm 5.1 \cdot 10^{-6} \) | \(a_{143}= +0.10485567 \pm 3.9 \cdot 10^{-6} \) | \(a_{144}= -0.27263735 \pm 4.7 \cdot 10^{-6} \) |
\(a_{145}= +0.04723671 \pm 3.4 \cdot 10^{-6} \) | \(a_{146}= +0.86784585 \pm 5.7 \cdot 10^{-6} \) | \(a_{147}= -0.25491049 \pm 3.1 \cdot 10^{-6} \) |
\(a_{148}= -0.42536360 \pm 5.1 \cdot 10^{-6} \) | \(a_{149}= +0.64021033 \pm 3.6 \cdot 10^{-6} \) | \(a_{150}= +0.43235612 \pm 5.5 \cdot 10^{-6} \) |
\(a_{151}= -0.56956871 \pm 4.0 \cdot 10^{-6} \) | \(a_{152}= -1.97805306 \pm 6.7 \cdot 10^{-6} \) | \(a_{153}= +0.15686550 \pm 3.9 \cdot 10^{-6} \) |
\(a_{154}= +0.28636749 \pm 2.9 \cdot 10^{-6} \) | \(a_{155}= +1.30508923 \pm 3.4 \cdot 10^{-6} \) | \(a_{156}= -0.08898347 \pm 1.2 \cdot 10^{-5} \) |
\(a_{157}= -0.27830636 \pm 4.5 \cdot 10^{-6} \) | \(a_{158}= +0.51438709 \pm 4.8 \cdot 10^{-6} \) | \(a_{159}= +0.49456505 \pm 4.5 \cdot 10^{-6} \) |
\(a_{160}= -0.39660554 \pm 6.0 \cdot 10^{-6} \) | \(a_{161}= +0.05667323 \pm 3.2 \cdot 10^{-6} \) | \(a_{162}= +1.06196329 \pm 7.7 \cdot 10^{-6} \) |
\(a_{163}= +0.57813267 \pm 4.6 \cdot 10^{-6} \) | \(a_{164}= +0.27125024 \pm 1.1 \cdot 10^{-5} \) | \(a_{165}= +0.34086317 \pm 3.3 \cdot 10^{-6} \) |
\(a_{166}= +0.18838335 \pm 8.6 \cdot 10^{-6} \) | \(a_{167}= +1.27326657 \pm 5.7 \cdot 10^{-6} \) | \(a_{168}= -1.14394026 \pm 5.4 \cdot 10^{-6} \) |
\(a_{169}= +0.07692308 \pm 4.0 \cdot 10^{-7} \) | \(a_{170}= -0.24505261 \pm 3.5 \cdot 10^{-6} \) | \(a_{171}= -0.75592602 \pm 4.7 \cdot 10^{-6} \) |
\(a_{172}= +0.00931015 \pm 3.0 \cdot 10^{-6} \) | \(a_{173}= -1.78672539 \pm 4.8 \cdot 10^{-6} \) | \(a_{174}= -0.06333637 \pm 8.1 \cdot 10^{-6} \) |
\(a_{175}= +0.37705189 \pm 4.6 \cdot 10^{-6} \) | \(a_{176}= -0.24857290 \pm 3.5 \cdot 10^{-6} \) | \(a_{177}= -1.85591324 \pm 3.9 \cdot 10^{-6} \) |
\(a_{178}= +0.75896364 \pm 6.9 \cdot 10^{-6} \) | \(a_{179}= -0.67058780 \pm 5.9 \cdot 10^{-6} \) | \(a_{180}= -0.08478903 \pm 4.6 \cdot 10^{-6} \) |
\(a_{181}= -0.04844777 \pm 4.8 \cdot 10^{-6} \) | \(a_{182}= +0.21008180 \pm 1.2 \cdot 10^{-5} \) | \(a_{183}= -0.65083605 \pm 4.5 \cdot 10^{-6} \) |
\(a_{184}= -0.06937592 \pm 4.3 \cdot 10^{-6} \) | \(a_{185}= +1.19535198 \pm 4.5 \cdot 10^{-6} \) | \(a_{186}= -1.74990211 \pm 3.5 \cdot 10^{-6} \) |
\(a_{187}= +0.14301970 \pm 3.0 \cdot 10^{-6} \) | \(a_{188}= -0.00201559 \pm 5.8 \cdot 10^{-6} \) | \(a_{189}= +0.61710006 \pm 3.8 \cdot 10^{-6} \) |
\(a_{190}= +1.18089473 \pm 7.1 \cdot 10^{-6} \) | \(a_{191}= +1.28277886 \pm 7.5 \cdot 10^{-6} \) | \(a_{192}= +1.31379826 \pm 5.5 \cdot 10^{-6} \) |
\(a_{193}= +1.50726086 \pm 5.0 \cdot 10^{-6} \) | \(a_{194}= -0.70747716 \pm 8.6 \cdot 10^{-6} \) | \(a_{195}= +0.25006033 \pm 1.0 \cdot 10^{-5} \) |
\(a_{196}= +0.05781170 \pm 4.9 \cdot 10^{-6} \) | \(a_{197}= -1.71131534 \pm 6.1 \cdot 10^{-6} \) | \(a_{198}= -0.13396638 \pm 5.2 \cdot 10^{-6} \) |
\(a_{199}= +1.97415660 \pm 6.1 \cdot 10^{-6} \) | \(a_{200}= -0.46156395 \pm 5.7 \cdot 10^{-6} \) | \(a_{201}= -0.45301351 \pm 3.0 \cdot 10^{-6} \) |
\(a_{202}= -0.43414133 \pm 4.5 \cdot 10^{-6} \) | \(a_{203}= -0.05523478 \pm 4.8 \cdot 10^{-6} \) | \(a_{204}= -0.12137053 \pm 7.4 \cdot 10^{-6} \) |
\(a_{205}= -0.76226437 \pm 7.8 \cdot 10^{-6} \) | \(a_{206}= +0.09879673 \pm 5.9 \cdot 10^{-6} \) | \(a_{207}= -0.02651247 \pm 3.1 \cdot 10^{-6} \) |
\(a_{208}= -0.18235535 \pm 4.7 \cdot 10^{-6} \) | \(a_{209}= -0.68920389 \pm 2.9 \cdot 10^{-6} \) | \(a_{210}= +0.68293063 \pm 3.2 \cdot 10^{-6} \) |
\(a_{211}= -0.16552990 \pm 6.0 \cdot 10^{-6} \) | \(a_{212}= -0.11216348 \pm 3.6 \cdot 10^{-6} \) | \(a_{213}= +0.00215403 \pm 2.8 \cdot 10^{-6} \) |
\(a_{214}= +1.14415064 \pm 7.5 \cdot 10^{-6} \) | \(a_{215}= -0.02616328 \pm 4.7 \cdot 10^{-6} \) | \(a_{216}= -0.75541630 \pm 6.1 \cdot 10^{-6} \) |
\(a_{217}= -1.52606580 \pm 3.6 \cdot 10^{-6} \) | \(a_{218}= +1.37575057 \pm 9.0 \cdot 10^{-6} \) | \(a_{219}= -1.20790285 \pm 4.3 \cdot 10^{-6} \) |
\(a_{220}= -0.07730509 \pm 3.2 \cdot 10^{-6} \) | \(a_{221}= +0.10492056 \pm 5.1 \cdot 10^{-6} \) | \(a_{222}= -1.60276316 \pm 6.2 \cdot 10^{-6} \) |
\(a_{223}= +1.25337772 \pm 5.8 \cdot 10^{-6} \) | \(a_{224}= +0.46375845 \pm 4.2 \cdot 10^{-6} \) | \(a_{225}= -0.17638971 \pm 4.3 \cdot 10^{-6} \) |
\(a_{226}= +1.39740938 \pm 3.1 \cdot 10^{-6} \) | \(a_{227}= -0.83486240 \pm 4.4 \cdot 10^{-6} \) | \(a_{228}= +0.58487778 \pm 2.5 \cdot 10^{-6} \) |
\(a_{229}= -0.97594075 \pm 4.8 \cdot 10^{-6} \) | \(a_{230}= +0.04141732 \pm 3.5 \cdot 10^{-6} \) | \(a_{231}= -0.39857782 \pm 2.6 \cdot 10^{-6} \) |
\(a_{232}= +0.06761506 \pm 7.9 \cdot 10^{-6} \) | \(a_{233}= +1.39863289 \pm 4.4 \cdot 10^{-6} \) | \(a_{234}= -0.09827896 \pm 1.1 \cdot 10^{-5} \) |
\(a_{235}= +0.00566420 \pm 3.3 \cdot 10^{-6} \) | \(a_{236}= +0.42090657 \pm 4.3 \cdot 10^{-6} \) | \(a_{237}= -0.71594469 \pm 3.1 \cdot 10^{-6} \) |
\(a_{238}= +0.28654470 \pm 6.4 \cdot 10^{-6} \) | \(a_{239}= +0.77597715 \pm 3.8 \cdot 10^{-6} \) | \(a_{240}= -0.59279791 \pm 3.4 \cdot 10^{-6} \) |
\(a_{241}= -1.58623870 \pm 6.0 \cdot 10^{-6} \) | \(a_{242}= +0.73240740 \pm 6.6 \cdot 10^{-6} \) | \(a_{243}= -0.78188571 \pm 4.5 \cdot 10^{-6} \) |
\(a_{244}= +0.14760451 \pm 6.4 \cdot 10^{-6} \) | \(a_{245}= -0.16246179 \pm 4.0 \cdot 10^{-6} \) | \(a_{246}= +1.02206652 \pm 1.1 \cdot 10^{-5} \) |
\(a_{247}= -0.50560627 \pm 5.5 \cdot 10^{-6} \) | \(a_{248}= +1.86811678 \pm 3.9 \cdot 10^{-6} \) | \(a_{249}= -0.26219954 \pm 6.4 \cdot 10^{-6} \) |
\(a_{250}= +0.92333229 \pm 5.9 \cdot 10^{-6} \) | \(a_{251}= +1.01212222 \pm 6.4 \cdot 10^{-6} \) | \(a_{252}= +0.09914544 \pm 5.6 \cdot 10^{-6} \) |
\(a_{253}= -0.02417233 \pm 2.9 \cdot 10^{-6} \) | \(a_{254}= -1.27070492 \pm 8.8 \cdot 10^{-6} \) | \(a_{255}= +0.34107410 \pm 2.8 \cdot 10^{-6} \) |
\(a_{256}= -0.74506035 \pm 6.4 \cdot 10^{-6} \) | \(a_{257}= +0.79353739 \pm 6.8 \cdot 10^{-6} \) | \(a_{258}= +0.03508050 \pm 3.5 \cdot 10^{-6} \) |
\(a_{259}= -1.39774793 \pm 3.4 \cdot 10^{-6} \) | \(a_{260}= -0.05671172 \pm 1.3 \cdot 10^{-5} \) | \(a_{261}= +0.02583954 \pm 2.9 \cdot 10^{-6} \) |
\(a_{262}= +0.01931371 \pm 4.8 \cdot 10^{-6} \) | \(a_{263}= +0.08635155 \pm 4.8 \cdot 10^{-6} \) | \(a_{264}= +0.48791468 \pm 4.2 \cdot 10^{-6} \) |
\(a_{265}= +0.31520053 \pm 6.5 \cdot 10^{-6} \) | \(a_{266}= -1.38084280 \pm 9.8 \cdot 10^{-6} \) | \(a_{267}= -1.05635620 \pm 4.1 \cdot 10^{-6} \) |
\(a_{268}= +0.10273991 \pm 5.3 \cdot 10^{-6} \) | \(a_{269}= -0.92043174 \pm 5.9 \cdot 10^{-6} \) | \(a_{270}= +0.45098241 \pm 3.5 \cdot 10^{-6} \) |
\(a_{271}= -0.23336838 \pm 5.9 \cdot 10^{-6} \) | \(a_{272}= -0.24872673 \pm 3.1 \cdot 10^{-6} \) | \(a_{273}= -0.29240033 \pm 1.0 \cdot 10^{-5} \) |
\(a_{274}= +1.07954028 \pm 4.9 \cdot 10^{-6} \) | \(a_{275}= -0.16082060 \pm 3.8 \cdot 10^{-6} \) | \(a_{276}= +0.02051332 \pm 3.8 \cdot 10^{-6} \) |
\(a_{277}= +0.18000735 \pm 4.4 \cdot 10^{-6} \) | \(a_{278}= +1.16527526 \pm 3.3 \cdot 10^{-6} \) | \(a_{279}= +0.71391315 \pm 3.8 \cdot 10^{-6} \) |
\(a_{280}= -0.72906603 \pm 5.0 \cdot 10^{-6} \) | \(a_{281}= +0.15819798 \pm 4.6 \cdot 10^{-6} \) | \(a_{282}= -0.00759473 \pm 5.2 \cdot 10^{-6} \) |
\(a_{283}= -0.27789083 \pm 5.0 \cdot 10^{-6} \) | \(a_{284}= -0.00048852 \pm 5.0 \cdot 10^{-6} \) | \(a_{285}= -1.64361692 \pm 2.9 \cdot 10^{-6} \) |
\(a_{286}= -0.08960433 \pm 1.0 \cdot 10^{-5} \) | \(a_{287}= +0.89133030 \pm 7.0 \cdot 10^{-6} \) | \(a_{288}= -0.21695215 \pm 3.8 \cdot 10^{-6} \) |
\(a_{289}= -0.85689180 \pm 4.8 \cdot 10^{-6} \) | \(a_{290}= -0.04036609 \pm 5.1 \cdot 10^{-6} \) | \(a_{291}= +0.98469525 \pm 6.4 \cdot 10^{-6} \) |
\(a_{292}= +0.27394290 \pm 6.2 \cdot 10^{-6} \) | \(a_{293}= +0.83268075 \pm 3.5 \cdot 10^{-6} \) | \(a_{294}= +0.21783355 \pm 3.0 \cdot 10^{-6} \) |
\(a_{295}= -1.18282688 \pm 6.8 \cdot 10^{-6} \) | \(a_{296}= +1.71103786 \pm 5.1 \cdot 10^{-6} \) | \(a_{297}= -0.26320621 \pm 5.4 \cdot 10^{-6} \) |
\(a_{298}= -0.54709122 \pm 3.8 \cdot 10^{-6} \) | \(a_{299}= -0.01773304 \pm 3.7 \cdot 10^{-6} \) | \(a_{300}= +0.13647687 \pm 6.1 \cdot 10^{-6} \) |
\(a_{301}= +0.03059322 \pm 2.9 \cdot 10^{-6} \) | \(a_{302}= +0.48672448 \pm 4.5 \cdot 10^{-6} \) | \(a_{303}= +0.60425541 \pm 4.2 \cdot 10^{-6} \) |
\(a_{304}= +1.19860011 \pm 4.1 \cdot 10^{-6} \) | \(a_{305}= -0.41479653 \pm 6.5 \cdot 10^{-6} \) | \(a_{306}= -0.13404928 \pm 4.1 \cdot 10^{-6} \) |
\(a_{307}= -1.41761053 \pm 7.1 \cdot 10^{-6} \) | \(a_{308}= +0.09039432 \pm 3.1 \cdot 10^{-6} \) | \(a_{309}= -0.13750928 \pm 4.8 \cdot 10^{-6} \) |
\(a_{310}= -1.11526294 \pm 2.7 \cdot 10^{-6} \) | \(a_{311}= +0.56347702 \pm 4.3 \cdot 10^{-6} \) | \(a_{312}= +0.35793867 \pm 1.1 \cdot 10^{-5} \) |
\(a_{313}= +1.59864929 \pm 6.1 \cdot 10^{-6} \) | \(a_{314}= +0.23782647 \pm 5.2 \cdot 10^{-6} \) | \(a_{315}= -0.27861739 \pm 3.8 \cdot 10^{-6} \) |
\(a_{316}= +0.16237064 \pm 4.4 \cdot 10^{-6} \) | \(a_{317}= +1.14645793 \pm 4.8 \cdot 10^{-6} \) | \(a_{318}= -0.42263016 \pm 3.5 \cdot 10^{-6} \) |
\(a_{319}= +0.02355880 \pm 2.0 \cdot 10^{-6} \) | \(a_{320}= +0.83732141 \pm 5.8 \cdot 10^{-6} \) | \(a_{321}= -1.59247501 \pm 4.5 \cdot 10^{-6} \) |
\(a_{322}= -0.04843007 \pm 4.2 \cdot 10^{-6} \) | \(a_{323}= -0.68963038 \pm 4.0 \cdot 10^{-6} \) | \(a_{324}= +0.33521771 \pm 7.5 \cdot 10^{-6} \) |
\(a_{325}= -0.11797946 \pm 6.3 \cdot 10^{-6} \) | \(a_{326}= -0.49404280 \pm 5.4 \cdot 10^{-6} \) | \(a_{327}= -1.91482513 \pm 5.8 \cdot 10^{-6} \) |
\(a_{328}= -1.09111225 \pm 9.7 \cdot 10^{-6} \) | \(a_{329}= -0.00662326 \pm 3.7 \cdot 10^{-6} \) | \(a_{330}= -0.29128434 \pm 3.1 \cdot 10^{-6} \) |
\(a_{331}= -1.35487401 \pm 6.4 \cdot 10^{-6} \) | \(a_{332}= +0.05946480 \pm 9.0 \cdot 10^{-6} \) | \(a_{333}= +0.65388440 \pm 4.3 \cdot 10^{-6} \) |
\(a_{334}= -1.08806891 \pm 5.3 \cdot 10^{-6} \) | \(a_{335}= -0.28871854 \pm 3.9 \cdot 10^{-6} \) | \(a_{336}= +0.69316994 \pm 2.8 \cdot 10^{-6} \) |
\(a_{337}= +1.52323660 \pm 6.3 \cdot 10^{-6} \) | \(a_{338}= -0.06573455 \pm 6.8 \cdot 10^{-6} \) | \(a_{339}= -1.94497073 \pm 3.7 \cdot 10^{-6} \) |
\(a_{340}= -0.07735293 \pm 3.5 \cdot 10^{-6} \) | \(a_{341}= +0.65089930 \pm 4.3 \cdot 10^{-6} \) | \(a_{342}= +0.64597596 \pm 6.9 \cdot 10^{-6} \) |
\(a_{343}= +1.07635600 \pm 4.6 \cdot 10^{-6} \) | \(a_{344}= -0.03745036 \pm 4.6 \cdot 10^{-6} \) | \(a_{345}= -0.05764630 \pm 3.0 \cdot 10^{-6} \) |
\(a_{346}= +1.52684472 \pm 6.3 \cdot 10^{-6} \) | \(a_{347}= +1.97315228 \pm 4.9 \cdot 10^{-6} \) | \(a_{348}= -0.01999266 \pm 8.9 \cdot 10^{-6} \) |
\(a_{349}= -0.07767832 \pm 7.0 \cdot 10^{-6} \) | \(a_{350}= -0.32220938 \pm 4.6 \cdot 10^{-6} \) | \(a_{351}= -0.19309048 \pm 5.6 \cdot 10^{-6} \) |
\(a_{352}= -0.19780277 \pm 3.1 \cdot 10^{-6} \) | \(a_{353}= -0.18380353 \pm 6.2 \cdot 10^{-6} \) | \(a_{354}= +1.58596914 \pm 3.2 \cdot 10^{-6} \) |
\(a_{355}= +0.00137283 \pm 4.3 \cdot 10^{-6} \) | \(a_{356}= +0.23957330 \pm 7.6 \cdot 10^{-6} \) | \(a_{357}= -0.39882447 \pm 4.6 \cdot 10^{-6} \) |
\(a_{358}= +0.57305025 \pm 6.9 \cdot 10^{-6} \) | \(a_{359}= -1.63398329 \pm 4.0 \cdot 10^{-6} \) | \(a_{360}= +0.34106643 \pm 4.7 \cdot 10^{-6} \) |
\(a_{361}= +2.32329006 \pm 7.5 \cdot 10^{-6} \) | \(a_{362}= +0.04140101 \pm 5.0 \cdot 10^{-6} \) | \(a_{363}= -1.01939416 \pm 5.3 \cdot 10^{-6} \) |
\(a_{364}= +0.06631410 \pm 1.2 \cdot 10^{-5} \) | \(a_{365}= -0.76983123 \pm 2.7 \cdot 10^{-6} \) | \(a_{366}= +0.55617142 \pm 5.2 \cdot 10^{-6} \) |
\(a_{367}= -0.49445630 \pm 6.2 \cdot 10^{-6} \) | \(a_{368}= +0.04203830 \pm 3.3 \cdot 10^{-6} \) | \(a_{369}= -0.41697574 \pm 3.8 \cdot 10^{-6} \) |
\(a_{370}= -1.02148706 \pm 3.8 \cdot 10^{-6} \) | \(a_{371}= -0.36857001 \pm 4.2 \cdot 10^{-6} \) | \(a_{372}= -0.55237143 \pm 2.2 \cdot 10^{-6} \) |
\(a_{373}= +1.17873061 \pm 4.9 \cdot 10^{-6} \) | \(a_{374}= -0.12221737 \pm 2.8 \cdot 10^{-6} \) | \(a_{375}= -1.28513111 \pm 5.0 \cdot 10^{-6} \) |
\(a_{376}= +0.00810779 \pm 6.1 \cdot 10^{-6} \) | \(a_{377}= +0.01728295 \pm 4.9 \cdot 10^{-6} \) | \(a_{378}= -0.52734235 \pm 4.6 \cdot 10^{-6} \) |
\(a_{379}= +0.78508375 \pm 6.0 \cdot 10^{-6} \) | \(a_{380}= +0.37275943 \pm 7.1 \cdot 10^{-6} \) | \(a_{381}= +1.76861835 \pm 6.4 \cdot 10^{-6} \) |
\(a_{382}= -1.09619763 \pm 1.0 \cdot 10^{-5} \) | \(a_{383}= -0.90625024 \pm 3.9 \cdot 10^{-6} \) | \(a_{384}= -0.50041173 \pm 7.2 \cdot 10^{-6} \) |
\(a_{385}= -0.25402511 \pm 3.1 \cdot 10^{-6} \) | \(a_{386}= -1.28802854 \pm 7.1 \cdot 10^{-6} \) | \(a_{387}= -0.01431190 \pm 4.0 \cdot 10^{-6} \) |
\(a_{388}= -0.22332116 \pm 9.4 \cdot 10^{-6} \) | \(a_{389}= +0.65384613 \pm 5.3 \cdot 10^{-6} \) | \(a_{390}= -0.21368885 \pm 1.7 \cdot 10^{-5} \) |
\(a_{391}= -0.02418729 \pm 3.3 \cdot 10^{-6} \) | \(a_{392}= -0.23254930 \pm 4.4 \cdot 10^{-6} \) | \(a_{393}= -0.02688160 \pm 3.6 \cdot 10^{-6} \) |
\(a_{394}= +1.46240313 \pm 9.0 \cdot 10^{-6} \) | \(a_{395}= -0.45629214 \pm 4.0 \cdot 10^{-6} \) | \(a_{396}= -0.04228762 \pm 2.1 \cdot 10^{-6} \) |
\(a_{397}= +0.20331259 \pm 6.0 \cdot 10^{-6} \) | \(a_{398}= -1.68701391 \pm 7.6 \cdot 10^{-6} \) | \(a_{399}= +1.92191269 \pm 2.0 \cdot 10^{-6} \) |
\(a_{400}= +0.27968441 \pm 4.5 \cdot 10^{-6} \) | \(a_{401}= +1.00849520 \pm 5.0 \cdot 10^{-6} \) | \(a_{402}= +0.38712232 \pm 2.4 \cdot 10^{-6} \) |
\(a_{403}= +0.47750567 \pm 3.9 \cdot 10^{-6} \) | \(a_{404}= -0.13704039 \pm 5.4 \cdot 10^{-6} \) | \(a_{405}= -0.94202502 \pm 3.2 \cdot 10^{-6} \) |
\(a_{406}= +0.04720084 \pm 8.0 \cdot 10^{-6} \) | \(a_{407}= +0.59616902 \pm 3.8 \cdot 10^{-6} \) | \(a_{408}= +0.48821662 \pm 6.7 \cdot 10^{-6} \) |
\(a_{409}= -1.15414763 \pm 4.8 \cdot 10^{-6} \) | \(a_{410}= +0.65139239 \pm 6.0 \cdot 10^{-6} \) | \(a_{411}= -1.50254770 \pm 2.2 \cdot 10^{-6} \) |
\(a_{412}= +0.03118603 \pm 7.3 \cdot 10^{-6} \) | \(a_{413}= +1.38310209 \pm 3.1 \cdot 10^{-6} \) | \(a_{414}= +0.02265621 \pm 3.5 \cdot 10^{-6} \) |
\(a_{415}= -0.16710731 \pm 4.7 \cdot 10^{-6} \) | \(a_{416}= -0.14510992 \pm 5.1 \cdot 10^{-6} \) | \(a_{417}= -1.62187710 \pm 3.4 \cdot 10^{-6} \) |
\(a_{418}= +0.58895862 \pm 3.2 \cdot 10^{-6} \) | \(a_{419}= +0.09147401 \pm 4.8 \cdot 10^{-6} \) | \(a_{420}= +0.21557284 \pm 3.5 \cdot 10^{-6} \) |
\(a_{421}= -1.52121509 \pm 6.1 \cdot 10^{-6} \) | \(a_{422}= +0.14145344 \pm 8.6 \cdot 10^{-6} \) | \(a_{423}= +0.00309844 \pm 4.9 \cdot 10^{-6} \) |
\(a_{424}= +0.45118095 \pm 5.2 \cdot 10^{-6} \) | \(a_{425}= -0.16092011 \pm 5.1 \cdot 10^{-6} \) | \(a_{426}= -0.00184073 \pm 2.4 \cdot 10^{-6} \) |
\(a_{427}= +0.48502952 \pm 4.8 \cdot 10^{-6} \) | \(a_{428}= +0.36116085 \pm 8.6 \cdot 10^{-6} \) | \(a_{429}= +0.12471492 \pm 9.1 \cdot 10^{-6} \) |
\(a_{430}= +0.02235781 \pm 4.1 \cdot 10^{-6} \) | \(a_{431}= +0.13284021 \pm 6.6 \cdot 10^{-6} \) | \(a_{432}= +0.45774407 \pm 5.1 \cdot 10^{-6} \) |
\(a_{433}= +1.38827696 \pm 5.2 \cdot 10^{-6} \) | \(a_{434}= +1.30409828 \pm 2.7 \cdot 10^{-6} \) | \(a_{435}= +0.05618315 \pm 2.9 \cdot 10^{-6} \) |
\(a_{436}= +0.43426733 \pm 9.8 \cdot 10^{-6} \) | \(a_{437}= +0.11655719 \pm 4.1 \cdot 10^{-6} \) | \(a_{438}= +1.03221240 \pm 5.8 \cdot 10^{-6} \) |
\(a_{439}= -1.36821010 \pm 4.6 \cdot 10^{-6} \) | \(a_{440}= +0.31096206 \pm 3.6 \cdot 10^{-6} \) | \(a_{441}= -0.08887025 \pm 4.3 \cdot 10^{-6} \) |
\(a_{442}= -0.08965978 \pm 1.2 \cdot 10^{-5} \) | \(a_{443}= -0.91920801 \pm 2.9 \cdot 10^{-6} \) | \(a_{444}= -0.50592577 \pm 5.5 \cdot 10^{-6} \) |
\(a_{445}= -0.67324619 \pm 4.0 \cdot 10^{-6} \) | \(a_{446}= -1.07107291 \pm 7.4 \cdot 10^{-6} \) | \(a_{447}= +0.76146362 \pm 3.8 \cdot 10^{-6} \) |
\(a_{448}= -0.97909594 \pm 6.8 \cdot 10^{-6} \) | \(a_{449}= +0.68298928 \pm 4.8 \cdot 10^{-6} \) | \(a_{450}= +0.15073368 \pm 3.9 \cdot 10^{-6} \) |
\(a_{451}= -0.38017120 \pm 4.0 \cdot 10^{-6} \) | \(a_{452}= +0.44110411 \pm 3.2 \cdot 10^{-6} \) | \(a_{453}= -0.67744276 \pm 4.2 \cdot 10^{-6} \) |
\(a_{454}= +0.71343098 \pm 5.6 \cdot 10^{-6} \) | \(a_{455}= -0.18635514 \pm 1.0 \cdot 10^{-5} \) | \(a_{456}= -2.35268843 \pm 3.4 \cdot 10^{-6} \) |
\(a_{457}= -0.89299437 \pm 5.5 \cdot 10^{-6} \) | \(a_{458}= +0.83398937 \pm 6.6 \cdot 10^{-6} \) | \(a_{459}= -0.26336909 \pm 5.5 \cdot 10^{-6} \) |
\(a_{460}= +0.01307373 \pm 3.8 \cdot 10^{-6} \) | \(a_{461}= -1.62247179 \pm 6.2 \cdot 10^{-6} \) | \(a_{462}= +0.34060435 \pm 2.5 \cdot 10^{-6} \) |
\(a_{463}= +1.52193175 \pm 6.0 \cdot 10^{-6} \) | \(a_{464}= -0.04097131 \pm 5.8 \cdot 10^{-6} \) | \(a_{465}= +1.55226794 \pm 2.8 \cdot 10^{-6} \) |
\(a_{466}= -1.19520059 \pm 5.9 \cdot 10^{-6} \) | \(a_{467}= +0.68964927 \pm 6.4 \cdot 10^{-6} \) | \(a_{468}= -0.03102259 \pm 1.2 \cdot 10^{-5} \) |
\(a_{469}= +0.33760411 \pm 4.6 \cdot 10^{-6} \) | \(a_{470}= -0.00484034 \pm 4.7 \cdot 10^{-6} \) | \(a_{471}= -0.33101647 \pm 4.3 \cdot 10^{-6} \) |
\(a_{472}= -1.69310932 \pm 4.4 \cdot 10^{-6} \) | \(a_{473}= -0.01304866 \pm 3.0 \cdot 10^{-6} \) | \(a_{474}= +0.61180995 \pm 3.3 \cdot 10^{-6} \) |
\(a_{475}= +0.77546499 \pm 3.1 \cdot 10^{-6} \) | \(a_{476}= +0.09045026 \pm 7.1 \cdot 10^{-6} \) | \(a_{477}= +0.17242178 \pm 4.2 \cdot 10^{-6} \) |
\(a_{478}= -0.66311064 \pm 5.0 \cdot 10^{-6} \) | \(a_{479}= -1.00929370 \pm 5.8 \cdot 10^{-6} \) | \(a_{480}= -0.47172105 \pm 3.8 \cdot 10^{-6} \) |
\(a_{481}= +0.43735503 \pm 4.5 \cdot 10^{-6} \) | \(a_{482}= +1.35551899 \pm 6.7 \cdot 10^{-6} \) | \(a_{483}= +0.06740692 \pm 2.8 \cdot 10^{-6} \) |
\(a_{484}= +0.23119060 \pm 6.7 \cdot 10^{-6} \) | \(a_{485}= +0.62757460 \pm 4.1 \cdot 10^{-6} \) | \(a_{486}= +0.66815980 \pm 4.9 \cdot 10^{-6} \) |
\(a_{487}= -0.69675198 \pm 5.8 \cdot 10^{-6} \) | \(a_{488}= -0.59374359 \pm 5.2 \cdot 10^{-6} \) | \(a_{489}= +0.68762870 \pm 4.5 \cdot 10^{-6} \) |
\(a_{490}= +0.13883159 \pm 4.5 \cdot 10^{-6} \) | \(a_{491}= +1.00726712 \pm 4.4 \cdot 10^{-6} \) | \(a_{492}= +0.32262396 \pm 1.2 \cdot 10^{-5} \) |
\(a_{493}= +0.02357338 \pm 5.2 \cdot 10^{-6} \) | \(a_{494}= +0.43206542 \pm 1.2 \cdot 10^{-5} \) | \(a_{495}= +0.11883620 \pm 2.8 \cdot 10^{-6} \) |
\(a_{496}= -1.13198429 \pm 2.7 \cdot 10^{-6} \) | \(a_{497}= -0.00160527 \pm 4.2 \cdot 10^{-6} \) | \(a_{498}= +0.22406241 \pm 8.7 \cdot 10^{-6} \) |
\(a_{499}= -0.40463631 \pm 4.8 \cdot 10^{-6} \) | \(a_{500}= +0.29145766 \pm 7.5 \cdot 10^{-6} \) | \(a_{501}= +1.51441819 \pm 5.4 \cdot 10^{-6} \) |
\(a_{502}= -0.86490822 \pm 8.1 \cdot 10^{-6} \) | \(a_{503}= +0.78711817 \pm 5.6 \cdot 10^{-6} \) | \(a_{504}= -0.39881550 \pm 4.4 \cdot 10^{-6} \) |
\(a_{505}= +0.38510935 \pm 7.5 \cdot 10^{-6} \) | \(a_{506}= +0.02065645 \pm 2.8 \cdot 10^{-6} \) | \(a_{507}= +0.09149200 \pm 5.2 \cdot 10^{-6} \) |
\(a_{508}= -0.40110878 \pm 9.3 \cdot 10^{-6} \) | \(a_{509}= -1.89576403 \pm 5.8 \cdot 10^{-6} \) | \(a_{510}= -0.29146459 \pm 3.0 \cdot 10^{-6} \) |
\(a_{511}= +0.90017838 \pm 3.7 \cdot 10^{-6} \) | \(a_{512}= +1.05741832 \pm 4.8 \cdot 10^{-6} \) | \(a_{513}= +1.26916084 \pm 4.0 \cdot 10^{-6} \) |
\(a_{514}= -0.67811673 \pm 9.9 \cdot 10^{-6} \) | \(a_{515}= -0.08763862 \pm 8.4 \cdot 10^{-6} \) | \(a_{516}= +0.01107346 \pm 2.2 \cdot 10^{-6} \) |
\(a_{517}= +0.00282496 \pm 3.5 \cdot 10^{-6} \) | \(a_{518}= +1.19444435 \pm 4.8 \cdot 10^{-6} \) | \(a_{519}= -2.12512406 \pm 5.0 \cdot 10^{-6} \) |
\(a_{520}= +0.22812461 \pm 1.2 \cdot 10^{-5} \) | \(a_{521}= -0.78069101 \pm 3.3 \cdot 10^{-6} \) | \(a_{522}= -0.02208116 \pm 4.0 \cdot 10^{-6} \) |
\(a_{523}= -0.33956719 \pm 4.1 \cdot 10^{-6} \) | \(a_{524}= +0.00609654 \pm 4.6 \cdot 10^{-6} \) | \(a_{525}= +0.44846401 \pm 4.0 \cdot 10^{-6} \) |
\(a_{526}= -0.07379165 \pm 6.3 \cdot 10^{-6} \) | \(a_{527}= +0.65130209 \pm 3.7 \cdot 10^{-6} \) | \(a_{528}= -0.29565162 \pm 4.8 \cdot 10^{-6} \) |
\(a_{529}= -0.99591201 \pm 3.6 \cdot 10^{-6} \) | \(a_{530}= -0.26935436 \pm 4.0 \cdot 10^{-6} \) | \(a_{531}= -0.64703289 \pm 3.2 \cdot 10^{-6} \) |
\(a_{532}= -0.43587473 \pm 1.0 \cdot 10^{-5} \) | \(a_{533}= -0.27889706 \pm 7.6 \cdot 10^{-6} \) | \(a_{534}= +0.90270833 \pm 5.7 \cdot 10^{-6} \) |
\(a_{535}= -1.01493013 \pm 5.4 \cdot 10^{-6} \) | \(a_{536}= -0.41327438 \pm 5.1 \cdot 10^{-6} \) | \(a_{537}= -0.79759445 \pm 6.2 \cdot 10^{-6} \) |
\(a_{538}= +0.78655419 \pm 6.5 \cdot 10^{-6} \) | \(a_{539}= -0.08102608 \pm 3.3 \cdot 10^{-6} \) | \(a_{540}= +0.14235642 \pm 5.2 \cdot 10^{-6} \) |
\(a_{541}= -0.73391108 \pm 5.2 \cdot 10^{-6} \) | \(a_{542}= +0.19942476 \pm 6.8 \cdot 10^{-6} \) | \(a_{543}= -0.05762359 \pm 3.9 \cdot 10^{-6} \) |
\(a_{544}= -0.19792518 \pm 3.4 \cdot 10^{-6} \) | \(a_{545}= -1.22037313 \pm 6.4 \cdot 10^{-6} \) | \(a_{546}= +0.24987046 \pm 1.7 \cdot 10^{-5} \) |
\(a_{547}= +0.85905077 \pm 7.2 \cdot 10^{-6} \) | \(a_{548}= +0.34076604 \pm 5.9 \cdot 10^{-6} \) | \(a_{549}= -0.22690303 \pm 3.8 \cdot 10^{-6} \) |
\(a_{550}= +0.13742911 \pm 2.8 \cdot 10^{-6} \) | \(a_{551}= -0.11359880 \pm 3.6 \cdot 10^{-6} \) | \(a_{552}= -0.08251544 \pm 3.8 \cdot 10^{-6} \) |
\(a_{553}= +0.53355113 \pm 4.6 \cdot 10^{-6} \) | \(a_{554}= -0.15382514 \pm 6.4 \cdot 10^{-6} \) | \(a_{555}= +1.42174688 \pm 4.2 \cdot 10^{-6} \) |
\(a_{556}= +0.36782901 \pm 3.4 \cdot 10^{-6} \) | \(a_{557}= -0.18197056 \pm 6.9 \cdot 10^{-6} \) | \(a_{558}= -0.61007390 \pm 3.7 \cdot 10^{-6} \) |
\(a_{559}= -0.00957261 \pm 4.3 \cdot 10^{-6} \) | \(a_{560}= +0.44177714 \pm 3.4 \cdot 10^{-6} \) | \(a_{561}= +0.17010706 \pm 4.0 \cdot 10^{-6} \) |
\(a_{562}= -0.13518796 \pm 5.8 \cdot 10^{-6} \) | \(a_{563}= +0.81304033 \pm 3.7 \cdot 10^{-6} \) | \(a_{564}= -0.00239734 \pm 4.1 \cdot 10^{-6} \) |
\(a_{565}= -1.23958579 \pm 5.2 \cdot 10^{-6} \) | \(a_{566}= +0.23747138 \pm 7.4 \cdot 10^{-6} \) | \(a_{567}= +1.10152788 \pm 4.9 \cdot 10^{-6} \) |
\(a_{568}= +0.00196508 \pm 5.0 \cdot 10^{-6} \) | \(a_{569}= +1.84703197 \pm 5.8 \cdot 10^{-6} \) | \(a_{570}= +1.40455150 \pm 2.5 \cdot 10^{-6} \) |
\(a_{571}= -0.67373376 \pm 5.6 \cdot 10^{-6} \) | \(a_{572}= -0.02828437 \pm 1.1 \cdot 10^{-5} \) | \(a_{573}= +1.52573207 \pm 6.9 \cdot 10^{-6} \) |
\(a_{574}= -0.76168558 \pm 1.0 \cdot 10^{-5} \) | \(a_{575}= +0.02719775 \pm 3.5 \cdot 10^{-6} \) | \(a_{576}= +0.45803363 \pm 5.3 \cdot 10^{-6} \) |
\(a_{577}= -0.93804370 \pm 5.0 \cdot 10^{-6} \) | \(a_{578}= +0.73225619 \pm 4.9 \cdot 10^{-6} \) | \(a_{579}= +1.79273007 \pm 5.3 \cdot 10^{-6} \) |
\(a_{580}= -0.01274190 \pm 6.0 \cdot 10^{-6} \) | \(a_{581}= +0.19540177 \pm 6.4 \cdot 10^{-6} \) | \(a_{582}= -0.84147052 \pm 9.6 \cdot 10^{-6} \) |
\(a_{583}= +0.15720289 \pm 4.6 \cdot 10^{-6} \) | \(a_{584}= -1.10194353 \pm 5.9 \cdot 10^{-6} \) | \(a_{585}= +0.08717932 \pm 1.0 \cdot 10^{-5} \) |
\(a_{586}= -0.71156666 \pm 4.7 \cdot 10^{-6} \) | \(a_{587}= -0.81167248 \pm 4.7 \cdot 10^{-6} \) | \(a_{588}= +0.06876101 \pm 1.7 \cdot 10^{-6} \) |
\(a_{589}= -3.13858817 \pm 3.9 \cdot 10^{-6} \) | \(a_{590}= +1.01078375 \pm 3.9 \cdot 10^{-6} \) | \(a_{591}= -2.03543165 \pm 6.8 \cdot 10^{-6} \) |
\(a_{592}= -1.03680240 \pm 3.5 \cdot 10^{-6} \) | \(a_{593}= +0.66108185 \pm 7.0 \cdot 10^{-6} \) | \(a_{594}= +0.22492265 \pm 5.3 \cdot 10^{-6} \) |
\(a_{595}= -0.25418230 \pm 2.8 \cdot 10^{-6} \) | \(a_{596}= -0.17269398 \pm 3.6 \cdot 10^{-6} \) | \(a_{597}= +2.34805400 \pm 5.6 \cdot 10^{-6} \) |
\(a_{598}= +0.01515376 \pm 1.0 \cdot 10^{-5} \) | \(a_{599}= -0.25301255 \pm 5.6 \cdot 10^{-6} \) | \(a_{600}= -0.54898232 \pm 5.4 \cdot 10^{-6} \) |
\(a_{601}= -0.21405566 \pm 3.6 \cdot 10^{-6} \) | \(a_{602}= -0.02614341 \pm 3.5 \cdot 10^{-6} \) | \(a_{603}= -0.15793553 \pm 3.2 \cdot 10^{-6} \) |
\(a_{604}= +0.15363871 \pm 4.4 \cdot 10^{-6} \) | \(a_{605}= -0.64968922 \pm 4.8 \cdot 10^{-6} \) | \(a_{606}= -0.51636597 \pm 4.0 \cdot 10^{-6} \) |
\(a_{607}= -0.30275226 \pm 5.6 \cdot 10^{-6} \) | \(a_{608}= +0.95379031 \pm 5.3 \cdot 10^{-6} \) | \(a_{609}= -0.06569603 \pm 5.1 \cdot 10^{-6} \) |
\(a_{610}= +0.35446404 \pm 4.8 \cdot 10^{-6} \) | \(a_{611}= +0.00207242 \pm 4.0 \cdot 10^{-6} \) | \(a_{612}= -0.04231379 \pm 2.5 \cdot 10^{-6} \) |
\(a_{613}= +1.20500870 \pm 5.1 \cdot 10^{-6} \) | \(a_{614}= +1.21141792 \pm 9.0 \cdot 10^{-6} \) | \(a_{615}= -0.90663420 \pm 6.1 \cdot 10^{-6} \) |
\(a_{616}= -0.36361388 \pm 3.3 \cdot 10^{-6} \) | \(a_{617}= +0.18255536 \pm 4.0 \cdot 10^{-6} \) | \(a_{618}= +0.11750844 \pm 5.5 \cdot 10^{-6} \) |
\(a_{619}= +0.97217363 \pm 5.3 \cdot 10^{-6} \) | \(a_{620}= -0.35204220 \pm 2.7 \cdot 10^{-6} \) | \(a_{621}= +0.04451306 \pm 3.7 \cdot 10^{-6} \) |
\(a_{622}= -0.48151883 \pm 5.5 \cdot 10^{-6} \) | \(a_{623}= +0.78723964 \pm 5.1 \cdot 10^{-6} \) | \(a_{624}= -0.21689273 \pm 9.9 \cdot 10^{-6} \) |
\(a_{625}= -0.39367004 \pm 5.8 \cdot 10^{-6} \) | \(a_{626}= -1.36612444 \pm 9.1 \cdot 10^{-6} \) | \(a_{627}= -0.81973636 \pm 2.4 \cdot 10^{-6} \) |
\(a_{628}= +0.07507194 \pm 5.5 \cdot 10^{-6} \) | \(a_{629}= +0.59653794 \pm 4.0 \cdot 10^{-6} \) | \(a_{630}= +0.23809226 \pm 5.0 \cdot 10^{-6} \) |
\(a_{631}= +0.38599023 \pm 4.5 \cdot 10^{-6} \) | \(a_{632}= -0.65314079 \pm 4.0 \cdot 10^{-6} \) | \(a_{633}= -0.19688060 \pm 6.9 \cdot 10^{-6} \) |
\(a_{634}= -0.97970469 \pm 6.9 \cdot 10^{-6} \) | \(a_{635}= +1.12719134 \pm 4.5 \cdot 10^{-6} \) | \(a_{636}= -0.13340679 \pm 3.0 \cdot 10^{-6} \) |
\(a_{637}= -0.05944147 \pm 3.9 \cdot 10^{-6} \) | \(a_{638}= -0.02013216 \pm 2.5 \cdot 10^{-6} \) | \(a_{639}= +0.00075097 \pm 3.4 \cdot 10^{-6} \) |
\(a_{640}= -0.31892679 \pm 6.8 \cdot 10^{-6} \) | \(a_{641}= +1.35267802 \pm 5.7 \cdot 10^{-6} \) | \(a_{642}= +1.36084822 \pm 6.7 \cdot 10^{-6} \) |
\(a_{643}= -0.00826985 \pm 5.4 \cdot 10^{-6} \) | \(a_{644}= -0.01528736 \pm 4.6 \cdot 10^{-6} \) | \(a_{645}= -0.03111850 \pm 3.9 \cdot 10^{-6} \) |
\(a_{646}= +0.58932308 \pm 3.9 \cdot 10^{-6} \) | \(a_{647}= -1.29793041 \pm 3.5 \cdot 10^{-6} \) | \(a_{648}= -1.34842332 \pm 6.7 \cdot 10^{-6} \) |
\(a_{649}= -0.58992226 \pm 3.2 \cdot 10^{-6} \) | \(a_{650}= +0.10081925 \pm 1.3 \cdot 10^{-5} \) | \(a_{651}= -1.81509659 \pm 2.5 \cdot 10^{-6} \) |
\(a_{652}= -0.15594880 \pm 6.3 \cdot 10^{-6} \) | \(a_{653}= +0.94672727 \pm 5.0 \cdot 10^{-6} \) | \(a_{654}= +1.63631225 \pm 8.7 \cdot 10^{-6} \) |
\(a_{655}= -0.01713242 \pm 3.6 \cdot 10^{-6} \) | \(a_{656}= +0.66115884 \pm 6.1 \cdot 10^{-6} \) | \(a_{657}= -0.42111499 \pm 2.5 \cdot 10^{-6} \) |
\(a_{658}= +0.00565990 \pm 5.5 \cdot 10^{-6} \) | \(a_{659}= -0.73499598 \pm 6.1 \cdot 10^{-6} \) | \(a_{660}= -0.09194637 \pm 1.9 \cdot 10^{-6} \) |
\(a_{661}= +0.51863017 \pm 4.8 \cdot 10^{-6} \) | \(a_{662}= +1.15780648 \pm 7.2 \cdot 10^{-6} \) | \(a_{663}= +0.12479209 \pm 1.0 \cdot 10^{-5} \) |
\(a_{664}= -0.23919895 \pm 7.2 \cdot 10^{-6} \) | \(a_{665}= +1.22489024 \pm 5.9 \cdot 10^{-6} \) | \(a_{666}= -0.55877638 \pm 4.4 \cdot 10^{-6} \) |
\(a_{667}= -0.00398423 \pm 3.3 \cdot 10^{-6} \) | \(a_{668}= -0.34345817 \pm 6.2 \cdot 10^{-6} \) | \(a_{669}= +1.49076247 \pm 5.0 \cdot 10^{-6} \) |
\(a_{670}= +0.24672419 \pm 4.6 \cdot 10^{-6} \) | \(a_{671}= -0.20687534 \pm 3.6 \cdot 10^{-6} \) | \(a_{672}= +0.55159245 \pm 2.6 \cdot 10^{-6} \) |
\(a_{673}= +1.25432211 \pm 5.4 \cdot 10^{-6} \) | \(a_{674}= -1.30168060 \pm 6.7 \cdot 10^{-6} \) | \(a_{675}= +0.29614923 \pm 7.0 \cdot 10^{-6} \) |
\(a_{676}= -0.02074967 \pm 7.3 \cdot 10^{-6} \) | \(a_{677}= +0.83157332 \pm 5.5 \cdot 10^{-6} \) | \(a_{678}= +1.66207315 \pm 3.4 \cdot 10^{-6} \) |
\(a_{679}= -0.73383498 \pm 5.4 \cdot 10^{-6} \) | \(a_{680}= +0.31115449 \pm 3.6 \cdot 10^{-6} \) | \(a_{681}= -0.99298201 \pm 5.3 \cdot 10^{-6} \) |
\(a_{682}= -0.55622547 \pm 3.6 \cdot 10^{-6} \) | \(a_{683}= +0.50898901 \pm 5.6 \cdot 10^{-6} \) | \(a_{684}= +0.20390779 \pm 6.9 \cdot 10^{-6} \) |
\(a_{685}= -0.95761686 \pm 3.5 \cdot 10^{-6} \) | \(a_{686}= -0.91979915 \pm 5.5 \cdot 10^{-6} \) | \(a_{687}= -1.16078004 \pm 4.9 \cdot 10^{-6} \) |
\(a_{688}= +0.02269302 \pm 2.9 \cdot 10^{-6} \) | \(a_{689}= +0.11532548 \pm 5.5 \cdot 10^{-6} \) | \(a_{690}= +0.04926160 \pm 2.7 \cdot 10^{-6} \) |
\(a_{691}= +0.10748905 \pm 5.3 \cdot 10^{-6} \) | \(a_{692}= +0.48196148 \pm 7.1 \cdot 10^{-6} \) | \(a_{693}= -0.13895744 \pm 2.8 \cdot 10^{-6} \) |
\(a_{694}= -1.68615567 \pm 7.2 \cdot 10^{-6} \) | \(a_{695}= -1.03366892 \pm 4.7 \cdot 10^{-6} \) | \(a_{696}= +0.08042108 \pm 7.2 \cdot 10^{-6} \) |
\(a_{697}= -0.38040646 \pm 7.8 \cdot 10^{-6} \) | \(a_{698}= +0.06637995 \pm 8.7 \cdot 10^{-6} \) | \(a_{699}= +1.66352839 \pm 2.9 \cdot 10^{-6} \) |
\(a_{700}= -0.10170812 \pm 5.7 \cdot 10^{-6} \) | \(a_{701}= +0.10230370 \pm 5.2 \cdot 10^{-6} \) | \(a_{702}= +0.16500531 \pm 1.2 \cdot 10^{-5} \) |
\(a_{703}= -2.87468280 \pm 4.3 \cdot 10^{-6} \) | \(a_{704}= +0.41760510 \pm 3.5 \cdot 10^{-6} \) | \(a_{705}= +0.00673698 \pm 2.6 \cdot 10^{-6} \) |
\(a_{706}= +0.15706916 \pm 6.0 \cdot 10^{-6} \) | \(a_{707}= -0.45031573 \pm 4.5 \cdot 10^{-6} \) | \(a_{708}= +0.50062460 \pm 3.0 \cdot 10^{-6} \) |
\(a_{709}= -0.72916924 \pm 6.0 \cdot 10^{-6} \) | \(a_{710}= -0.00117315 \pm 5.1 \cdot 10^{-6} \) | \(a_{711}= -0.24960206 \pm 4.3 \cdot 10^{-6} \) |
\(a_{712}= -0.96369081 \pm 7.2 \cdot 10^{-6} \) | \(a_{713}= -0.11007917 \pm 3.2 \cdot 10^{-6} \) | \(a_{714}= +0.34081512 \pm 7.0 \cdot 10^{-6} \) |
\(a_{715}= +0.07948440 \pm 9.6 \cdot 10^{-6} \) | \(a_{716}= +0.18088817 \pm 7.7 \cdot 10^{-6} \) | \(a_{717}= +0.92294413 \pm 2.9 \cdot 10^{-6} \) |
\(a_{718}= +1.39631909 \pm 3.9 \cdot 10^{-6} \) | \(a_{719}= +1.46457559 \pm 3.8 \cdot 10^{-6} \) | \(a_{720}= -0.20666901 \pm 4.1 \cdot 10^{-6} \) |
\(a_{721}= +0.10247751 \pm 5.4 \cdot 10^{-6} \) | \(a_{722}= -1.98536562 \pm 1.0 \cdot 10^{-5} \) | \(a_{723}= -1.88666600 \pm 4.4 \cdot 10^{-6} \) |
\(a_{724}= +0.01306858 \pm 5.1 \cdot 10^{-6} \) | \(a_{725}= -0.02650743 \pm 3.9 \cdot 10^{-6} \) | \(a_{726}= +0.87112245 \pm 6.8 \cdot 10^{-6} \) |
\(a_{727}= +0.03304243 \pm 6.8 \cdot 10^{-6} \) | \(a_{728}= -0.26675047 \pm 1.1 \cdot 10^{-5} \) | \(a_{729}= +0.31274583 \pm 4.3 \cdot 10^{-6} \) |
\(a_{730}= +0.65785865 \pm 3.7 \cdot 10^{-6} \) | \(a_{731}= -0.01305673 \pm 3.1 \cdot 10^{-6} \) | \(a_{732}= +0.17556022 \pm 5.3 \cdot 10^{-6} \) |
\(a_{733}= +0.07913335 \pm 5.7 \cdot 10^{-6} \) | \(a_{734}= +0.42253723 \pm 7.5 \cdot 10^{-6} \) | \(a_{735}= -0.19323140 \pm 2.4 \cdot 10^{-6} \) |
\(a_{736}= +0.03345213 \pm 3.6 \cdot 10^{-6} \) | \(a_{737}= -0.14399528 \pm 3.4 \cdot 10^{-6} \) | \(a_{738}= +0.35632628 \pm 4.5 \cdot 10^{-6} \) |
\(a_{739}= +1.20431287 \pm 5.9 \cdot 10^{-6} \) | \(a_{740}= -0.32244105 \pm 3.6 \cdot 10^{-6} \) | \(a_{741}= -0.60136608 \pm 1.0 \cdot 10^{-5} \) |
\(a_{742}= +0.31496120 \pm 2.8 \cdot 10^{-6} \) | \(a_{743}= +0.32400595 \pm 4.3 \cdot 10^{-6} \) | \(a_{744}= +2.22193066 \pm 3.6 \cdot 10^{-6} \) |
\(a_{745}= +0.48530266 \pm 3.2 \cdot 10^{-6} \) | \(a_{746}= -1.00728328 \pm 5.9 \cdot 10^{-6} \) | \(a_{747}= -0.09141146 \pm 6.3 \cdot 10^{-6} \) |
\(a_{748}= -0.03857895 \pm 2.2 \cdot 10^{-6} \) | \(a_{749}= +1.18677721 \pm 5.3 \cdot 10^{-6} \) | \(a_{750}= +1.09820775 \pm 4.8 \cdot 10^{-6} \) |
\(a_{751}= +0.79451955 \pm 5.8 \cdot 10^{-6} \) | \(a_{752}= -0.00491291 \pm 5.5 \cdot 10^{-6} \) | \(a_{753}= +1.20381414 \pm 6.1 \cdot 10^{-6} \) |
\(a_{754}= -0.01476913 \pm 1.1 \cdot 10^{-5} \) | \(a_{755}= -0.43175375 \pm 3.6 \cdot 10^{-6} \) | \(a_{756}= -0.16646008 \pm 5.3 \cdot 10^{-6} \) |
\(a_{757}= -1.10513305 \pm 4.6 \cdot 10^{-6} \) | \(a_{758}= -0.67089268 \pm 6.8 \cdot 10^{-6} \) | \(a_{759}= -0.02875048 \pm 3.3 \cdot 10^{-6} \) |
\(a_{760}= -1.49943600 \pm 6.9 \cdot 10^{-6} \) | \(a_{761}= -0.46772320 \pm 6.0 \cdot 10^{-6} \) | \(a_{762}= -1.51137137 \pm 9.7 \cdot 10^{-6} \) |
\(a_{763}= +1.42700564 \pm 6.9 \cdot 10^{-6} \) | \(a_{764}= -0.34602407 \pm 1.1 \cdot 10^{-5} \) | \(a_{765}= +0.11890974 \pm 2.8 \cdot 10^{-6} \) |
\(a_{766}= +0.77443541 \pm 4.4 \cdot 10^{-6} \) | \(a_{767}= -0.43277236 \pm 4.5 \cdot 10^{-6} \) | \(a_{768}= -0.88617182 \pm 6.3 \cdot 10^{-6} \) |
\(a_{769}= +0.91352463 \pm 5.2 \cdot 10^{-6} \) | \(a_{770}= +0.21707695 \pm 2.6 \cdot 10^{-6} \) | \(a_{771}= +0.94383021 \pm 7.0 \cdot 10^{-6} \) |
\(a_{772}= -0.40657712 \pm 7.1 \cdot 10^{-6} \) | \(a_{773}= -1.42874659 \pm 4.2 \cdot 10^{-6} \) | \(a_{774}= +0.01223022 \pm 3.8 \cdot 10^{-6} \) |
\(a_{775}= -0.73236618 \pm 3.2 \cdot 10^{-6} \) | \(a_{776}= +0.89831608 \pm 7.9 \cdot 10^{-6} \) | \(a_{777}= -1.66247582 \pm 3.9 \cdot 10^{-6} \) |
\(a_{778}= -0.55874368 \pm 6.3 \cdot 10^{-6} \) | \(a_{779}= +1.83315735 \pm 5.0 \cdot 10^{-6} \) | \(a_{780}= -0.06745270 \pm 1.8 \cdot 10^{-5} \) |
\(a_{781}= +0.00068468 \pm 2.6 \cdot 10^{-6} \) | \(a_{782}= +0.02066923 \pm 3.8 \cdot 10^{-6} \) | \(a_{783}= -0.04338326 \pm 4.1 \cdot 10^{-6} \) |
\(a_{784}= +0.14091311 \pm 3.1 \cdot 10^{-6} \) | \(a_{785}= -0.21096632 \pm 4.3 \cdot 10^{-6} \) | \(a_{786}= +0.02297165 \pm 4.4 \cdot 10^{-6} \) |
\(a_{787}= -1.01497456 \pm 5.6 \cdot 10^{-6} \) | \(a_{788}= +0.46161994 \pm 9.6 \cdot 10^{-6} \) | \(a_{789}= +0.10270619 \pm 5.3 \cdot 10^{-6} \) |
\(a_{790}= +0.38992408 \pm 4.4 \cdot 10^{-6} \) | \(a_{791}= +1.44947137 \pm 2.8 \cdot 10^{-6} \) | \(a_{792}= +0.17010324 \pm 4.9 \cdot 10^{-6} \) |
\(a_{793}= -0.15176564 \pm 5.0 \cdot 10^{-6} \) | \(a_{794}= -0.17374061 \pm 6.8 \cdot 10^{-6} \) | \(a_{795}= +0.37489826 \pm 4.7 \cdot 10^{-6} \) |
\(a_{796}= -0.53252024 \pm 8.4 \cdot 10^{-6} \) | \(a_{797}= -0.53428193 \pm 4.0 \cdot 10^{-6} \) | \(a_{798}= -1.64236892 \pm 2.2 \cdot 10^{-6} \) |
\(a_{799}= +0.00282671 \pm 3.8 \cdot 10^{-6} \) | \(a_{800}= +0.22255987 \pm 5.4 \cdot 10^{-6} \) | \(a_{801}= -0.36828080 \pm 4.0 \cdot 10^{-6} \) |
\(a_{802}= -0.86180875 \pm 5.9 \cdot 10^{-6} \) | \(a_{803}= -0.38394509 \pm 2.2 \cdot 10^{-6} \) | \(a_{804}= +0.12219844 \pm 2.4 \cdot 10^{-6} \) |
\(a_{805}= +0.04296037 \pm 2.9 \cdot 10^{-6} \) | \(a_{806}= -0.40805208 \pm 1.0 \cdot 10^{-5} \) | \(a_{807}= -1.09475785 \pm 5.3 \cdot 10^{-6} \) |
\(a_{808}= +0.55124908 \pm 4.8 \cdot 10^{-6} \) | \(a_{809}= -1.35030578 \pm 3.9 \cdot 10^{-6} \) | \(a_{810}= +0.80500672 \pm 4.4 \cdot 10^{-6} \) |
\(a_{811}= -0.68459751 \pm 4.8 \cdot 10^{-6} \) | \(a_{812}= +0.01489935 \pm 8.8 \cdot 10^{-6} \) | \(a_{813}= -0.27756742 \pm 3.9 \cdot 10^{-6} \) |
\(a_{814}= -0.50945575 \pm 4.1 \cdot 10^{-6} \) | \(a_{815}= +0.43824555 \pm 5.3 \cdot 10^{-6} \) | \(a_{816}= -0.29583458 \pm 3.7 \cdot 10^{-6} \) |
\(a_{817}= +0.06291965 \pm 6.4 \cdot 10^{-6} \) | \(a_{818}= +0.98627591 \pm 6.1 \cdot 10^{-6} \) | \(a_{819}= -0.10194045 \pm 9.8 \cdot 10^{-6} \) |
\(a_{820}= +0.20561753 \pm 8.5 \cdot 10^{-6} \) | \(a_{821}= +1.87690197 \pm 3.6 \cdot 10^{-6} \) | \(a_{822}= +1.28400091 \pm 2.3 \cdot 10^{-6} \) |
\(a_{823}= +1.36544365 \pm 5.8 \cdot 10^{-6} \) | \(a_{824}= -0.12544672 \pm 5.6 \cdot 10^{-6} \) | \(a_{825}= -0.19127938 \pm 4.1 \cdot 10^{-6} \) |
\(a_{826}= -1.18192877 \pm 2.9 \cdot 10^{-6} \) | \(a_{827}= -1.21349136 \pm 6.2 \cdot 10^{-6} \) | \(a_{828}= +0.00715162 \pm 2.9 \cdot 10^{-6} \) |
\(a_{829}= +1.41208917 \pm 6.2 \cdot 10^{-6} \) | \(a_{830}= +0.14280142 \pm 5.6 \cdot 10^{-6} \) | \(a_{831}= +0.21410003 \pm 3.9 \cdot 10^{-6} \) |
\(a_{832}= +0.30635892 \pm 6.6 \cdot 10^{-6} \) | \(a_{833}= -0.08107622 \pm 2.9 \cdot 10^{-6} \) | \(a_{834}= +1.38597376 \pm 3.0 \cdot 10^{-6} \) |
\(a_{835}= +0.96518227 \pm 8.4 \cdot 10^{-6} \) | \(a_{836}= +0.18590978 \pm 2.8 \cdot 10^{-6} \) | \(a_{837}= -1.19862339 \pm 4.6 \cdot 10^{-6} \) |
\(a_{838}= -0.07816904 \pm 7.4 \cdot 10^{-6} \) | \(a_{839}= +1.55965444 \pm 5.8 \cdot 10^{-6} \) | \(a_{840}= -0.86714823 \pm 3.3 \cdot 10^{-6} \) |
\(a_{841}= -0.99611689 \pm 5.0 \cdot 10^{-6} \) | \(a_{842}= +1.29995311 \pm 6.8 \cdot 10^{-6} \) | \(a_{843}= +0.18816005 \pm 5.6 \cdot 10^{-6} \) |
\(a_{844}= +0.04465098 \pm 9.5 \cdot 10^{-6} \) | \(a_{845}= +0.05831048 \pm 5.7 \cdot 10^{-6} \) | \(a_{846}= -0.00264777 \pm 5.8 \cdot 10^{-6} \) |
\(a_{847}= +0.75969403 \pm 5.3 \cdot 10^{-6} \) | \(a_{848}= -0.27339284 \pm 3.2 \cdot 10^{-6} \) | \(a_{849}= -0.33052225 \pm 5.2 \cdot 10^{-6} \) |
\(a_{850}= +0.13751415 \pm 5.6 \cdot 10^{-6} \) | \(a_{851}= -0.10082327 \pm 3.8 \cdot 10^{-6} \) | \(a_{852}= -0.00058104 \pm 1.9 \cdot 10^{-6} \) |
\(a_{853}= +0.39303005 \pm 5.2 \cdot 10^{-6} \) | \(a_{854}= -0.41448158 \pm 6.8 \cdot 10^{-6} \) | \(a_{855}= -0.57301936 \pm 4.8 \cdot 10^{-6} \) |
\(a_{856}= -1.45278035 \pm 7.7 \cdot 10^{-6} \) | \(a_{857}= +1.25580141 \pm 5.4 \cdot 10^{-6} \) | \(a_{858}= -0.10657503 \pm 1.6 \cdot 10^{-5} \) |
\(a_{859}= -0.71184508 \pm 3.8 \cdot 10^{-6} \) | \(a_{860}= +0.00705743 \pm 3.2 \cdot 10^{-6} \) | \(a_{861}= +1.06014471 \pm 7.2 \cdot 10^{-6} \) |
\(a_{862}= -0.11351850 \pm 9.8 \cdot 10^{-6} \) | \(a_{863}= -0.05400999 \pm 5.3 \cdot 10^{-6} \) | \(a_{864}= +0.36425148 \pm 4.4 \cdot 10^{-6} \) |
\(a_{865}= -1.35440269 \pm 5.0 \cdot 10^{-6} \) | \(a_{866}= -1.18635094 \pm 4.9 \cdot 10^{-6} \) | \(a_{867}= -1.01918369 \pm 4.1 \cdot 10^{-6} \) |
\(a_{868}= +0.41164968 \pm 3.0 \cdot 10^{-6} \) | \(a_{869}= -0.22757083 \pm 4.1 \cdot 10^{-6} \) | \(a_{870}= -0.04801127 \pm 3.9 \cdot 10^{-6} \) |
\(a_{871}= -0.10563625 \pm 4.4 \cdot 10^{-6} \) | \(a_{872}= -1.74685336 \pm 7.8 \cdot 10^{-6} \) | \(a_{873}= +0.34329741 \pm 3.8 \cdot 10^{-6} \) |
\(a_{874}= -0.09960385 \pm 4.8 \cdot 10^{-6} \) | \(a_{875}= +0.95773202 \pm 5.7 \cdot 10^{-6} \) | \(a_{876}= +0.32582659 \pm 6.0 \cdot 10^{-6} \) |
\(a_{877}= +0.90730096 \pm 5.4 \cdot 10^{-6} \) | \(a_{878}= +1.16920282 \pm 5.7 \cdot 10^{-6} \) | \(a_{879}= +0.99038717 \pm 3.9 \cdot 10^{-6} \) |
\(a_{880}= -0.18842728 \pm 3.5 \cdot 10^{-6} \) | \(a_{881}= -1.22060325 \pm 4.8 \cdot 10^{-6} \) | \(a_{882}= +0.07594400 \pm 5.4 \cdot 10^{-6} \) |
\(a_{883}= +0.00667388 \pm 6.2 \cdot 10^{-6} \) | \(a_{884}= -0.02830187 \pm 1.2 \cdot 10^{-5} \) | \(a_{885}= -1.40684959 \pm 5.1 \cdot 10^{-6} \) |
\(a_{886}= +0.78550846 \pm 3.7 \cdot 10^{-6} \) | \(a_{887}= +0.56269634 \pm 4.5 \cdot 10^{-6} \) | \(a_{888}= +2.03510161 \pm 5.6 \cdot 10^{-6} \) |
\(a_{889}= -1.31804639 \pm 6.0 \cdot 10^{-6} \) | \(a_{890}= +0.57532198 \pm 5.6 \cdot 10^{-6} \) | \(a_{891}= -0.46982491 \pm 4.9 \cdot 10^{-6} \) |
\(a_{892}= -0.33809324 \pm 8.2 \cdot 10^{-6} \) | \(a_{893}= -0.01362174 \pm 4.3 \cdot 10^{-6} \) | \(a_{894}= -0.65070811 \pm 4.1 \cdot 10^{-6} \) |
\(a_{895}= -0.50832988 \pm 6.9 \cdot 10^{-6} \) | \(a_{896}= +0.37292719 \pm 8.0 \cdot 10^{-6} \) | \(a_{897}= -0.02109161 \pm 8.9 \cdot 10^{-6} \) |
\(a_{898}= -0.58364793 \pm 5.5 \cdot 10^{-6} \) | \(a_{899}= +0.10728520 \pm 2.2 \cdot 10^{-6} \) | \(a_{900}= +0.04758036 \pm 3.0 \cdot 10^{-6} \) |
\(a_{901}= +0.15730018 \pm 5.3 \cdot 10^{-6} \) | \(a_{902}= +0.32487499 \pm 3.7 \cdot 10^{-6} \) | \(a_{903}= +0.03638746 \pm 2.5 \cdot 10^{-6} \) |
\(a_{904}= -1.77435454 \pm 3.5 \cdot 10^{-6} \) | \(a_{905}= -0.03672517 \pm 5.2 \cdot 10^{-6} \) | \(a_{906}= +0.57890816 \pm 4.5 \cdot 10^{-6} \) |
\(a_{907}= -1.61204774 \pm 3.9 \cdot 10^{-6} \) | \(a_{908}= +0.22520053 \pm 5.6 \cdot 10^{-6} \) | \(a_{909}= +0.21066347 \pm 3.6 \cdot 10^{-6} \) |
\(a_{910}= +0.15924963 \pm 1.7 \cdot 10^{-5} \) | \(a_{911}= -0.20820744 \pm 5.7 \cdot 10^{-6} \) | \(a_{912}= +1.42561020 \pm 2.4 \cdot 10^{-6} \) |
\(a_{913}= -0.08334298 \pm 4.0 \cdot 10^{-6} \) | \(a_{914}= +0.76310761 \pm 7.9 \cdot 10^{-6} \) | \(a_{915}= -0.49335734 \pm 5.0 \cdot 10^{-6} \) |
\(a_{916}= +0.26325581 \pm 6.9 \cdot 10^{-6} \) | \(a_{917}= +0.02003327 \pm 3.6 \cdot 10^{-6} \) | \(a_{918}= +0.22506184 \pm 6.2 \cdot 10^{-6} \) |
\(a_{919}= +1.57101088 \pm 6.6 \cdot 10^{-6} \) | \(a_{920}= -0.05258947 \pm 4.1 \cdot 10^{-6} \) | \(a_{921}= -1.68610032 \pm 8.0 \cdot 10^{-6} \) |
\(a_{922}= +1.38648195 \pm 8.5 \cdot 10^{-6} \) | \(a_{923}= +0.00050229 \pm 4.2 \cdot 10^{-6} \) | \(a_{924}= +0.10751465 \pm 2.0 \cdot 10^{-6} \) |
\(a_{925}= -0.67078582 \pm 4.4 \cdot 10^{-6} \) | \(a_{926}= -1.30056554 \pm 7.9 \cdot 10^{-6} \) | \(a_{927}= -0.04794029 \pm 3.2 \cdot 10^{-6} \) |
\(a_{928}= -0.03260306 \pm 5.7 \cdot 10^{-6} \) | \(a_{929}= -1.04504745 \pm 4.2 \cdot 10^{-6} \) | \(a_{930}= -1.32648930 \pm 2.3 \cdot 10^{-6} \) |
\(a_{931}= +0.39070174 \pm 5.5 \cdot 10^{-6} \) | \(a_{932}= -0.37727520 \pm 6.4 \cdot 10^{-6} \) | \(a_{933}= +0.67019732 \pm 4.3 \cdot 10^{-6} \) |
\(a_{934}= -0.58933922 \pm 6.5 \cdot 10^{-6} \) | \(a_{935}= +0.10841412 \pm 2.0 \cdot 10^{-6} \) | \(a_{936}= +0.12478929 \pm 1.1 \cdot 10^{-5} \) |
\(a_{937}= -0.03425298 \pm 3.4 \cdot 10^{-6} \) | \(a_{938}= -0.28849931 \pm 6.1 \cdot 10^{-6} \) | \(a_{939}= +1.90142710 \pm 6.5 \cdot 10^{-6} \) |
\(a_{940}= -0.00152789 \pm 5.6 \cdot 10^{-6} \) | \(a_{941}= -1.40274326 \pm 5.8 \cdot 10^{-6} \) | \(a_{942}= +0.28286986 \pm 4.5 \cdot 10^{-6} \) |
\(a_{943}= +0.06429402 \pm 4.8 \cdot 10^{-6} \) | \(a_{944}= +1.02593862 \pm 4.0 \cdot 10^{-6} \) | \(a_{945}= +0.46778424 \pm 3.8 \cdot 10^{-6} \) |
\(a_{946}= +0.01115072 \pm 3.0 \cdot 10^{-6} \) | \(a_{947}= -0.49339041 \pm 5.1 \cdot 10^{-6} \) | \(a_{948}= +0.19312300 \pm 2.0 \cdot 10^{-6} \) |
\(a_{949}= -0.28166563 \pm 4.3 \cdot 10^{-6} \) | \(a_{950}= -0.66267297 \pm 2.6 \cdot 10^{-6} \) | \(a_{951}= +1.36359249 \pm 5.0 \cdot 10^{-6} \) |
\(a_{952}= -0.36383890 \pm 5.7 \cdot 10^{-6} \) | \(a_{953}= -0.00549528 \pm 5.4 \cdot 10^{-6} \) | \(a_{954}= -0.14734289 \pm 3.5 \cdot 10^{-6} \) |
\(a_{955}= +0.97239293 \pm 5.8 \cdot 10^{-6} \) | \(a_{956}= -0.20931649 \pm 5.3 \cdot 10^{-6} \) | \(a_{957}= +0.02802075 \pm 2.1 \cdot 10^{-6} \) |
\(a_{958}= +0.86249111 \pm 6.6 \cdot 10^{-6} \) | \(a_{959}= +1.11975971 \pm 3.3 \cdot 10^{-6} \) | \(a_{960}= +0.99590676 \pm 3.3 \cdot 10^{-6} \) |
\(a_{961}= +1.96415165 \pm 4.6 \cdot 10^{-6} \) | \(a_{962}= -0.37374139 \pm 1.1 \cdot 10^{-5} \) | \(a_{963}= -0.55518959 \pm 3.4 \cdot 10^{-6} \) |
\(a_{964}= +0.42788106 \pm 7.6 \cdot 10^{-6} \) | \(a_{965}= +1.14255843 \pm 3.9 \cdot 10^{-6} \) | \(a_{966}= -0.05760253 \pm 3.6 \cdot 10^{-6} \) |
\(a_{967}= +1.74261830 \pm 7.2 \cdot 10^{-6} \) | \(a_{968}= -0.92997114 \pm 6.2 \cdot 10^{-6} \) | \(a_{969}= -0.82024363 \pm 3.2 \cdot 10^{-6} \) |
\(a_{970}= -0.53629336 \pm 4.3 \cdot 10^{-6} \) | \(a_{971}= -0.61824265 \pm 4.4 \cdot 10^{-6} \) | \(a_{972}= +0.21091030 \pm 4.6 \cdot 10^{-6} \) |
\(a_{973}= +1.20868884 \pm 3.8 \cdot 10^{-6} \) | \(a_{974}= +0.59540884 \pm 8.8 \cdot 10^{-6} \) | \(a_{975}= -0.14032430 \pm 1.1 \cdot 10^{-5} \) |
\(a_{976}= +0.35977858 \pm 3.6 \cdot 10^{-6} \) | \(a_{977}= -0.46656434 \pm 5.9 \cdot 10^{-6} \) | \(a_{978}= -0.58761254 \pm 5.7 \cdot 10^{-6} \) |
\(a_{979}= -0.33577434 \pm 3.1 \cdot 10^{-6} \) | \(a_{980}= +0.04382337 \pm 5.0 \cdot 10^{-6} \) | \(a_{981}= -0.66757153 \pm 3.8 \cdot 10^{-6} \) |
\(a_{982}= -0.86075930 \pm 5.4 \cdot 10^{-6} \) | \(a_{983}= -0.42387103 \pm 5.4 \cdot 10^{-6} \) | \(a_{984}= -1.29776457 \pm 9.8 \cdot 10^{-6} \) |
\(a_{985}= -1.29723913 \pm 4.0 \cdot 10^{-6} \) | \(a_{986}= -0.02014461 \pm 8.3 \cdot 10^{-6} \) | \(a_{987}= -0.00787768 \pm 2.8 \cdot 10^{-6} \) |
\(a_{988}= +0.13638511 \pm 1.2 \cdot 10^{-5} \) | \(a_{989}= +0.00220677 \pm 4.0 \cdot 10^{-6} \) | \(a_{990}= -0.10155138 \pm 2.8 \cdot 10^{-6} \) |
\(a_{991}= +1.61237177 \pm 4.2 \cdot 10^{-6} \) | \(a_{992}= -0.90078053 \pm 3.3 \cdot 10^{-6} \) | \(a_{993}= -1.61148175 \pm 5.6 \cdot 10^{-6} \) |
\(a_{994}= +0.00137179 \pm 6.2 \cdot 10^{-6} \) | \(a_{995}= +1.49648234 \pm 6.4 \cdot 10^{-6} \) | \(a_{996}= +0.07072720 \pm 8.3 \cdot 10^{-6} \) |
\(a_{997}= +0.15965686 \pm 3.8 \cdot 10^{-6} \) | \(a_{998}= +0.34578163 \pm 7.1 \cdot 10^{-6} \) | \(a_{999}= -1.09783822 \pm 5.1 \cdot 10^{-6} \) |
\(a_{1000}= -1.17239719 \pm 6.1 \cdot 10^{-6} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000