Maass form invariants
Level: | \( 13 \) |
Weight: | \( 0 \) |
Character: | 13.1 |
Symmetry: | odd |
Fricke sign: | $-1$ |
Spectral parameter: | \(14.6867865799050458251438388791 \pm 2 \cdot 10^{-7}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= +1.94787247 \pm 1.1 \cdot 10^{-4} \) | \(a_{3}= +1.55128076 \pm 1.0 \cdot 10^{-4} \) |
\(a_{4}= +2.79420716 \pm 1.0 \cdot 10^{-4} \) | \(a_{5}= +0.77122104 \pm 9.4 \cdot 10^{-5} \) | \(a_{6}= +3.02169709 \pm 1.2 \cdot 10^{-4} \) |
\(a_{7}= -0.43375318 \pm 9.7 \cdot 10^{-5} \) | \(a_{8}= +3.49488674 \pm 8.3 \cdot 10^{-5} \) | \(a_{9}= +1.40647200 \pm 1.0 \cdot 10^{-4} \) |
\(a_{10}= +1.50224024 \pm 1.0 \cdot 10^{-4} \) | \(a_{11}= -1.52707194 \pm 8.9 \cdot 10^{-5} \) | \(a_{12}= +4.33459981 \pm 1.0 \cdot 10^{-4} \) |
\(a_{13}= +0.27735010 \pm 1.0 \cdot 10^{-8} \) | \(a_{14}= -0.84489589 \pm 1.0 \cdot 10^{-4} \) | \(a_{15}= +1.19638036 \pm 1.1 \cdot 10^{-4} \) |
\(a_{16}= +4.01338651 \pm 8.6 \cdot 10^{-5} \) | \(a_{17}= +0.24554588 \pm 9.7 \cdot 10^{-5} \) | \(a_{18}= +2.73962808 \pm 1.1 \cdot 10^{-4} \) |
\(a_{19}= -0.91265373 \pm 7.9 \cdot 10^{-5} \) | \(a_{20}= +2.15495136 \pm 9.8 \cdot 10^{-5} \) | \(a_{21}= -0.67287297 \pm 8.3 \cdot 10^{-5} \) |
\(a_{22}= -2.97454139 \pm 9.8 \cdot 10^{-5} \) | \(a_{23}= -0.04233970 \pm 8.1 \cdot 10^{-5} \) | \(a_{24}= +5.42155056 \pm 8.1 \cdot 10^{-5} \) |
\(a_{25}= -0.40521811 \pm 7.3 \cdot 10^{-5} \) | \(a_{26}= +0.54024262 \pm 1.1 \cdot 10^{-4} \) | \(a_{27}= +0.63055219 \pm 8.6 \cdot 10^{-5} \) |
\(a_{28}= -1.21199625 \pm 9.1 \cdot 10^{-5} \) | \(a_{29}= +0.98052051 \pm 7.2 \cdot 10^{-5} \) | \(a_{30}= +2.33039637 \pm 1.3 \cdot 10^{-4} \) |
\(a_{31}= +0.70762566 \pm 1.0 \cdot 10^{-4} \) | \(a_{32}= +4.32267836 \pm 1.1 \cdot 10^{-4} \) | \(a_{33}= -2.36891732 \pm 7.7 \cdot 10^{-5} \) |
\(a_{34}= +0.47829207 \pm 1.0 \cdot 10^{-4} \) | \(a_{35}= -0.33451958 \pm 7.8 \cdot 10^{-5} \) | \(a_{36}= +3.92997412 \pm 9.7 \cdot 10^{-5} \) |
\(a_{37}= -1.45487692 \pm 1.2 \cdot 10^{-4} \) | \(a_{38}= -1.77773308 \pm 7.6 \cdot 10^{-5} \) | \(a_{39}= +0.43024787 \pm 1.0 \cdot 10^{-4} \) |
\(a_{40}= +2.69533019 \pm 8.3 \cdot 10^{-5} \) | \(a_{41}= +0.15920503 \pm 8.7 \cdot 10^{-5} \) | \(a_{42}= -1.31067073 \pm 6.9 \cdot 10^{-5} \) |
\(a_{43}= +0.15553059 \pm 9.7 \cdot 10^{-5} \) | \(a_{44}= -4.26695535 \pm 9.3 \cdot 10^{-5} \) | \(a_{45}= +1.08470080 \pm 1.0 \cdot 10^{-4} \) |
\(a_{46}= -0.08247233 \pm 1.0 \cdot 10^{-4} \) | \(a_{47}= -1.18094594 \pm 1.0 \cdot 10^{-4} \) | \(a_{48}= +6.22588927 \pm 9.8 \cdot 10^{-5} \) |
\(a_{49}= -0.81185818 \pm 8.8 \cdot 10^{-5} \) | \(a_{50}= -0.78931319 \pm 8.7 \cdot 10^{-5} \) | \(a_{51}= +0.38091060 \pm 1.1 \cdot 10^{-4} \) |
\(a_{52}= +0.77497363 \pm 1.0 \cdot 10^{-4} \) | \(a_{53}= -0.33552997 \pm 7.4 \cdot 10^{-5} \) | \(a_{54}= +1.22823524 \pm 1.0 \cdot 10^{-4} \) |
\(a_{55}= -1.17771001 \pm 6.4 \cdot 10^{-5} \) | \(a_{56}= -1.51591825 \pm 7.3 \cdot 10^{-5} \) | \(a_{57}= -1.41578218 \pm 7.7 \cdot 10^{-5} \) |
\(a_{58}= +1.90992891 \pm 7.0 \cdot 10^{-5} \) | \(a_{59}= +0.59839164 \pm 8.9 \cdot 10^{-5} \) | \(a_{60}= +3.34293458 \pm 1.1 \cdot 10^{-4} \) |
\(a_{61}= -1.16714139 \pm 8.7 \cdot 10^{-5} \) | \(a_{62}= +1.37836455 \pm 9.1 \cdot 10^{-5} \) | \(a_{63}= -0.61006171 \pm 7.3 \cdot 10^{-5} \) |
\(a_{64}= +4.40663966 \pm 9.0 \cdot 10^{-5} \) | \(a_{65}= +0.21389823 \pm 9.4 \cdot 10^{-5} \) | \(a_{66}= -4.61434883 \pm 8.8 \cdot 10^{-5} \) |
\(a_{67}= -0.32282288 \pm 1.0 \cdot 10^{-4} \) | \(a_{68}= +0.68610607 \pm 8.6 \cdot 10^{-5} \) | \(a_{69}= -0.06568076 \pm 9.9 \cdot 10^{-5} \) |
\(a_{70}= -0.65160149 \pm 7.7 \cdot 10^{-5} \) | \(a_{71}= +1.94737447 \pm 1.0 \cdot 10^{-4} \) | \(a_{72}= +4.91546033 \pm 8.3 \cdot 10^{-5} \) |
\(a_{73}= +0.96262422 \pm 1.1 \cdot 10^{-4} \) | \(a_{74}= -2.83391470 \pm 1.1 \cdot 10^{-4} \) | \(a_{75}= -0.62860705 \pm 5.8 \cdot 10^{-5} \) |
\(a_{76}= -2.55014360 \pm 7.1 \cdot 10^{-5} \) | \(a_{77}= +0.66237232 \pm 9.1 \cdot 10^{-5} \) | \(a_{78}= +0.83806798 \pm 2.1 \cdot 10^{-4} \) |
\(a_{79}= +0.05545779 \pm 1.0 \cdot 10^{-4} \) | \(a_{80}= +3.09520812 \pm 8.1 \cdot 10^{-5} \) | \(a_{81}= -0.42830852 \pm 8.5 \cdot 10^{-5} \) |
\(a_{82}= +0.31011110 \pm 9.7 \cdot 10^{-5} \) | \(a_{83}= +0.65362303 \pm 6.4 \cdot 10^{-5} \) | \(a_{84}= -1.88014647 \pm 7.9 \cdot 10^{-5} \) |
\(a_{85}= +0.18937015 \pm 9.1 \cdot 10^{-5} \) | \(a_{86}= +0.30295375 \pm 1.1 \cdot 10^{-4} \) | \(a_{87}= +1.52106260 \pm 7.5 \cdot 10^{-5} \) |
\(a_{88}= -5.33694347 \pm 7.0 \cdot 10^{-5} \) | \(a_{89}= +0.65470495 \pm 1.2 \cdot 10^{-4} \) | \(a_{90}= +2.11285882 \pm 1.2 \cdot 10^{-4} \) |
\(a_{91}= -0.12030149 \pm 9.7 \cdot 10^{-5} \) | \(a_{92}= -0.11830589 \pm 8.9 \cdot 10^{-5} \) | \(a_{93}= +1.09772608 \pm 1.1 \cdot 10^{-4} \) |
\(a_{94}= -2.30033209 \pm 8.5 \cdot 10^{-5} \) | \(a_{95}= -0.70385776 \pm 7.0 \cdot 10^{-5} \) | \(a_{96}= +6.70568777 \pm 1.2 \cdot 10^{-4} \) |
\(a_{97}= +1.49580761 \pm 1.0 \cdot 10^{-4} \) | \(a_{98}= -1.58139619 \pm 1.0 \cdot 10^{-4} \) | \(a_{99}= -2.14778392 \pm 7.5 \cdot 10^{-5} \) |
\(a_{100}= -1.13226333 \pm 7.6 \cdot 10^{-5} \) | \(a_{101}= -0.16757707 \pm 7.4 \cdot 10^{-5} \) | \(a_{102}= +0.74196528 \pm 1.2 \cdot 10^{-4} \) |
\(a_{103}= +0.31072642 \pm 1.0 \cdot 10^{-4} \) | \(a_{104}= +0.96930718 \pm 8.3 \cdot 10^{-5} \) | \(a_{105}= -0.51893379 \pm 7.7 \cdot 10^{-5} \) |
\(a_{106}= -0.65356960 \pm 9.3 \cdot 10^{-5} \) | \(a_{107}= +0.33395373 \pm 1.0 \cdot 10^{-4} \) | \(a_{108}= +1.76189343 \pm 8.9 \cdot 10^{-5} \) |
\(a_{109}= +0.10912145 \pm 7.1 \cdot 10^{-5} \) | \(a_{110}= -2.29402891 \pm 7.2 \cdot 10^{-5} \) | \(a_{111}= -2.25692257 \pm 6.6 \cdot 10^{-5} \) |
\(a_{112}= -1.74081918 \pm 8.5 \cdot 10^{-5} \) | \(a_{113}= +0.63687790 \pm 1.2 \cdot 10^{-4} \) | \(a_{114}= -2.75776313 \pm 8.3 \cdot 10^{-5} \) |
\(a_{115}= -0.03265327 \pm 8.4 \cdot 10^{-5} \) | \(a_{116}= +2.73977744 \pm 8.0 \cdot 10^{-5} \) | \(a_{117}= +0.39008515 \pm 1.0 \cdot 10^{-4} \) |
\(a_{118}= +1.16559060 \pm 9.7 \cdot 10^{-5} \) | \(a_{119}= -0.10650631 \pm 1.0 \cdot 10^{-4} \) | \(a_{120}= +4.18121387 \pm 8.7 \cdot 10^{-5} \) |
\(a_{121}= +1.33194871 \pm 6.5 \cdot 10^{-5} \) | \(a_{122}= -2.27344258 \pm 8.1 \cdot 10^{-5} \) | \(a_{123}= +0.24697171 \pm 9.7 \cdot 10^{-5} \) |
\(a_{124}= +1.97725270 \pm 9.4 \cdot 10^{-5} \) | \(a_{125}= -1.08373377 \pm 7.8 \cdot 10^{-5} \) | \(a_{126}= -1.18832240 \pm 7.8 \cdot 10^{-5} \) |
\(a_{127}= -1.49945171 \pm 1.0 \cdot 10^{-4} \) | \(a_{128}= +4.26089373 \pm 8.6 \cdot 10^{-5} \) | \(a_{129}= +0.24127161 \pm 1.0 \cdot 10^{-4} \) |
\(a_{130}= +0.41664648 \pm 2.0 \cdot 10^{-4} \) | \(a_{131}= -0.93173038 \pm 8.3 \cdot 10^{-5} \) | \(a_{132}= -6.61924574 \pm 8.7 \cdot 10^{-5} \) |
\(a_{133}= +0.39586646 \pm 6.0 \cdot 10^{-5} \) | \(a_{134}= -0.62881781 \pm 1.2 \cdot 10^{-4} \) | \(a_{135}= +0.48629511 \pm 7.7 \cdot 10^{-5} \) |
\(a_{136}= +0.85815505 \pm 6.0 \cdot 10^{-5} \) | \(a_{137}= -0.39435436 \pm 9.9 \cdot 10^{-5} \) | \(a_{138}= -0.12793774 \pm 1.2 \cdot 10^{-4} \) |
\(a_{139}= -1.21343521 \pm 9.1 \cdot 10^{-5} \) | \(a_{140}= -0.93471701 \pm 7.5 \cdot 10^{-5} \) | \(a_{141}= -1.83197872 \pm 8.0 \cdot 10^{-5} \) |
\(a_{142}= +3.79323713 \pm 1.0 \cdot 10^{-4} \) | \(a_{143}= -0.42353355 \pm 8.9 \cdot 10^{-5} \) | \(a_{144}= +5.64471573 \pm 9.2 \cdot 10^{-5} \) |
\(a_{145}= +0.75619805 \pm 6.9 \cdot 10^{-5} \) | \(a_{146}= +1.87506922 \pm 1.0 \cdot 10^{-4} \) | \(a_{147}= -1.25941997 \pm 9.0 \cdot 10^{-5} \) |
\(a_{148}= -4.06522750 \pm 1.0 \cdot 10^{-4} \) | \(a_{149}= +0.61814762 \pm 9.4 \cdot 10^{-5} \) | \(a_{150}= -1.22444637 \pm 7.5 \cdot 10^{-5} \) |
\(a_{151}= +0.42501279 \pm 7.4 \cdot 10^{-5} \) | \(a_{152}= -3.18962144 \pm 6.7 \cdot 10^{-5} \) | \(a_{153}= +0.34535341 \pm 9.4 \cdot 10^{-5} \) |
\(a_{154}= +1.29021680 \pm 1.1 \cdot 10^{-4} \) | \(a_{155}= +0.54573580 \pm 9.9 \cdot 10^{-5} \) | \(a_{156}= +1.20220168 \pm 2.0 \cdot 10^{-4} \) |
\(a_{157}= -1.11108468 \pm 1.0 \cdot 10^{-4} \) | \(a_{158}= +0.10802470 \pm 9.4 \cdot 10^{-5} \) | \(a_{159}= -0.52050119 \pm 7.3 \cdot 10^{-5} \) |
\(a_{160}= +3.33374050 \pm 1.0 \cdot 10^{-4} \) | \(a_{161}= +0.01836498 \pm 7.2 \cdot 10^{-5} \) | \(a_{162}= -0.83429038 \pm 8.5 \cdot 10^{-5} \) |
\(a_{163}= +0.71334786 \pm 1.2 \cdot 10^{-4} \) | \(a_{164}= +0.44485185 \pm 9.0 \cdot 10^{-5} \) | \(a_{165}= -1.82695888 \pm 7.1 \cdot 10^{-5} \) |
\(a_{166}= +1.27317432 \pm 6.4 \cdot 10^{-5} \) | \(a_{167}= +0.37360867 \pm 1.1 \cdot 10^{-4} \) | \(a_{168}= -2.35161482 \pm 6.8 \cdot 10^{-5} \) |
\(a_{169}= +0.07692308 \pm 4.0 \cdot 10^{-7} \) | \(a_{170}= +0.36886891 \pm 1.0 \cdot 10^{-4} \) | \(a_{171}= -1.28362192 \pm 9.2 \cdot 10^{-5} \) |
\(a_{172}= +0.43458468 \pm 9.9 \cdot 10^{-5} \) | \(a_{173}= -1.07046157 \pm 1.1 \cdot 10^{-4} \) | \(a_{174}= +2.96283597 \pm 5.4 \cdot 10^{-5} \) |
\(a_{175}= +0.17576464 \pm 7.9 \cdot 10^{-5} \) | \(a_{176}= -6.12872992 \pm 7.3 \cdot 10^{-5} \) | \(a_{177}= +0.92827343 \pm 8.3 \cdot 10^{-5} \) |
\(a_{178}= +1.27528175 \pm 1.4 \cdot 10^{-4} \) | \(a_{179}= -0.33961260 \pm 7.6 \cdot 10^{-5} \) | \(a_{180}= +3.03087874 \pm 9.9 \cdot 10^{-5} \) |
\(a_{181}= +1.83415696 \pm 9.9 \cdot 10^{-5} \) | \(a_{182}= -0.23433196 \pm 2.0 \cdot 10^{-4} \) | \(a_{183}= -1.81056398 \pm 8.3 \cdot 10^{-5} \) |
\(a_{184}= -0.14797245 \pm 6.6 \cdot 10^{-5} \) | \(a_{185}= -1.12203169 \pm 8.6 \cdot 10^{-5} \) | \(a_{186}= +2.13823041 \pm 1.1 \cdot 10^{-4} \) |
\(a_{187}= -0.37496623 \pm 7.7 \cdot 10^{-5} \) | \(a_{188}= -3.29980761 \pm 9.3 \cdot 10^{-5} \) | \(a_{189}= -0.27350402 \pm 7.3 \cdot 10^{-5} \) |
\(a_{190}= -1.37102516 \pm 7.9 \cdot 10^{-5} \) | \(a_{191}= -0.63420580 \pm 8.9 \cdot 10^{-5} \) | \(a_{192}= +6.83593532 \pm 1.0 \cdot 10^{-4} \) |
\(a_{193}= +0.31596489 \pm 1.0 \cdot 10^{-4} \) | \(a_{194}= +2.91364247 \pm 9.7 \cdot 10^{-5} \) | \(a_{195}= +0.33181621 \pm 2.0 \cdot 10^{-4} \) |
\(a_{196}= -2.26849993 \pm 8.1 \cdot 10^{-5} \) | \(a_{197}= +1.52721934 \pm 9.1 \cdot 10^{-5} \) | \(a_{198}= -4.18360917 \pm 8.3 \cdot 10^{-5} \) |
\(a_{199}= -1.35501358 \pm 1.0 \cdot 10^{-4} \) | \(a_{200}= -1.41619138 \pm 5.9 \cdot 10^{-5} \) | \(a_{201}= -0.50078893 \pm 1.2 \cdot 10^{-4} \) |
\(a_{202}= -0.32641876 \pm 8.8 \cdot 10^{-5} \) | \(a_{203}= -0.42530389 \pm 8.2 \cdot 10^{-5} \) | \(a_{204}= +1.06434314 \pm 1.0 \cdot 10^{-4} \) |
\(a_{205}= +0.12278227 \pm 7.9 \cdot 10^{-5} \) | \(a_{206}= +0.60525545 \pm 1.2 \cdot 10^{-4} \) | \(a_{207}= -0.05954960 \pm 9.9 \cdot 10^{-5} \) |
\(a_{208}= +1.11311314 \pm 8.6 \cdot 10^{-5} \) | \(a_{209}= +1.39368791 \pm 6.6 \cdot 10^{-5} \) | \(a_{210}= -1.01081685 \pm 5.3 \cdot 10^{-5} \) |
\(a_{211}= +0.62801973 \pm 1.1 \cdot 10^{-4} \) | \(a_{212}= -0.93754026 \pm 7.9 \cdot 10^{-5} \) | \(a_{213}= +3.02092455 \pm 1.1 \cdot 10^{-4} \) |
\(a_{214}= +0.65049928 \pm 1.2 \cdot 10^{-4} \) | \(a_{215}= +0.11994846 \pm 8.9 \cdot 10^{-5} \) | \(a_{216}= +2.20370847 \pm 6.7 \cdot 10^{-5} \) |
\(a_{217}= -0.30693488 \pm 9.3 \cdot 10^{-5} \) | \(a_{218}= +0.21255466 \pm 7.8 \cdot 10^{-5} \) | \(a_{219}= +1.49330043 \pm 1.1 \cdot 10^{-4} \) |
\(a_{220}= -3.29076575 \pm 6.9 \cdot 10^{-5} \) | \(a_{221}= +0.06810217 \pm 9.7 \cdot 10^{-5} \) | \(a_{222}= -4.39619734 \pm 7.0 \cdot 10^{-5} \) |
\(a_{223}= +0.80918218 \pm 1.0 \cdot 10^{-4} \) | \(a_{224}= -1.87497550 \pm 1.0 \cdot 10^{-4} \) | \(a_{225}= -0.56992792 \pm 6.1 \cdot 10^{-5} \) |
\(a_{226}= +1.24055693 \pm 1.3 \cdot 10^{-4} \) | \(a_{227}= -0.98718323 \pm 7.5 \cdot 10^{-5} \) | \(a_{228}= -3.95598871 \pm 6.4 \cdot 10^{-5} \) |
\(a_{229}= -1.21100791 \pm 1.0 \cdot 10^{-4} \) | \(a_{230}= -0.06360440 \pm 1.0 \cdot 10^{-4} \) | \(a_{231}= +1.02752543 \pm 7.1 \cdot 10^{-5} \) |
\(a_{232}= +3.42680813 \pm 6.3 \cdot 10^{-5} \) | \(a_{233}= -0.09093066 \pm 1.2 \cdot 10^{-4} \) | \(a_{234}= +0.75983612 \pm 2.1 \cdot 10^{-4} \) |
\(a_{235}= -0.91077036 \pm 7.4 \cdot 10^{-5} \) | \(a_{236}= +1.67203020 \pm 9.0 \cdot 10^{-5} \) | \(a_{237}= +0.08603060 \pm 9.9 \cdot 10^{-5} \) |
\(a_{238}= -0.20746071 \pm 1.0 \cdot 10^{-4} \) | \(a_{239}= -1.28550553 \pm 9.2 \cdot 10^{-5} \) | \(a_{240}= +4.80153681 \pm 1.0 \cdot 10^{-4} \) |
\(a_{241}= +0.78339243 \pm 8.2 \cdot 10^{-5} \) | \(a_{242}= +2.59446622 \pm 8.0 \cdot 10^{-5} \) | \(a_{243}= -1.29497895 \pm 1.0 \cdot 10^{-4} \) |
\(a_{244}= -3.26123483 \pm 6.9 \cdot 10^{-5} \) | \(a_{245}= -0.62612211 \pm 8.3 \cdot 10^{-5} \) | \(a_{246}= +0.48106939 \pm 1.3 \cdot 10^{-4} \) |
\(a_{247}= -0.25312460 \pm 7.9 \cdot 10^{-5} \) | \(a_{248}= +2.47307155 \pm 7.9 \cdot 10^{-5} \) | \(a_{249}= +1.01395284 \pm 5.7 \cdot 10^{-5} \) |
\(a_{250}= -2.11097518 \pm 5.9 \cdot 10^{-5} \) | \(a_{251}= +0.72779416 \pm 1.1 \cdot 10^{-4} \) | \(a_{252}= -1.70463879 \pm 6.4 \cdot 10^{-5} \) |
\(a_{253}= +0.06465576 \pm 7.8 \cdot 10^{-5} \) | \(a_{254}= -2.92074071 \pm 1.1 \cdot 10^{-4} \) | \(a_{255}= +0.29376627 \pm 1.2 \cdot 10^{-4} \) |
\(a_{256}= +3.89303794 \pm 9.3 \cdot 10^{-5} \) | \(a_{257}= +1.85753679 \pm 1.1 \cdot 10^{-4} \) | \(a_{258}= +0.46996632 \pm 1.4 \cdot 10^{-4} \) |
\(a_{259}= +0.63105750 \pm 1.0 \cdot 10^{-4} \) | \(a_{260}= +0.59767597 \pm 1.9 \cdot 10^{-4} \) | \(a_{261}= +1.37907464 \pm 5.0 \cdot 10^{-5} \) |
\(a_{262}= -1.81489196 \pm 1.0 \cdot 10^{-4} \) | \(a_{263}= -1.05217716 \pm 9.9 \cdot 10^{-5} \) | \(a_{264}= -8.27909773 \pm 6.9 \cdot 10^{-5} \) |
\(a_{265}= -0.25876778 \pm 6.2 \cdot 10^{-5} \) | \(a_{266}= +0.77109739 \pm 6.8 \cdot 10^{-5} \) | \(a_{267}= +1.01563119 \pm 1.2 \cdot 10^{-4} \) |
\(a_{268}= -0.90203402 \pm 1.0 \cdot 10^{-4} \) | \(a_{269}= +0.56432772 \pm 1.1 \cdot 10^{-4} \) | \(a_{270}= +0.94724086 \pm 9.4 \cdot 10^{-5} \) |
\(a_{271}= -0.05396170 \pm 9.5 \cdot 10^{-5} \) | \(a_{272}= +0.98547054 \pm 8.8 \cdot 10^{-5} \) | \(a_{273}= -0.18662138 \pm 2.0 \cdot 10^{-4} \) |
\(a_{274}= -0.76815201 \pm 9.9 \cdot 10^{-5} \) | \(a_{275}= +0.61879720 \pm 7.3 \cdot 10^{-5} \) | \(a_{276}= -0.18352564 \pm 8.5 \cdot 10^{-5} \) |
\(a_{277}= +0.09645055 \pm 1.0 \cdot 10^{-4} \) | \(a_{278}= -2.36361704 \pm 8.7 \cdot 10^{-5} \) | \(a_{279}= +0.99525568 \pm 1.0 \cdot 10^{-4} \) |
\(a_{280}= -1.16910805 \pm 7.5 \cdot 10^{-5} \) | \(a_{281}= +1.14514321 \pm 1.4 \cdot 10^{-4} \) | \(a_{282}= -3.56846091 \pm 9.0 \cdot 10^{-5} \) |
\(a_{283}= -0.07093241 \pm 7.6 \cdot 10^{-5} \) | \(a_{284}= +5.44136771 \pm 9.0 \cdot 10^{-5} \) | \(a_{285}= -1.09188101 \pm 8.4 \cdot 10^{-5} \) |
\(a_{286}= -0.82498935 \pm 2.0 \cdot 10^{-4} \) | \(a_{287}= -0.06905569 \pm 4.8 \cdot 10^{-5} \) | \(a_{288}= +6.07972605 \pm 1.1 \cdot 10^{-4} \) |
\(a_{289}= -0.93970722 \pm 8.0 \cdot 10^{-5} \) | \(a_{290}= +1.47297736 \pm 7.3 \cdot 10^{-5} \) | \(a_{291}= +2.32041757 \pm 1.0 \cdot 10^{-4} \) |
\(a_{292}= +2.68977149 \pm 1.0 \cdot 10^{-4} \) | \(a_{293}= +0.09251126 \pm 8.6 \cdot 10^{-5} \) | \(a_{294}= -2.45318948 \pm 1.1 \cdot 10^{-4} \) |
\(a_{295}= +0.46149222 \pm 8.1 \cdot 10^{-5} \) | \(a_{296}= -5.08463005 \pm 1.0 \cdot 10^{-4} \) | \(a_{297}= -0.96289855 \pm 7.8 \cdot 10^{-5} \) |
\(a_{298}= +1.20407272 \pm 9.6 \cdot 10^{-5} \) | \(a_{299}= -0.01174292 \pm 8.1 \cdot 10^{-5} \) | \(a_{300}= -1.75645832 \pm 6.8 \cdot 10^{-5} \) |
\(a_{301}= -0.06746189 \pm 8.0 \cdot 10^{-5} \) | \(a_{302}= +0.82787071 \pm 7.2 \cdot 10^{-5} \) | \(a_{303}= -0.25995908 \pm 8.3 \cdot 10^{-5} \) |
\(a_{304}= -3.66283219 \pm 6.2 \cdot 10^{-5} \) | \(a_{305}= -0.90012400 \pm 6.9 \cdot 10^{-5} \) | \(a_{306}= +0.67270440 \pm 1.1 \cdot 10^{-4} \) |
\(a_{307}= +0.87245589 \pm 7.5 \cdot 10^{-5} \) | \(a_{308}= +1.85080547 \pm 9.8 \cdot 10^{-5} \) | \(a_{309}= +0.48202392 \pm 1.1 \cdot 10^{-4} \) |
\(a_{310}= +1.06302374 \pm 9.8 \cdot 10^{-5} \) | \(a_{311}= -0.10432406 \pm 1.2 \cdot 10^{-4} \) | \(a_{312}= +1.50366758 \pm 1.9 \cdot 10^{-4} \) |
\(a_{313}= -1.45101682 \pm 7.4 \cdot 10^{-5} \) | \(a_{314}= -2.16425126 \pm 1.0 \cdot 10^{-4} \) | \(a_{315}= -0.47049242 \pm 5.9 \cdot 10^{-5} \) |
\(a_{316}= +0.15496055 \pm 9.2 \cdot 10^{-5} \) | \(a_{317}= +1.24675393 \pm 9.4 \cdot 10^{-5} \) | \(a_{318}= -1.01386995 \pm 9.7 \cdot 10^{-5} \) |
\(a_{319}= -1.49732536 \pm 5.8 \cdot 10^{-5} \) | \(a_{320}= +3.39849323 \pm 9.0 \cdot 10^{-5} \) | \(a_{321}= +0.51805600 \pm 1.0 \cdot 10^{-4} \) |
\(a_{322}= +0.03577264 \pm 1.0 \cdot 10^{-4} \) | \(a_{323}= -0.22409837 \pm 5.8 \cdot 10^{-5} \) | \(a_{324}= -1.19678274 \pm 8.3 \cdot 10^{-5} \) |
\(a_{325}= -0.11238728 \pm 7.3 \cdot 10^{-5} \) | \(a_{326}= +1.38951066 \pm 8.6 \cdot 10^{-5} \) | \(a_{327}= +0.16927800 \pm 8.4 \cdot 10^{-5} \) |
\(a_{328}= +0.55640357 \pm 4.2 \cdot 10^{-5} \) | \(a_{329}= +0.51223906 \pm 7.4 \cdot 10^{-5} \) | \(a_{330}= -3.55868291 \pm 8.1 \cdot 10^{-5} \) |
\(a_{331}= +1.94798221 \pm 1.1 \cdot 10^{-4} \) | \(a_{332}= +1.82635816 \pm 5.9 \cdot 10^{-5} \) | \(a_{333}= -2.04624364 \pm 1.0 \cdot 10^{-4} \) |
\(a_{334}= +0.72774203 \pm 1.1 \cdot 10^{-4} \) | \(a_{335}= -0.24896780 \pm 1.0 \cdot 10^{-4} \) | \(a_{336}= -2.70049930 \pm 6.0 \cdot 10^{-5} \) |
\(a_{337}= +1.19311555 \pm 1.0 \cdot 10^{-4} \) | \(a_{338}= +0.14983634 \pm 1.1 \cdot 10^{-4} \) | \(a_{339}= +0.98797644 \pm 1.3 \cdot 10^{-4} \) |
\(a_{340}= +0.52913943 \pm 8.4 \cdot 10^{-5} \) | \(a_{341}= -1.08059529 \pm 7.5 \cdot 10^{-5} \) | \(a_{342}= -2.50033180 \pm 1.0 \cdot 10^{-4} \) |
\(a_{343}= +0.78589925 \pm 7.2 \cdot 10^{-5} \) | \(a_{344}= +0.54356179 \pm 5.7 \cdot 10^{-5} \) | \(a_{345}= -0.05065438 \pm 1.1 \cdot 10^{-4} \) |
\(a_{346}= -2.08512263 \pm 1.1 \cdot 10^{-4} \) | \(a_{347}= +0.61605300 \pm 1.2 \cdot 10^{-4} \) | \(a_{348}= +4.25016402 \pm 7.6 \cdot 10^{-5} \) |
\(a_{349}= -1.51997181 \pm 1.0 \cdot 10^{-4} \) | \(a_{350}= +0.34236711 \pm 1.0 \cdot 10^{-4} \) | \(a_{351}= +0.17488371 \pm 8.6 \cdot 10^{-5} \) |
\(a_{352}= -6.60104082 \pm 9.5 \cdot 10^{-5} \) | \(a_{353}= -0.12543826 \pm 8.5 \cdot 10^{-5} \) | \(a_{354}= +1.80815827 \pm 8.9 \cdot 10^{-5} \) |
\(a_{355}= +1.50185617 \pm 1.0 \cdot 10^{-4} \) | \(a_{356}= +1.82938126 \pm 1.1 \cdot 10^{-4} \) | \(a_{357}= -0.16522119 \pm 1.0 \cdot 10^{-4} \) |
\(a_{358}= -0.66152204 \pm 7.2 \cdot 10^{-5} \) | \(a_{359}= -0.97892536 \pm 1.3 \cdot 10^{-4} \) | \(a_{360}= +3.79090643 \pm 7.8 \cdot 10^{-5} \) |
\(a_{361}= -0.16706316 \pm 7.2 \cdot 10^{-5} \) | \(a_{362}= +3.57270385 \pm 1.0 \cdot 10^{-4} \) | \(a_{363}= +2.06622640 \pm 7.3 \cdot 10^{-5} \) |
\(a_{364}= -0.33614728 \pm 1.9 \cdot 10^{-4} \) | \(a_{365}= +0.74239605 \pm 9.3 \cdot 10^{-5} \) | \(a_{366}= -3.52674773 \pm 6.2 \cdot 10^{-5} \) |
\(a_{367}= +0.86627757 \pm 1.1 \cdot 10^{-4} \) | \(a_{368}= -0.16992557 \pm 7.4 \cdot 10^{-5} \) | \(a_{369}= +0.22391742 \pm 8.0 \cdot 10^{-5} \) |
\(a_{370}= -2.18557464 \pm 8.9 \cdot 10^{-5} \) | \(a_{371}= +0.14553719 \pm 7.6 \cdot 10^{-5} \) | \(a_{372}= +3.06727407 \pm 1.1 \cdot 10^{-4} \) |
\(a_{373}= -0.55800152 \pm 7.3 \cdot 10^{-5} \) | \(a_{374}= -0.73038639 \pm 8.3 \cdot 10^{-5} \) | \(a_{375}= -1.68117535 \pm 7.8 \cdot 10^{-5} \) |
\(a_{376}= -4.12727231 \pm 8.7 \cdot 10^{-5} \) | \(a_{377}= +0.27194746 \pm 7.2 \cdot 10^{-5} \) | \(a_{378}= -0.53275095 \pm 9.1 \cdot 10^{-5} \) |
\(a_{379}= -0.43864538 \pm 9.5 \cdot 10^{-5} \) | \(a_{380}= -1.96672440 \pm 7.4 \cdot 10^{-5} \) | \(a_{381}= -2.32607059 \pm 9.5 \cdot 10^{-5} \) |
\(a_{382}= -1.23535201 \pm 1.0 \cdot 10^{-4} \) | \(a_{383}= +0.60325690 \pm 1.4 \cdot 10^{-4} \) | \(a_{384}= +6.60984247 \pm 8.5 \cdot 10^{-5} \) |
\(a_{385}= +0.51083547 \pm 5.9 \cdot 10^{-5} \) | \(a_{386}= +0.61545930 \pm 9.9 \cdot 10^{-5} \) | \(a_{387}= +0.21874942 \pm 8.9 \cdot 10^{-5} \) |
\(a_{388}= +4.17959635 \pm 9.5 \cdot 10^{-5} \) | \(a_{389}= +1.03191784 \pm 9.1 \cdot 10^{-5} \) | \(a_{390}= +0.64633566 \pm 3.1 \cdot 10^{-4} \) |
\(a_{391}= -0.01039634 \pm 5.7 \cdot 10^{-5} \) | \(a_{392}= -2.83735237 \pm 6.6 \cdot 10^{-5} \) | \(a_{393}= -1.44537541 \pm 9.5 \cdot 10^{-5} \) |
\(a_{394}= +2.97482851 \pm 1.0 \cdot 10^{-4} \) | \(a_{395}= +0.04277021 \pm 8.4 \cdot 10^{-5} \) | \(a_{396}= -6.00135321 \pm 7.7 \cdot 10^{-5} \) |
\(a_{397}= +1.92448250 \pm 7.9 \cdot 10^{-5} \) | \(a_{398}= -2.63939366 \pm 1.1 \cdot 10^{-4} \) | \(a_{399}= +0.61410003 \pm 4.1 \cdot 10^{-5} \) |
\(a_{400}= -1.62629688 \pm 6.9 \cdot 10^{-5} \) | \(a_{401}= -0.58519206 \pm 7.6 \cdot 10^{-5} \) | \(a_{402}= -0.97547297 \pm 1.6 \cdot 10^{-4} \) |
\(a_{403}= +0.19626005 \pm 1.0 \cdot 10^{-4} \) | \(a_{404}= -0.46824505 \pm 8.6 \cdot 10^{-5} \) | \(a_{405}= -0.33032054 \pm 8.5 \cdot 10^{-5} \) |
\(a_{406}= -0.82843775 \pm 8.0 \cdot 10^{-5} \) | \(a_{407}= +2.22170172 \pm 1.0 \cdot 10^{-4} \) | \(a_{408}= +1.33123942 \pm 7.3 \cdot 10^{-5} \) |
\(a_{409}= -1.28846878 \pm 8.8 \cdot 10^{-5} \) | \(a_{410}= +0.23916421 \pm 1.0 \cdot 10^{-4} \) | \(a_{411}= -0.61175433 \pm 8.8 \cdot 10^{-5} \) |
\(a_{412}= +0.86823400 \pm 1.0 \cdot 10^{-4} \) | \(a_{413}= -0.25955428 \pm 9.3 \cdot 10^{-5} \) | \(a_{414}= -0.11599502 \pm 1.2 \cdot 10^{-4} \) |
\(a_{415}= +0.50408784 \pm 5.9 \cdot 10^{-5} \) | \(a_{416}= +1.19889527 \pm 1.1 \cdot 10^{-4} \) | \(a_{417}= -1.88237870 \pm 1.0 \cdot 10^{-4} \) |
\(a_{418}= +2.71472631 \pm 5.7 \cdot 10^{-5} \) | \(a_{419}= +1.66672505 \pm 1.1 \cdot 10^{-4} \) | \(a_{420}= -1.45000852 \pm 6.7 \cdot 10^{-5} \) |
\(a_{421}= +0.26449968 \pm 1.1 \cdot 10^{-4} \) | \(a_{422}= +1.22330233 \pm 1.2 \cdot 10^{-4} \) | \(a_{423}= -1.66096739 \pm 9.1 \cdot 10^{-5} \) |
\(a_{424}= -1.17263926 \pm 6.0 \cdot 10^{-5} \) | \(a_{425}= -0.09949964 \pm 6.8 \cdot 10^{-5} \) | \(a_{426}= +5.88437578 \pm 1.3 \cdot 10^{-4} \) |
\(a_{427}= +0.50625129 \pm 1.0 \cdot 10^{-4} \) | \(a_{428}= +0.93313591 \pm 1.1 \cdot 10^{-4} \) | \(a_{429}= -0.65701945 \pm 1.9 \cdot 10^{-4} \) |
\(a_{430}= +0.23364431 \pm 1.1 \cdot 10^{-4} \) | \(a_{431}= +0.31271969 \pm 1.1 \cdot 10^{-4} \) | \(a_{432}= +2.53064963 \pm 7.7 \cdot 10^{-5} \) |
\(a_{433}= -1.86634215 \pm 9.4 \cdot 10^{-5} \) | \(a_{434}= -0.59787001 \pm 7.1 \cdot 10^{-5} \) | \(a_{435}= +1.17307548 \pm 7.3 \cdot 10^{-5} \) |
\(a_{436}= +0.30490793 \pm 7.5 \cdot 10^{-5} \) | \(a_{437}= +0.03864148 \pm 7.4 \cdot 10^{-5} \) | \(a_{438}= +2.90875880 \pm 1.1 \cdot 10^{-4} \) |
\(a_{439}= -1.35316172 \pm 8.9 \cdot 10^{-5} \) | \(a_{440}= -4.11596310 \pm 6.4 \cdot 10^{-5} \) | \(a_{441}= -1.14185579 \pm 9.3 \cdot 10^{-5} \) |
\(a_{442}= +0.13265435 \pm 2.0 \cdot 10^{-4} \) | \(a_{443}= -0.81086839 \pm 1.0 \cdot 10^{-4} \) | \(a_{444}= -6.30630921 \pm 7.0 \cdot 10^{-5} \) |
\(a_{445}= +0.50492223 \pm 1.1 \cdot 10^{-4} \) | \(a_{446}= +1.57618369 \pm 8.8 \cdot 10^{-5} \) | \(a_{447}= +0.95892050 \pm 7.1 \cdot 10^{-5} \) |
\(a_{448}= -1.91139399 \pm 7.5 \cdot 10^{-5} \) | \(a_{449}= +1.64794440 \pm 8.0 \cdot 10^{-5} \) | \(a_{450}= -1.11014690 \pm 7.6 \cdot 10^{-5} \) |
\(a_{451}= -0.24311754 \pm 8.0 \cdot 10^{-5} \) | \(a_{452}= +1.77956880 \pm 1.1 \cdot 10^{-4} \) | \(a_{453}= +0.65931416 \pm 9.0 \cdot 10^{-5} \) |
\(a_{454}= -1.92290703 \pm 8.0 \cdot 10^{-5} \) | \(a_{455}= -0.09277904 \pm 1.9 \cdot 10^{-4} \) | \(a_{456}= -4.94799836 \pm 5.9 \cdot 10^{-5} \) |
\(a_{457}= +0.26786789 \pm 9.2 \cdot 10^{-5} \) | \(a_{458}= -2.35888896 \pm 7.8 \cdot 10^{-5} \) | \(a_{459}= +0.15482949 \pm 7.2 \cdot 10^{-5} \) |
\(a_{460}= -0.09123999 \pm 8.8 \cdot 10^{-5} \) | \(a_{461}= +1.84532864 \pm 1.1 \cdot 10^{-4} \) | \(a_{462}= +2.00148850 \pm 7.9 \cdot 10^{-5} \) |
\(a_{463}= +1.84456009 \pm 1.1 \cdot 10^{-4} \) | \(a_{464}= +3.93520779 \pm 5.8 \cdot 10^{-5} \) | \(a_{465}= +0.84658945 \pm 1.2 \cdot 10^{-4} \) |
\(a_{466}= -0.17712132 \pm 1.4 \cdot 10^{-4} \) | \(a_{467}= -0.83214840 \pm 9.4 \cdot 10^{-5} \) | \(a_{468}= +1.08997871 \pm 2.0 \cdot 10^{-4} \) |
\(a_{469}= +0.14002545 \pm 8.0 \cdot 10^{-5} \) | \(a_{470}= -1.77406451 \pm 8.4 \cdot 10^{-5} \) | \(a_{471}= -1.72360429 \pm 1.0 \cdot 10^{-4} \) |
\(a_{472}= +2.09131100 \pm 8.0 \cdot 10^{-5} \) | \(a_{473}= -0.23750640 \pm 8.6 \cdot 10^{-5} \) | \(a_{474}= +0.16757664 \pm 1.1 \cdot 10^{-4} \) |
\(a_{475}= +0.36982382 \pm 5.5 \cdot 10^{-5} \) | \(a_{476}= -0.29760069 \pm 8.2 \cdot 10^{-5} \) | \(a_{477}= -0.47191351 \pm 6.8 \cdot 10^{-5} \) |
\(a_{478}= -2.50400083 \pm 1.0 \cdot 10^{-4} \) | \(a_{479}= -0.86559399 \pm 1.1 \cdot 10^{-4} \) | \(a_{480}= +5.17156750 \pm 1.3 \cdot 10^{-4} \) |
\(a_{481}= -0.40351026 \pm 1.2 \cdot 10^{-4} \) | \(a_{482}= +1.52594855 \pm 8.0 \cdot 10^{-5} \) | \(a_{483}= +0.02848924 \pm 5.5 \cdot 10^{-5} \) |
\(a_{484}= +3.72174062 \pm 7.3 \cdot 10^{-5} \) | \(a_{485}= +1.15359831 \pm 7.1 \cdot 10^{-5} \) | \(a_{486}= -2.52245386 \pm 1.1 \cdot 10^{-4} \) |
\(a_{487}= -1.78194694 \pm 1.1 \cdot 10^{-4} \) | \(a_{488}= -4.07902696 \pm 6.2 \cdot 10^{-5} \) | \(a_{489}= +1.10660281 \pm 1.0 \cdot 10^{-4} \) |
\(a_{490}= -1.21960602 \pm 1.0 \cdot 10^{-4} \) | \(a_{491}= +1.40728141 \pm 1.2 \cdot 10^{-4} \) | \(a_{492}= +0.69009011 \pm 1.0 \cdot 10^{-4} \) |
\(a_{493}= +0.24076277 \pm 7.5 \cdot 10^{-5} \) | \(a_{494}= -0.49305445 \pm 1.9 \cdot 10^{-4} \) | \(a_{495}= -1.65641615 \pm 6.4 \cdot 10^{-5} \) |
\(a_{496}= +2.83997529 \pm 7.9 \cdot 10^{-5} \) | \(a_{497}= -0.84467988 \pm 8.2 \cdot 10^{-5} \) | \(a_{498}= +1.97505082 \pm 7.0 \cdot 10^{-5} \) |
\(a_{499}= -1.28621543 \pm 9.9 \cdot 10^{-5} \) | \(a_{500}= -3.02817667 \pm 6.2 \cdot 10^{-5} \) | \(a_{501}= +0.57957193 \pm 1.1 \cdot 10^{-4} \) |
\(a_{502}= +1.41765021 \pm 1.0 \cdot 10^{-4} \) | \(a_{503}= +0.20920815 \pm 1.0 \cdot 10^{-4} \) | \(a_{504}= -2.13209657 \pm 5.8 \cdot 10^{-5} \) |
\(a_{505}= -0.12923896 \pm 7.7 \cdot 10^{-5} \) | \(a_{506}= +0.12594118 \pm 1.1 \cdot 10^{-4} \) | \(a_{507}= +0.11932929 \pm 1.0 \cdot 10^{-4} \) |
\(a_{508}= -4.18977871 \pm 8.2 \cdot 10^{-5} \) | \(a_{509}= -0.43946429 \pm 1.0 \cdot 10^{-4} \) | \(a_{510}= +0.57221924 \pm 1.4 \cdot 10^{-4} \) |
\(a_{511}= -0.41754132 \pm 1.2 \cdot 10^{-4} \) | \(a_{512}= +3.32224770 \pm 9.4 \cdot 10^{-5} \) | \(a_{513}= -0.57547581 \pm 8.5 \cdot 10^{-5} \) |
\(a_{514}= +3.61824477 \pm 1.0 \cdot 10^{-4} \) | \(a_{515}= +0.23963876 \pm 1.0 \cdot 10^{-4} \) | \(a_{516}= +0.67416286 \pm 1.1 \cdot 10^{-4} \) |
\(a_{517}= +1.80338941 \pm 9.2 \cdot 10^{-5} \) | \(a_{518}= +1.22921952 \pm 1.2 \cdot 10^{-4} \) | \(a_{519}= -1.66058644 \pm 1.1 \cdot 10^{-4} \) |
\(a_{520}= +0.74755009 \pm 1.7 \cdot 10^{-4} \) | \(a_{521}= +0.02076408 \pm 1.0 \cdot 10^{-4} \) | \(a_{522}= +2.68626153 \pm 5.2 \cdot 10^{-5} \) |
\(a_{523}= +1.52093990 \pm 1.2 \cdot 10^{-4} \) | \(a_{524}= -2.60344771 \pm 1.0 \cdot 10^{-4} \) | \(a_{525}= +0.27266031 \pm 4.8 \cdot 10^{-5} \) |
\(a_{526}= -2.04950692 \pm 1.0 \cdot 10^{-4} \) | \(a_{527}= +0.17375457 \pm 1.0 \cdot 10^{-4} \) | \(a_{528}= -9.50738081 \pm 7.5 \cdot 10^{-5} \) |
\(a_{529}= -0.99820735 \pm 1.1 \cdot 10^{-4} \) | \(a_{530}= -0.50404663 \pm 8.5 \cdot 10^{-5} \) | \(a_{531}= +0.84162108 \pm 8.7 \cdot 10^{-5} \) |
\(a_{532}= +1.10613291 \pm 6.0 \cdot 10^{-5} \) | \(a_{533}= +0.04415553 \pm 8.7 \cdot 10^{-5} \) | \(a_{534}= +1.97832004 \pm 1.6 \cdot 10^{-4} \) |
\(a_{535}= +0.25755215 \pm 1.0 \cdot 10^{-4} \) | \(a_{536}= -1.12822942 \pm 5.1 \cdot 10^{-5} \) | \(a_{537}= -0.52683450 \pm 8.1 \cdot 10^{-5} \) |
\(a_{538}= +1.09923844 \pm 1.2 \cdot 10^{-4} \) | \(a_{539}= +1.23976584 \pm 7.4 \cdot 10^{-5} \) | \(a_{540}= +1.35880929 \pm 8.0 \cdot 10^{-5} \) |
\(a_{541}= +1.80370432 \pm 6.2 \cdot 10^{-5} \) | \(a_{542}= -0.10511051 \pm 1.0 \cdot 10^{-4} \) | \(a_{543}= +2.84529240 \pm 7.8 \cdot 10^{-5} \) |
\(a_{544}= +1.06141587 \pm 1.0 \cdot 10^{-4} \) | \(a_{545}= +0.08415676 \pm 6.6 \cdot 10^{-5} \) | \(a_{546}= -0.36351466 \pm 3.1 \cdot 10^{-4} \) |
\(a_{547}= -0.43981921 \pm 7.4 \cdot 10^{-5} \) | \(a_{548}= -1.10190778 \pm 9.1 \cdot 10^{-5} \) | \(a_{549}= -1.64155168 \pm 7.5 \cdot 10^{-5} \) |
\(a_{550}= +1.20533803 \pm 9.0 \cdot 10^{-5} \) | \(a_{551}= -0.89487571 \pm 4.9 \cdot 10^{-5} \) | \(a_{552}= -0.22954681 \pm 8.3 \cdot 10^{-5} \) |
\(a_{553}= -0.02405499 \pm 6.8 \cdot 10^{-5} \) | \(a_{554}= +0.18787337 \pm 1.2 \cdot 10^{-4} \) | \(a_{555}= -1.74058617 \pm 6.3 \cdot 10^{-5} \) |
\(a_{556}= -3.39058936 \pm 9.5 \cdot 10^{-5} \) | \(a_{557}= -0.83966447 \pm 8.5 \cdot 10^{-5} \) | \(a_{558}= +1.93863114 \pm 1.1 \cdot 10^{-4} \) |
\(a_{559}= +0.04313642 \pm 9.7 \cdot 10^{-5} \) | \(a_{560}= -1.34255638 \pm 6.1 \cdot 10^{-5} \) | \(a_{561}= -0.58167790 \pm 7.7 \cdot 10^{-5} \) |
\(a_{562}= +2.23059293 \pm 1.3 \cdot 10^{-4} \) | \(a_{563}= -0.82538011 \pm 1.1 \cdot 10^{-4} \) | \(a_{564}= -5.11892806 \pm 9.0 \cdot 10^{-5} \) |
\(a_{565}= +0.49117364 \pm 1.2 \cdot 10^{-4} \) | \(a_{566}= -0.13816728 \pm 7.6 \cdot 10^{-5} \) | \(a_{567}= +0.18578019 \pm 7.6 \cdot 10^{-5} \) |
\(a_{568}= +6.80585323 \pm 9.0 \cdot 10^{-5} \) | \(a_{569}= +0.79114059 \pm 9.2 \cdot 10^{-5} \) | \(a_{570}= -2.12684495 \pm 9.7 \cdot 10^{-5} \) |
\(a_{571}= -1.13808172 \pm 1.0 \cdot 10^{-4} \) | \(a_{572}= -1.18344049 \pm 1.8 \cdot 10^{-4} \) | \(a_{573}= -0.98383125 \pm 1.0 \cdot 10^{-4} \) |
\(a_{574}= -0.13451168 \pm 4.6 \cdot 10^{-5} \) | \(a_{575}= +0.01715681 \pm 6.0 \cdot 10^{-5} \) | \(a_{576}= +6.19781528 \pm 9.5 \cdot 10^{-5} \) |
\(a_{577}= -0.39956109 \pm 9.8 \cdot 10^{-5} \) | \(a_{578}= -1.83042982 \pm 7.6 \cdot 10^{-5} \) | \(a_{579}= +0.49015025 \pm 1.0 \cdot 10^{-4} \) |
\(a_{580}= +2.11297401 \pm 9.0 \cdot 10^{-5} \) | \(a_{581}= -0.28351107 \pm 5.2 \cdot 10^{-5} \) | \(a_{582}= +4.51987751 \pm 8.4 \cdot 10^{-5} \) |
\(a_{583}= +0.51237841 \pm 6.2 \cdot 10^{-5} \) | \(a_{584}= +3.36426262 \pm 8.9 \cdot 10^{-5} \) | \(a_{585}= +0.30084187 \pm 1.9 \cdot 10^{-4} \) |
\(a_{586}= +0.18020014 \pm 7.5 \cdot 10^{-5} \) | \(a_{587}= +1.09808625 \pm 1.0 \cdot 10^{-4} \) | \(a_{588}= -3.51908029 \pm 9.5 \cdot 10^{-5} \) |
\(a_{589}= -0.64581720 \pm 7.3 \cdot 10^{-5} \) | \(a_{590}= +0.89892800 \pm 9.3 \cdot 10^{-5} \) | \(a_{591}= +2.36914598 \pm 1.0 \cdot 10^{-4} \) |
\(a_{592}= -5.83898339 \pm 7.9 \cdot 10^{-5} \) | \(a_{593}= -0.24083049 \pm 1.0 \cdot 10^{-4} \) | \(a_{594}= -1.87560357 \pm 9.2 \cdot 10^{-5} \) |
\(a_{595}= -0.08213991 \pm 8.3 \cdot 10^{-5} \) | \(a_{596}= +1.72723250 \pm 9.9 \cdot 10^{-5} \) | \(a_{597}= -2.10200650 \pm 1.2 \cdot 10^{-4} \) |
\(a_{598}= -0.02287371 \pm 1.9 \cdot 10^{-4} \) | \(a_{599}= -0.00112775 \pm 1.0 \cdot 10^{-4} \) | \(a_{600}= -2.19691045 \pm 5.4 \cdot 10^{-5} \) |
\(a_{601}= +0.41270594 \pm 1.0 \cdot 10^{-4} \) | \(a_{602}= -0.13140715 \pm 9.4 \cdot 10^{-5} \) | \(a_{603}= -0.45404135 \pm 9.9 \cdot 10^{-5} \) |
\(a_{604}= +1.18757377 \pm 7.0 \cdot 10^{-5} \) | \(a_{605}= +1.02722687 \pm 5.5 \cdot 10^{-5} \) | \(a_{606}= -0.50636714 \pm 1.0 \cdot 10^{-4} \) |
\(a_{607}= -0.34511636 \pm 7.1 \cdot 10^{-5} \) | \(a_{608}= -3.94510855 \pm 6.8 \cdot 10^{-5} \) | \(a_{609}= -0.65976575 \pm 8.7 \cdot 10^{-5} \) |
\(a_{610}= -1.75332675 \pm 4.5 \cdot 10^{-5} \) | \(a_{611}= -0.32753547 \pm 1.0 \cdot 10^{-4} \) | \(a_{612}= +0.96498897 \pm 8.9 \cdot 10^{-5} \) |
\(a_{613}= +0.47603758 \pm 1.0 \cdot 10^{-4} \) | \(a_{614}= +1.69943281 \pm 6.3 \cdot 10^{-5} \) | \(a_{615}= +0.19046978 \pm 1.0 \cdot 10^{-4} \) |
\(a_{616}= +2.31491623 \pm 6.3 \cdot 10^{-5} \) | \(a_{617}= -1.51237587 \pm 1.2 \cdot 10^{-4} \) | \(a_{618}= +0.93892113 \pm 1.5 \cdot 10^{-4} \) |
\(a_{619}= -0.63213922 \pm 9.5 \cdot 10^{-5} \) | \(a_{620}= +1.52489888 \pm 9.7 \cdot 10^{-5} \) | \(a_{621}= -0.02669739 \pm 9.2 \cdot 10^{-5} \) |
\(a_{622}= -0.20320997 \pm 1.1 \cdot 10^{-4} \) | \(a_{623}= -0.28398036 \pm 9.8 \cdot 10^{-5} \) | \(a_{624}= +1.72675100 \pm 1.9 \cdot 10^{-4} \) |
\(a_{625}= -0.43058018 \pm 9.7 \cdot 10^{-5} \) | \(a_{626}= -2.82639571 \pm 8.9 \cdot 10^{-5} \) | \(a_{627}= +2.16200124 \pm 5.6 \cdot 10^{-5} \) |
\(a_{628}= -3.10460078 \pm 9.6 \cdot 10^{-5} \) | \(a_{629}= -0.35723904 \pm 8.5 \cdot 10^{-5} \) | \(a_{630}= -0.91645924 \pm 5.9 \cdot 10^{-5} \) |
\(a_{631}= +0.36867638 \pm 1.0 \cdot 10^{-4} \) | \(a_{632}= +0.19381869 \pm 8.2 \cdot 10^{-5} \) | \(a_{633}= +0.97423492 \pm 1.1 \cdot 10^{-4} \) |
\(a_{634}= +2.42851767 \pm 1.0 \cdot 10^{-4} \) | \(a_{635}= -1.15640871 \pm 8.1 \cdot 10^{-5} \) | \(a_{636}= -1.45438816 \pm 9.0 \cdot 10^{-5} \) |
\(a_{637}= -0.22516894 \pm 8.8 \cdot 10^{-5} \) | \(a_{638}= -2.91659885 \pm 6.9 \cdot 10^{-5} \) | \(a_{639}= +2.73892766 \pm 1.1 \cdot 10^{-4} \) |
\(a_{640}= +3.28609090 \pm 8.6 \cdot 10^{-5} \) | \(a_{641}= -0.09375828 \pm 9.2 \cdot 10^{-5} \) | \(a_{642}= +1.00910702 \pm 1.4 \cdot 10^{-4} \) |
\(a_{643}= -0.80611571 \pm 1.1 \cdot 10^{-4} \) | \(a_{644}= +0.05131555 \pm 9.5 \cdot 10^{-5} \) | \(a_{645}= +0.18607374 \pm 1.1 \cdot 10^{-4} \) |
\(a_{646}= -0.43651504 \pm 6.3 \cdot 10^{-5} \) | \(a_{647}= +1.27589370 \pm 7.6 \cdot 10^{-5} \) | \(a_{648}= -1.49688978 \pm 7.1 \cdot 10^{-5} \) |
\(a_{649}= -0.91378708 \pm 7.9 \cdot 10^{-5} \) | \(a_{650}= -0.21891609 \pm 1.8 \cdot 10^{-4} \) | \(a_{651}= -0.47614218 \pm 9.7 \cdot 10^{-5} \) |
\(a_{652}= +1.99324170 \pm 8.8 \cdot 10^{-5} \) | \(a_{653}= +1.04731028 \pm 9.9 \cdot 10^{-5} \) | \(a_{654}= +0.32973196 \pm 9.6 \cdot 10^{-5} \) |
\(a_{655}= -0.71857007 \pm 8.9 \cdot 10^{-5} \) | \(a_{656}= +0.63895134 \pm 7.8 \cdot 10^{-5} \) | \(a_{657}= +1.35390401 \pm 1.0 \cdot 10^{-4} \) |
\(a_{658}= +0.99777637 \pm 7.3 \cdot 10^{-5} \) | \(a_{659}= +0.12500930 \pm 7.6 \cdot 10^{-5} \) | \(a_{660}= -5.10490159 \pm 7.1 \cdot 10^{-5} \) |
\(a_{661}= +0.03778079 \pm 1.0 \cdot 10^{-4} \) | \(a_{662}= +3.79442092 \pm 1.3 \cdot 10^{-4} \) | \(a_{663}= +0.10564559 \pm 2.0 \cdot 10^{-4} \) |
\(a_{664}= +2.28433848 \pm 4.9 \cdot 10^{-5} \) | \(a_{665}= +0.30530055 \pm 5.1 \cdot 10^{-5} \) | \(a_{666}= -3.98582166 \pm 9.3 \cdot 10^{-5} \) |
\(a_{667}= -0.04151494 \pm 5.8 \cdot 10^{-5} \) | \(a_{668}= +1.04394001 \pm 1.0 \cdot 10^{-4} \) | \(a_{669}= +1.25526874 \pm 1.0 \cdot 10^{-4} \) |
\(a_{670}= -0.48495753 \pm 1.3 \cdot 10^{-4} \) | \(a_{671}= +1.78230886 \pm 6.7 \cdot 10^{-5} \) | \(a_{672}= -2.90861342 \pm 8.2 \cdot 10^{-5} \) |
\(a_{673}= +0.16483706 \pm 1.1 \cdot 10^{-4} \) | \(a_{674}= +2.32403693 \pm 1.0 \cdot 10^{-4} \) | \(a_{675}= -0.25551116 \pm 6.3 \cdot 10^{-5} \) |
\(a_{676}= +0.21493901 \pm 1.0 \cdot 10^{-4} \) | \(a_{677}= +0.86209102 \pm 1.1 \cdot 10^{-4} \) | \(a_{678}= +1.92445210 \pm 1.6 \cdot 10^{-4} \) |
\(a_{679}= -0.64881132 \pm 1.1 \cdot 10^{-4} \) | \(a_{680}= +0.66182723 \pm 6.6 \cdot 10^{-5} \) | \(a_{681}= -1.53139835 \pm 8.8 \cdot 10^{-5} \) |
\(a_{682}= -2.10486183 \pm 6.0 \cdot 10^{-5} \) | \(a_{683}= -0.53696793 \pm 9.0 \cdot 10^{-5} \) | \(a_{684}= -3.58670556 \pm 7.6 \cdot 10^{-5} \) |
\(a_{685}= -0.30413438 \pm 7.9 \cdot 10^{-5} \) | \(a_{686}= +1.53083152 \pm 5.8 \cdot 10^{-5} \) | \(a_{687}= -1.87861326 \pm 1.1 \cdot 10^{-4} \) |
\(a_{688}= +0.62420436 \pm 8.9 \cdot 10^{-5} \) | \(a_{689}= -0.09305927 \pm 7.4 \cdot 10^{-5} \) | \(a_{690}= -0.09866828 \pm 1.3 \cdot 10^{-4} \) |
\(a_{691}= -1.39704688 \pm 1.0 \cdot 10^{-4} \) | \(a_{692}= -2.99109140 \pm 1.1 \cdot 10^{-4} \) | \(a_{693}= +0.93160811 \pm 6.3 \cdot 10^{-5} \) |
\(a_{694}= +1.19999268 \pm 1.1 \cdot 10^{-4} \) | \(a_{695}= -0.93582677 \pm 8.5 \cdot 10^{-5} \) | \(a_{696}= +5.31594153 \pm 6.6 \cdot 10^{-5} \) |
\(a_{697}= +0.03909214 \pm 7.9 \cdot 10^{-5} \) | \(a_{698}= -2.96071124 \pm 8.0 \cdot 10^{-5} \) | \(a_{699}= -0.14105898 \pm 1.2 \cdot 10^{-4} \) |
\(a_{700}= +0.49112283 \pm 7.7 \cdot 10^{-5} \) | \(a_{701}= -0.60977851 \pm 8.7 \cdot 10^{-5} \) | \(a_{702}= +0.34065117 \pm 1.9 \cdot 10^{-4} \) |
\(a_{703}= +1.32779885 \pm 1.0 \cdot 10^{-4} \) | \(a_{704}= -6.72925578 \pm 8.6 \cdot 10^{-5} \) | \(a_{705}= -1.41286053 \pm 8.2 \cdot 10^{-5} \) |
\(a_{706}= -0.24433774 \pm 1.1 \cdot 10^{-4} \) | \(a_{707}= +0.07268709 \pm 5.4 \cdot 10^{-5} \) | \(a_{708}= +2.59378828 \pm 8.4 \cdot 10^{-5} \) |
\(a_{709}= +0.14758753 \pm 1.2 \cdot 10^{-4} \) | \(a_{710}= +2.92542429 \pm 1.1 \cdot 10^{-4} \) | \(a_{711}= +0.07799983 \pm 1.0 \cdot 10^{-4} \) |
\(a_{712}= +2.28811965 \pm 8.7 \cdot 10^{-5} \) | \(a_{713}= -0.02996066 \pm 5.9 \cdot 10^{-5} \) | \(a_{714}= -0.32182980 \pm 6.6 \cdot 10^{-5} \) |
\(a_{715}= -0.32663799 \pm 1.8 \cdot 10^{-4} \) | \(a_{716}= -0.94894797 \pm 7.1 \cdot 10^{-5} \) | \(a_{717}= -1.99418000 \pm 9.4 \cdot 10^{-5} \) |
\(a_{718}= -1.90682177 \pm 1.4 \cdot 10^{-4} \) | \(a_{719}= -0.15752594 \pm 9.6 \cdot 10^{-5} \) | \(a_{720}= +4.35332354 \pm 9.4 \cdot 10^{-5} \) |
\(a_{721}= -0.13477858 \pm 7.6 \cdot 10^{-5} \) | \(a_{722}= -0.32541773 \pm 8.4 \cdot 10^{-5} \) | \(a_{723}= +1.21526161 \pm 6.4 \cdot 10^{-5} \) |
\(a_{724}= +5.12501451 \pm 8.7 \cdot 10^{-5} \) | \(a_{725}= -0.39732466 \pm 4.8 \cdot 10^{-5} \) | \(a_{726}= +4.02474553 \pm 9.2 \cdot 10^{-5} \) |
\(a_{727}= +0.16424433 \pm 9.4 \cdot 10^{-5} \) | \(a_{728}= -0.42044008 \pm 1.8 \cdot 10^{-4} \) | \(a_{729}= -1.58056741 \pm 8.1 \cdot 10^{-5} \) |
\(a_{730}= +1.44609284 \pm 7.7 \cdot 10^{-5} \) | \(a_{731}= +0.03818990 \pm 9.5 \cdot 10^{-5} \) | \(a_{732}= -5.05909084 \pm 7.5 \cdot 10^{-5} \) |
\(a_{733}= -1.01154427 \pm 1.1 \cdot 10^{-4} \) | \(a_{734}= +1.68739822 \pm 1.4 \cdot 10^{-4} \) | \(a_{735}= -0.97129118 \pm 1.0 \cdot 10^{-4} \) |
\(a_{736}= -0.18302089 \pm 7.8 \cdot 10^{-5} \) | \(a_{737}= +0.49297377 \pm 8.0 \cdot 10^{-5} \) | \(a_{738}= +0.43616258 \pm 1.0 \cdot 10^{-4} \) |
\(a_{739}= +0.41451812 \pm 1.3 \cdot 10^{-4} \) | \(a_{740}= -3.13518899 \pm 9.8 \cdot 10^{-5} \) | \(a_{741}= -0.39266733 \pm 1.8 \cdot 10^{-4} \) |
\(a_{742}= +0.28348790 \pm 9.3 \cdot 10^{-5} \) | \(a_{743}= +0.49630000 \pm 1.0 \cdot 10^{-4} \) | \(a_{744}= +3.83642831 \pm 7.7 \cdot 10^{-5} \) |
\(a_{745}= +0.47672845 \pm 8.1 \cdot 10^{-5} \) | \(a_{746}= -1.08691580 \pm 7.5 \cdot 10^{-5} \) | \(a_{747}= +0.91930249 \pm 5.4 \cdot 10^{-5} \) |
\(a_{748}= -1.04773332 \pm 6.8 \cdot 10^{-5} \) | \(a_{749}= -0.14485349 \pm 9.6 \cdot 10^{-5} \) | \(a_{750}= -3.27471518 \pm 7.3 \cdot 10^{-5} \) |
\(a_{751}= +0.42236995 \pm 8.9 \cdot 10^{-5} \) | \(a_{752}= -4.73959251 \pm 8.7 \cdot 10^{-5} \) | \(a_{753}= +1.12901308 \pm 1.1 \cdot 10^{-4} \) |
\(a_{754}= +0.52971897 \pm 1.8 \cdot 10^{-4} \) | \(a_{755}= +0.32777880 \pm 7.4 \cdot 10^{-5} \) | \(a_{756}= -0.76422689 \pm 7.7 \cdot 10^{-5} \) |
\(a_{757}= +1.24008345 \pm 1.0 \cdot 10^{-4} \) | \(a_{758}= -0.85442526 \pm 1.2 \cdot 10^{-4} \) | \(a_{759}= +0.10029924 \pm 7.6 \cdot 10^{-5} \) |
\(a_{760}= -2.45990317 \pm 6.9 \cdot 10^{-5} \) | \(a_{761}= +0.94849006 \pm 1.0 \cdot 10^{-4} \) | \(a_{762}= -4.53088887 \pm 1.1 \cdot 10^{-4} \) |
\(a_{763}= -0.04733178 \pm 8.0 \cdot 10^{-5} \) | \(a_{764}= -1.77210238 \pm 9.5 \cdot 10^{-5} \) | \(a_{765}= +0.26634382 \pm 9.7 \cdot 10^{-5} \) |
\(a_{766}= +1.17506751 \pm 1.4 \cdot 10^{-4} \) | \(a_{767}= +0.16596398 \pm 8.9 \cdot 10^{-5} \) | \(a_{768}= +6.03919486 \pm 7.3 \cdot 10^{-5} \) |
\(a_{769}= +0.28190541 \pm 1.0 \cdot 10^{-4} \) | \(a_{770}= +0.99504234 \pm 6.2 \cdot 10^{-5} \) | \(a_{771}= +2.88156108 \pm 1.0 \cdot 10^{-4} \) |
\(a_{772}= +0.88287135 \pm 1.0 \cdot 10^{-4} \) | \(a_{773}= +0.69816002 \pm 1.0 \cdot 10^{-4} \) | \(a_{774}= +0.42609597 \pm 1.1 \cdot 10^{-4} \) |
\(a_{775}= -0.28674273 \pm 5.9 \cdot 10^{-5} \) | \(a_{776}= +5.22767820 \pm 7.6 \cdot 10^{-5} \) | \(a_{777}= +0.97894735 \pm 6.5 \cdot 10^{-5} \) |
\(a_{778}= +2.01004436 \pm 7.4 \cdot 10^{-5} \) | \(a_{779}= -0.14529907 \pm 6.2 \cdot 10^{-5} \) | \(a_{780}= +0.92716323 \pm 3.0 \cdot 10^{-4} \) |
\(a_{781}= -2.97378092 \pm 7.7 \cdot 10^{-5} \) | \(a_{782}= -0.02025074 \pm 7.3 \cdot 10^{-5} \) | \(a_{783}= +0.61826935 \pm 5.4 \cdot 10^{-5} \) |
\(a_{784}= -3.25830065 \pm 8.7 \cdot 10^{-5} \) | \(a_{785}= -0.85689188 \pm 9.7 \cdot 10^{-5} \) | \(a_{786}= -2.81540698 \pm 1.2 \cdot 10^{-4} \) |
\(a_{787}= -0.02182833 \pm 1.2 \cdot 10^{-4} \) | \(a_{788}= +4.26736722 \pm 1.0 \cdot 10^{-4} \) | \(a_{789}= -1.63222218 \pm 9.4 \cdot 10^{-5} \) |
\(a_{790}= +0.08331092 \pm 9.3 \cdot 10^{-5} \) | \(a_{791}= -0.27624782 \pm 1.0 \cdot 10^{-4} \) | \(a_{792}= -7.50626154 \pm 7.2 \cdot 10^{-5} \) |
\(a_{793}= -0.32370678 \pm 8.7 \cdot 10^{-5} \) | \(a_{794}= +3.74864649 \pm 9.3 \cdot 10^{-5} \) | \(a_{795}= -0.40142147 \pm 8.0 \cdot 10^{-5} \) |
\(a_{796}= -3.78618866 \pm 1.0 \cdot 10^{-4} \) | \(a_{797}= +1.41564908 \pm 8.0 \cdot 10^{-5} \) | \(a_{798}= +1.19618854 \pm 4.0 \cdot 10^{-5} \) |
\(a_{799}= -0.28997641 \pm 7.5 \cdot 10^{-5} \) | \(a_{800}= -1.75162753 \pm 7.8 \cdot 10^{-5} \) | \(a_{801}= +0.92082418 \pm 1.2 \cdot 10^{-4} \) |
\(a_{802}= -1.13987951 \pm 8.9 \cdot 10^{-5} \) | \(a_{803}= -1.46999643 \pm 1.0 \cdot 10^{-4} \) | \(a_{804}= -1.39930801 \pm 1.3 \cdot 10^{-4} \) |
\(a_{805}= +0.01416346 \pm 5.9 \cdot 10^{-5} \) | \(a_{806}= +0.38228954 \pm 2.1 \cdot 10^{-4} \) | \(a_{807}= +0.87543074 \pm 1.3 \cdot 10^{-4} \) |
\(a_{808}= -0.58566288 \pm 8.1 \cdot 10^{-5} \) | \(a_{809}= +1.90531721 \pm 1.0 \cdot 10^{-4} \) | \(a_{810}= -0.64342230 \pm 9.3 \cdot 10^{-5} \) |
\(a_{811}= +0.15554805 \pm 1.5 \cdot 10^{-4} \) | \(a_{812}= -1.18838719 \pm 8.7 \cdot 10^{-5} \) | \(a_{813}= -0.08370975 \pm 1.1 \cdot 10^{-4} \) |
\(a_{814}= +4.32759161 \pm 1.0 \cdot 10^{-4} \) | \(a_{815}= +0.55014888 \pm 1.0 \cdot 10^{-4} \) | \(a_{816}= +1.52874148 \pm 9.1 \cdot 10^{-5} \) |
\(a_{817}= -0.14194557 \pm 5.8 \cdot 10^{-5} \) | \(a_{818}= -2.50977286 \pm 1.0 \cdot 10^{-4} \) | \(a_{819}= -0.16920067 \pm 2.0 \cdot 10^{-4} \) |
\(a_{820}= +0.34307911 \pm 8.2 \cdot 10^{-5} \) | \(a_{821}= -0.67129986 \pm 1.0 \cdot 10^{-4} \) | \(a_{822}= -1.19161943 \pm 8.9 \cdot 10^{-5} \) |
\(a_{823}= -1.70670647 \pm 1.0 \cdot 10^{-4} \) | \(a_{824}= +1.08595366 \pm 6.3 \cdot 10^{-5} \) | \(a_{825}= +0.95992819 \pm 5.5 \cdot 10^{-5} \) |
\(a_{826}= -0.50557863 \pm 1.0 \cdot 10^{-4} \) | \(a_{827}= -0.82847793 \pm 1.0 \cdot 10^{-4} \) | \(a_{828}= -0.16639392 \pm 7.7 \cdot 10^{-5} \) |
\(a_{829}= -0.33372850 \pm 1.0 \cdot 10^{-4} \) | \(a_{830}= +0.98189882 \pm 6.0 \cdot 10^{-5} \) | \(a_{831}= +0.14962188 \pm 8.8 \cdot 10^{-5} \) |
\(a_{832}= +1.22218194 \pm 9.0 \cdot 10^{-5} \) | \(a_{833}= -0.19934843 \pm 8.6 \cdot 10^{-5} \) | \(a_{834}= -3.66663364 \pm 9.1 \cdot 10^{-5} \) |
\(a_{835}= +0.28813486 \pm 9.8 \cdot 10^{-5} \) | \(a_{836}= +3.89425274 \pm 6.1 \cdot 10^{-5} \) | \(a_{837}= +0.44619491 \pm 7.9 \cdot 10^{-5} \) |
\(a_{838}= +3.24656785 \pm 1.2 \cdot 10^{-4} \) | \(a_{839}= -1.11380148 \pm 1.3 \cdot 10^{-4} \) | \(a_{840}= -1.81361483 \pm 6.7 \cdot 10^{-5} \) |
\(a_{841}= -0.03857953 \pm 8.9 \cdot 10^{-5} \) | \(a_{842}= +0.51521164 \pm 1.2 \cdot 10^{-4} \) | \(a_{843}= +1.77643863 \pm 1.5 \cdot 10^{-4} \) |
\(a_{844}= +1.75481722 \pm 1.0 \cdot 10^{-4} \) | \(a_{845}= +0.05932470 \pm 9.4 \cdot 10^{-5} \) | \(a_{846}= -3.23535266 \pm 9.3 \cdot 10^{-5} \) |
\(a_{847}= -0.57773699 \pm 6.5 \cdot 10^{-5} \) | \(a_{848}= -1.34661147 \pm 8.0 \cdot 10^{-5} \) | \(a_{849}= -0.11003608 \pm 6.6 \cdot 10^{-5} \) |
\(a_{850}= -0.19381260 \pm 8.2 \cdot 10^{-5} \) | \(a_{851}= +0.06159905 \pm 6.2 \cdot 10^{-5} \) | \(a_{852}= +8.44108903 \pm 1.0 \cdot 10^{-4} \) |
\(a_{853}= -0.40012608 \pm 1.3 \cdot 10^{-4} \) | \(a_{854}= +0.98611296 \pm 1.1 \cdot 10^{-4} \) | \(a_{855}= -0.98995623 \pm 9.4 \cdot 10^{-5} \) |
\(a_{856}= +1.16713047 \pm 9.1 \cdot 10^{-5} \) | \(a_{857}= -1.29538064 \pm 9.5 \cdot 10^{-5} \) | \(a_{858}= -1.27979010 \pm 3.0 \cdot 10^{-4} \) |
\(a_{859}= -0.19047655 \pm 1.3 \cdot 10^{-4} \) | \(a_{860}= +0.33516085 \pm 9.4 \cdot 10^{-5} \) | \(a_{861}= -0.10712476 \pm 3.7 \cdot 10^{-5} \) |
\(a_{862}= +0.60913807 \pm 9.6 \cdot 10^{-5} \) | \(a_{863}= -1.48397142 \pm 1.2 \cdot 10^{-4} \) | \(a_{864}= +2.72567428 \pm 8.6 \cdot 10^{-5} \) |
\(a_{865}= -0.82556249 \pm 1.0 \cdot 10^{-4} \) | \(a_{866}= -3.63539649 \pm 1.1 \cdot 10^{-4} \) | \(a_{867}= -1.45774973 \pm 6.5 \cdot 10^{-5} \) |
\(a_{868}= -0.85763965 \pm 7.4 \cdot 10^{-5} \) | \(a_{869}= -0.08468803 \pm 9.5 \cdot 10^{-5} \) | \(a_{870}= +2.28500144 \pm 5.4 \cdot 10^{-5} \) |
\(a_{871}= -0.08953496 \pm 1.0 \cdot 10^{-4} \) | \(a_{872}= +0.38136710 \pm 5.0 \cdot 10^{-5} \) | \(a_{873}= +2.10381152 \pm 8.2 \cdot 10^{-5} \) |
\(a_{874}= +0.07526868 \pm 8.2 \cdot 10^{-5} \) | \(a_{875}= +0.47007297 \pm 6.3 \cdot 10^{-5} \) | \(a_{876}= +4.17259076 \pm 1.1 \cdot 10^{-4} \) |
\(a_{877}= -0.17658753 \pm 9.8 \cdot 10^{-5} \) | \(a_{878}= -2.63578646 \pm 8.3 \cdot 10^{-5} \) | \(a_{879}= +0.14351094 \pm 1.0 \cdot 10^{-4} \) |
\(a_{880}= -4.72660547 \pm 5.3 \cdot 10^{-5} \) | \(a_{881}= +1.24749659 \pm 1.0 \cdot 10^{-4} \) | \(a_{882}= -2.22418945 \pm 1.1 \cdot 10^{-4} \) |
\(a_{883}= +0.58537023 \pm 7.0 \cdot 10^{-5} \) | \(a_{884}= +0.19029158 \pm 1.9 \cdot 10^{-4} \) | \(a_{885}= +0.71590400 \pm 8.8 \cdot 10^{-5} \) |
\(a_{886}= -1.57946822 \pm 1.1 \cdot 10^{-4} \) | \(a_{887}= -1.56730290 \pm 9.6 \cdot 10^{-5} \) | \(a_{888}= -7.88768877 \pm 6.3 \cdot 10^{-5} \) |
\(a_{889}= +0.65039195 \pm 9.9 \cdot 10^{-5} \) | \(a_{890}= +0.98352412 \pm 1.3 \cdot 10^{-4} \) | \(a_{891}= +0.65405793 \pm 6.0 \cdot 10^{-5} \) |
\(a_{892}= +2.26102264 \pm 9.0 \cdot 10^{-5} \) | \(a_{893}= +1.07779472 \pm 9.1 \cdot 10^{-5} \) | \(a_{894}= +1.86785485 \pm 7.4 \cdot 10^{-5} \) |
\(a_{895}= -0.26191638 \pm 7.2 \cdot 10^{-5} \) | \(a_{896}= -1.84817622 \pm 9.2 \cdot 10^{-5} \) | \(a_{897}= -0.01821656 \pm 1.8 \cdot 10^{-4} \) |
\(a_{898}= +3.20998554 \pm 9.6 \cdot 10^{-5} \) | \(a_{899}= +0.69384148 \pm 8.1 \cdot 10^{-5} \) | \(a_{900}= -1.59249667 \pm 6.4 \cdot 10^{-5} \) |
\(a_{901}= -0.08238800 \pm 8.1 \cdot 10^{-5} \) | \(a_{902}= -0.47356197 \pm 7.2 \cdot 10^{-5} \) | \(a_{903}= -0.10465233 \pm 5.9 \cdot 10^{-5} \) |
\(a_{904}= +2.22581613 \pm 9.5 \cdot 10^{-5} \) | \(a_{905}= +1.41454044 \pm 8.0 \cdot 10^{-5} \) | \(a_{906}= +1.28425990 \pm 9.1 \cdot 10^{-5} \) |
\(a_{907}= -0.22838484 \pm 7.1 \cdot 10^{-5} \) | \(a_{908}= -2.75839445 \pm 8.1 \cdot 10^{-5} \) | \(a_{909}= -0.23569246 \pm 9.4 \cdot 10^{-5} \) |
\(a_{910}= -0.18072174 \pm 3.0 \cdot 10^{-4} \) | \(a_{911}= -1.29865716 \pm 6.0 \cdot 10^{-5} \) | \(a_{912}= -5.68208110 \pm 7.3 \cdot 10^{-5} \) |
\(a_{913}= -0.99812939 \pm 5.1 \cdot 10^{-5} \) | \(a_{914}= +0.52177249 \pm 1.1 \cdot 10^{-4} \) | \(a_{915}= -1.39634504 \pm 8.1 \cdot 10^{-5} \) |
\(a_{916}= -3.38380697 \pm 9.7 \cdot 10^{-5} \) | \(a_{917}= +0.40414102 \pm 6.8 \cdot 10^{-5} \) | \(a_{918}= +0.30158811 \pm 8.6 \cdot 10^{-5} \) |
\(a_{919}= +1.35205509 \pm 8.5 \cdot 10^{-5} \) | \(a_{920}= -0.11411946 \pm 7.6 \cdot 10^{-5} \) | \(a_{921}= +1.35342403 \pm 7.4 \cdot 10^{-5} \) |
\(a_{922}= +3.59446486 \pm 1.4 \cdot 10^{-4} \) | \(a_{923}= +0.54010450 \pm 1.0 \cdot 10^{-4} \) | \(a_{924}= +2.87111892 \pm 7.9 \cdot 10^{-5} \) |
\(a_{925}= +0.58954247 \pm 8.4 \cdot 10^{-5} \) | \(a_{926}= +3.59296782 \pm 1.5 \cdot 10^{-4} \) | \(a_{927}= +0.43702801 \pm 1.0 \cdot 10^{-4} \) |
\(a_{928}= +4.23847479 \pm 6.6 \cdot 10^{-5} \) | \(a_{929}= -0.54851364 \pm 9.1 \cdot 10^{-5} \) | \(a_{930}= +1.64904828 \pm 1.3 \cdot 10^{-4} \) |
\(a_{931}= +0.74094540 \pm 6.1 \cdot 10^{-5} \) | \(a_{932}= -0.25407909 \pm 1.2 \cdot 10^{-4} \) | \(a_{933}= -0.16183591 \pm 1.4 \cdot 10^{-4} \) |
\(a_{934}= -1.62091896 \pm 1.2 \cdot 10^{-4} \) | \(a_{935}= -0.28918184 \pm 6.0 \cdot 10^{-5} \) | \(a_{936}= +1.36330340 \pm 1.8 \cdot 10^{-4} \) |
\(a_{937}= -1.11931444 \pm 1.1 \cdot 10^{-4} \) | \(a_{938}= +0.27275173 \pm 8.3 \cdot 10^{-5} \) | \(a_{939}= -2.25093447 \pm 9.4 \cdot 10^{-5} \) |
\(a_{940}= -2.54488106 \pm 8.4 \cdot 10^{-5} \) | \(a_{941}= +1.01975734 \pm 1.1 \cdot 10^{-4} \) | \(a_{942}= -3.35736134 \pm 1.3 \cdot 10^{-4} \) |
\(a_{943}= -0.00674069 \pm 5.5 \cdot 10^{-5} \) | \(a_{944}= +2.40157693 \pm 9.1 \cdot 10^{-5} \) | \(a_{945}= -0.21093205 \pm 5.2 \cdot 10^{-5} \) |
\(a_{946}= -0.46263217 \pm 1.0 \cdot 10^{-4} \) | \(a_{947}= -1.15574766 \pm 8.2 \cdot 10^{-5} \) | \(a_{948}= +0.24038732 \pm 9.9 \cdot 10^{-5} \) |
\(a_{949}= +0.26698392 \pm 1.1 \cdot 10^{-4} \) | \(a_{950}= +0.72036963 \pm 5.8 \cdot 10^{-5} \) | \(a_{951}= +1.93406539 \pm 8.6 \cdot 10^{-5} \) |
\(a_{952}= -0.37222749 \pm 7.0 \cdot 10^{-5} \) | \(a_{953}= +1.23770589 \pm 9.3 \cdot 10^{-5} \) | \(a_{954}= -0.91922734 \pm 9.0 \cdot 10^{-5} \) |
\(a_{955}= -0.48911285 \pm 8.7 \cdot 10^{-5} \) | \(a_{956}= -3.59196876 \pm 8.9 \cdot 10^{-5} \) | \(a_{957}= -2.32277202 \pm 5.5 \cdot 10^{-5} \) |
\(a_{958}= -1.68606670 \pm 9.4 \cdot 10^{-5} \) | \(a_{959}= +0.17105246 \pm 1.0 \cdot 10^{-4} \) | \(a_{960}= +5.27201716 \pm 1.1 \cdot 10^{-4} \) |
\(a_{961}= -0.49926592 \pm 7.3 \cdot 10^{-5} \) | \(a_{962}= -0.78598652 \pm 2.3 \cdot 10^{-4} \) | \(a_{963}= +0.46969657 \pm 1.0 \cdot 10^{-4} \) |
\(a_{964}= +2.18896075 \pm 8.6 \cdot 10^{-5} \) | \(a_{965}= +0.24367877 \pm 9.9 \cdot 10^{-5} \) | \(a_{966}= +0.05549340 \pm 7.4 \cdot 10^{-5} \) |
\(a_{967}= -1.41641057 \pm 9.9 \cdot 10^{-5} \) | \(a_{968}= +4.65500988 \pm 4.5 \cdot 10^{-5} \) | \(a_{969}= -0.34763949 \pm 6.5 \cdot 10^{-5} \) |
\(a_{970}= +2.24706238 \pm 6.4 \cdot 10^{-5} \) | \(a_{971}= +0.32893140 \pm 1.0 \cdot 10^{-4} \) | \(a_{972}= -3.61843947 \pm 1.0 \cdot 10^{-4} \) |
\(a_{973}= +0.52633139 \pm 1.0 \cdot 10^{-4} \) | \(a_{974}= -3.47100539 \pm 1.3 \cdot 10^{-4} \) | \(a_{975}= -0.17434423 \pm 1.8 \cdot 10^{-4} \) |
\(a_{976}= -4.68418950 \pm 8.1 \cdot 10^{-5} \) | \(a_{977}= +0.00701687 \pm 8.3 \cdot 10^{-5} \) | \(a_{978}= +2.15552115 \pm 7.6 \cdot 10^{-5} \) |
\(a_{979}= -0.99978156 \pm 1.0 \cdot 10^{-4} \) | \(a_{980}= -1.74951488 \pm 7.5 \cdot 10^{-5} \) | \(a_{981}= +0.15347626 \pm 8.1 \cdot 10^{-5} \) |
\(a_{982}= +2.74120473 \pm 1.4 \cdot 10^{-4} \) | \(a_{983}= -0.07899188 \pm 1.0 \cdot 10^{-4} \) | \(a_{984}= +0.86313815 \pm 4.3 \cdot 10^{-5} \) |
\(a_{985}= +1.17782369 \pm 9.9 \cdot 10^{-5} \) | \(a_{986}= +0.46897518 \pm 5.4 \cdot 10^{-5} \) | \(a_{987}= +0.79462660 \pm 4.7 \cdot 10^{-5} \) |
\(a_{988}= -0.70728258 \pm 1.8 \cdot 10^{-4} \) | \(a_{989}= -0.00658512 \pm 6.8 \cdot 10^{-5} \) | \(a_{990}= -3.22648742 \pm 7.2 \cdot 10^{-5} \) |
\(a_{991}= -0.02698581 \pm 9.2 \cdot 10^{-5} \) | \(a_{992}= +3.05883814 \pm 1.1 \cdot 10^{-4} \) | \(a_{993}= +3.02186732 \pm 1.0 \cdot 10^{-4} \) |
\(a_{994}= -1.64532868 \pm 8.0 \cdot 10^{-5} \) | \(a_{995}= -1.04501499 \pm 1.0 \cdot 10^{-4} \) | \(a_{996}= +2.83319428 \pm 6.3 \cdot 10^{-5} \) |
\(a_{997}= +1.42303775 \pm 1.3 \cdot 10^{-4} \) | \(a_{998}= -2.50538363 \pm 1.1 \cdot 10^{-4} \) | \(a_{999}= -0.91737582 \pm 8.3 \cdot 10^{-5} \) |
\(a_{1000}= -3.78752679 \pm 6.6 \cdot 10^{-5} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000