Maass form invariants
Level: | \( 3 \) |
Weight: | \( 0 \) |
Character: | 3.1 |
Symmetry: | odd |
Fricke sign: | $-1$ |
Spectral parameter: | \(15.7532336884908289702674270888 \pm 5 \cdot 10^{-7}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -0.12044299 \pm 5.1 \cdot 10^{-5} \) | \(a_{3}= +0.57735027 \pm 1.0 \cdot 10^{-8} \) |
\(a_{4}= -0.98549349 \pm 9.3 \cdot 10^{-5} \) | \(a_{5}= +0.47652764 \pm 7.1 \cdot 10^{-5} \) | \(a_{6}= -0.06953779 \pm 5.1 \cdot 10^{-5} \) |
\(a_{7}= +0.03761873 \pm 5.8 \cdot 10^{-5} \) | \(a_{8}= +0.23913876 \pm 6.3 \cdot 10^{-5} \) | \(a_{9}= +0.33333333 \pm 4.2 \cdot 10^{-8} \) |
\(a_{10}= -0.05739441 \pm 4.0 \cdot 10^{-5} \) | \(a_{11}= -1.18366316 \pm 6.4 \cdot 10^{-5} \) | \(a_{12}= -0.56897493 \pm 9.3 \cdot 10^{-5} \) |
\(a_{13}= +1.03533166 \pm 6.3 \cdot 10^{-5} \) | \(a_{14}= -0.00453091 \pm 4.0 \cdot 10^{-5} \) | \(a_{15}= +0.27512336 \pm 7.1 \cdot 10^{-5} \) |
\(a_{16}= +0.95669090 \pm 7.5 \cdot 10^{-5} \) | \(a_{17}= +1.33804212 \pm 4.7 \cdot 10^{-5} \) | \(a_{18}= -0.04014766 \pm 5.1 \cdot 10^{-5} \) |
\(a_{19}= +1.39631786 \pm 3.8 \cdot 10^{-5} \) | \(a_{20}= -0.46961489 \pm 6.6 \cdot 10^{-5} \) | \(a_{21}= +0.02171919 \pm 5.8 \cdot 10^{-5} \) |
\(a_{22}= +0.14256392 \pm 3.2 \cdot 10^{-5} \) | \(a_{23}= +1.28561551 \pm 1.4 \cdot 10^{-4} \) | \(a_{24}= +0.13806683 \pm 6.3 \cdot 10^{-5} \) |
\(a_{25}= -0.77292141 \pm 5.8 \cdot 10^{-5} \) | \(a_{26}= -0.12469844 \pm 2.2 \cdot 10^{-5} \) | \(a_{27}= +0.19245009 \pm 9.4 \cdot 10^{-8} \) |
\(a_{28}= -0.03707302 \pm 3.8 \cdot 10^{-5} \) | \(a_{29}= +0.13659671 \pm 1.3 \cdot 10^{-4} \) | \(a_{30}= -0.03313668 \pm 1.2 \cdot 10^{-4} \) |
\(a_{31}= +0.98573108 \pm 6.0 \cdot 10^{-5} \) | \(a_{32}= -0.35436547 \pm 8.4 \cdot 10^{-5} \) | \(a_{33}= -0.68338824 \pm 6.4 \cdot 10^{-5} \) |
\(a_{34}= -0.16115779 \pm 5.7 \cdot 10^{-5} \) | \(a_{35}= +0.01792637 \pm 2.5 \cdot 10^{-5} \) | \(a_{36}= -0.32849783 \pm 9.3 \cdot 10^{-5} \) |
\(a_{37}= +0.86623114 \pm 7.2 \cdot 10^{-5} \) | \(a_{38}= -0.16817669 \pm 1.7 \cdot 10^{-5} \) | \(a_{39}= +0.59774901 \pm 6.3 \cdot 10^{-5} \) |
\(a_{40}= +0.11395623 \pm 3.9 \cdot 10^{-5} \) | \(a_{41}= -0.47592056 \pm 1.3 \cdot 10^{-4} \) | \(a_{42}= -0.00261592 \pm 1.1 \cdot 10^{-4} \) |
\(a_{43}= -1.74460158 \pm 9.1 \cdot 10^{-5} \) | \(a_{44}= +1.16649233 \pm 5.7 \cdot 10^{-5} \) | \(a_{45}= +0.15884255 \pm 7.1 \cdot 10^{-5} \) |
\(a_{46}= -0.15484337 \pm 4.1 \cdot 10^{-5} \) | \(a_{47}= +0.71850691 \pm 1.1 \cdot 10^{-4} \) | \(a_{48}= +0.55234575 \pm 7.6 \cdot 10^{-5} \) |
\(a_{49}= -0.99858483 \pm 9.8 \cdot 10^{-5} \) | \(a_{50}= +0.09309296 \pm 2.8 \cdot 10^{-5} \) | \(a_{51}= +0.77251898 \pm 4.7 \cdot 10^{-5} \) |
\(a_{52}= -1.02031261 \pm 5.7 \cdot 10^{-5} \) | \(a_{53}= -0.07034417 \pm 5.6 \cdot 10^{-5} \) | \(a_{54}= -0.02317926 \pm 5.1 \cdot 10^{-5} \) |
\(a_{55}= -0.56404821 \pm 4.5 \cdot 10^{-5} \) | \(a_{56}= +0.00899610 \pm 5.6 \cdot 10^{-5} \) | \(a_{57}= +0.80616449 \pm 3.8 \cdot 10^{-5} \) |
\(a_{58}= -0.01645212 \pm 5.5 \cdot 10^{-5} \) | \(a_{59}= +1.42692944 \pm 9.1 \cdot 10^{-5} \) | \(a_{60}= -0.27113228 \pm 1.6 \cdot 10^{-4} \) |
\(a_{61}= -0.91913957 \pm 7.4 \cdot 10^{-5} \) | \(a_{62}= -0.11872439 \pm 2.8 \cdot 10^{-5} \) | \(a_{63}= +0.01253958 \pm 5.8 \cdot 10^{-5} \) |
\(a_{64}= -0.91401007 \pm 6.9 \cdot 10^{-5} \) | \(a_{65}= +0.49336415 \pm 4.4 \cdot 10^{-5} \) | \(a_{66}= +0.08230932 \pm 1.1 \cdot 10^{-4} \) |
\(a_{67}= +0.51427877 \pm 1.6 \cdot 10^{-4} \) | \(a_{68}= -1.31863179 \pm 5.4 \cdot 10^{-5} \) | \(a_{69}= +0.74225046 \pm 1.4 \cdot 10^{-4} \) |
\(a_{70}= -0.00215911 \pm 2.0 \cdot 10^{-5} \) | \(a_{71}= +0.85593668 \pm 1.0 \cdot 10^{-4} \) | \(a_{72}= +0.07971292 \pm 6.3 \cdot 10^{-5} \) |
\(a_{73}= +0.63692386 \pm 4.5 \cdot 10^{-5} \) | \(a_{74}= -0.10433146 \pm 7.2 \cdot 10^{-5} \) | \(a_{75}= -0.44624638 \pm 5.8 \cdot 10^{-5} \) |
\(a_{76}= -1.37606216 \pm 3.4 \cdot 10^{-5} \) | \(a_{77}= -0.04452791 \pm 3.9 \cdot 10^{-5} \) | \(a_{78}= -0.07199468 \pm 1.1 \cdot 10^{-4} \) |
\(a_{79}= -0.05012962 \pm 7.9 \cdot 10^{-5} \) | \(a_{80}= +0.45588966 \pm 5.5 \cdot 10^{-5} \) | \(a_{81}= +0.11111111 \pm 2.3 \cdot 10^{-7} \) |
\(a_{82}= +0.05732129 \pm 4.4 \cdot 10^{-5} \) | \(a_{83}= +0.27592731 \pm 1.1 \cdot 10^{-4} \) | \(a_{84}= -0.02140412 \pm 1.5 \cdot 10^{-4} \) |
\(a_{85}= +0.63761405 \pm 3.8 \cdot 10^{-5} \) | \(a_{86}= +0.21012502 \pm 6.8 \cdot 10^{-5} \) | \(a_{87}= +0.07886415 \pm 1.3 \cdot 10^{-4} \) |
\(a_{88}= -0.28305974 \pm 4.1 \cdot 10^{-5} \) | \(a_{89}= -0.61851642 \pm 4.6 \cdot 10^{-5} \) | \(a_{90}= -0.01913147 \pm 1.2 \cdot 10^{-4} \) |
\(a_{91}= +0.03894787 \pm 2.3 \cdot 10^{-5} \) | \(a_{92}= -1.26696572 \pm 1.3 \cdot 10^{-4} \) | \(a_{93}= +0.56911211 \pm 6.0 \cdot 10^{-5} \) |
\(a_{94}= -0.08653912 \pm 4.5 \cdot 10^{-5} \) | \(a_{95}= +0.66538405 \pm 3.0 \cdot 10^{-5} \) | \(a_{96}= -0.20459300 \pm 8.4 \cdot 10^{-5} \) |
\(a_{97}= -0.11682531 \pm 1.0 \cdot 10^{-4} \) | \(a_{98}= +0.12027254 \pm 4.6 \cdot 10^{-5} \) | \(a_{99}= -0.39455439 \pm 6.4 \cdot 10^{-5} \) |
\(a_{100}= +0.76170901 \pm 4.8 \cdot 10^{-5} \) | \(a_{101}= +1.48574121 \pm 5.9 \cdot 10^{-5} \) | \(a_{102}= -0.09304449 \pm 9.9 \cdot 10^{-5} \) |
\(a_{103}= -1.14370750 \pm 7.7 \cdot 10^{-5} \) | \(a_{104}= +0.24758793 \pm 3.5 \cdot 10^{-5} \) | \(a_{105}= +0.01034979 \pm 1.2 \cdot 10^{-4} \) |
\(a_{106}= +0.00847246 \pm 3.5 \cdot 10^{-5} \) | \(a_{107}= -1.67706457 \pm 5.2 \cdot 10^{-5} \) | \(a_{108}= -0.18965831 \pm 9.3 \cdot 10^{-5} \) |
\(a_{109}= +0.26991376 \pm 1.0 \cdot 10^{-4} \) | \(a_{110}= +0.06793565 \pm 2.8 \cdot 10^{-5} \) | \(a_{111}= +0.50011878 \pm 7.2 \cdot 10^{-5} \) |
\(a_{112}= +0.03598950 \pm 2.1 \cdot 10^{-5} \) | \(a_{113}= +0.24067615 \pm 5.9 \cdot 10^{-5} \) | \(a_{114}= -0.09709686 \pm 9.0 \cdot 10^{-5} \) |
\(a_{115}= +0.61263133 \pm 9.9 \cdot 10^{-5} \) | \(a_{116}= -0.13461517 \pm 1.2 \cdot 10^{-4} \) | \(a_{117}= +0.34511055 \pm 6.3 \cdot 10^{-5} \) |
\(a_{118}= -0.17186364 \pm 5.9 \cdot 10^{-5} \) | \(a_{119}= +0.05033545 \pm 2.6 \cdot 10^{-5} \) | \(a_{120}= +0.06579266 \pm 1.3 \cdot 10^{-4} \) |
\(a_{121}= +0.40105847 \pm 6.3 \cdot 10^{-5} \) | \(a_{122}= +0.11070391 \pm 3.1 \cdot 10^{-5} \) | \(a_{123}= -0.27477286 \pm 1.3 \cdot 10^{-4} \) |
\(a_{124}= -0.97143156 \pm 5.3 \cdot 10^{-5} \) | \(a_{125}= -0.84484605 \pm 1.0 \cdot 10^{-4} \) | \(a_{126}= -0.00151030 \pm 1.1 \cdot 10^{-4} \) |
\(a_{127}= -0.04472653 \pm 1.1 \cdot 10^{-4} \) | \(a_{128}= +0.46445157 \pm 8.8 \cdot 10^{-5} \) | \(a_{129}= -1.00724619 \pm 9.1 \cdot 10^{-5} \) |
\(a_{130}= -0.05942225 \pm 1.6 \cdot 10^{-5} \) | \(a_{131}= +1.81612111 \pm 6.8 \cdot 10^{-5} \) | \(a_{132}= +0.67347466 \pm 1.5 \cdot 10^{-4} \) |
\(a_{133}= +0.05252771 \pm 1.0 \cdot 10^{-5} \) | \(a_{134}= -0.06194127 \pm 5.3 \cdot 10^{-5} \) | \(a_{135}= +0.09170779 \pm 7.1 \cdot 10^{-5} \) |
\(a_{136}= +0.31997774 \pm 2.4 \cdot 10^{-5} \) | \(a_{137}= -1.14183494 \pm 1.1 \cdot 10^{-4} \) | \(a_{138}= -0.08939886 \pm 1.9 \cdot 10^{-4} \) |
\(a_{139}= +0.30798532 \pm 7.9 \cdot 10^{-5} \) | \(a_{140}= -0.01766632 \pm 2.1 \cdot 10^{-5} \) | \(a_{141}= +0.41483016 \pm 1.1 \cdot 10^{-4} \) |
\(a_{142}= -0.10309157 \pm 4.7 \cdot 10^{-5} \) | \(a_{143}= -1.22548394 \pm 3.9 \cdot 10^{-5} \) | \(a_{144}= +0.31889697 \pm 7.6 \cdot 10^{-5} \) |
\(a_{145}= +0.06509211 \pm 9.2 \cdot 10^{-5} \) | \(a_{146}= -0.07671301 \pm 3.7 \cdot 10^{-5} \) | \(a_{147}= -0.57653322 \pm 9.8 \cdot 10^{-5} \) |
\(a_{148}= -0.85366514 \pm 7.6 \cdot 10^{-5} \) | \(a_{149}= +0.68190590 \pm 8.7 \cdot 10^{-5} \) | \(a_{150}= +0.05374725 \pm 1.1 \cdot 10^{-4} \) |
\(a_{151}= +0.96910964 \pm 1.3 \cdot 10^{-4} \) | \(a_{152}= +0.33391372 \pm 2.1 \cdot 10^{-5} \) | \(a_{153}= +0.44601404 \pm 4.7 \cdot 10^{-5} \) |
\(a_{154}= +0.00536307 \pm 2.6 \cdot 10^{-5} \) | \(a_{155}= +0.46972811 \pm 4.0 \cdot 10^{-5} \) | \(a_{156}= -0.58907776 \pm 1.5 \cdot 10^{-4} \) |
\(a_{157}= +0.12749298 \pm 1.4 \cdot 10^{-4} \) | \(a_{158}= +0.00603776 \pm 4.0 \cdot 10^{-5} \) | \(a_{159}= -0.04061323 \pm 5.6 \cdot 10^{-5} \) |
\(a_{160}= -0.16886494 \pm 5.8 \cdot 10^{-5} \) | \(a_{161}= +0.04836323 \pm 3.5 \cdot 10^{-5} \) | \(a_{162}= -0.01338255 \pm 5.1 \cdot 10^{-5} \) |
\(a_{163}= -1.35681413 \pm 1.7 \cdot 10^{-5} \) | \(a_{164}= +0.46901661 \pm 1.2 \cdot 10^{-4} \) | \(a_{165}= -0.32565339 \pm 1.3 \cdot 10^{-4} \) |
\(a_{166}= -0.03323351 \pm 4.3 \cdot 10^{-5} \) | \(a_{167}= -0.62488276 \pm 6.6 \cdot 10^{-5} \) | \(a_{168}= +0.00519390 \pm 1.2 \cdot 10^{-4} \) |
\(a_{169}= +0.07191164 \pm 6.8 \cdot 10^{-5} \) | \(a_{170}= -0.07679614 \pm 5.0 \cdot 10^{-5} \) | \(a_{171}= +0.46543929 \pm 3.8 \cdot 10^{-5} \) |
\(a_{172}= +1.71929349 \pm 7.7 \cdot 10^{-5} \) | \(a_{173}= +0.09498540 \pm 5.8 \cdot 10^{-5} \) | \(a_{174}= -0.00949863 \pm 1.8 \cdot 10^{-4} \) |
\(a_{175}= -0.02907633 \pm 4.8 \cdot 10^{-5} \) | \(a_{176}= -1.13239977 \pm 4.7 \cdot 10^{-5} \) | \(a_{177}= +0.82383809 \pm 9.1 \cdot 10^{-5} \) |
\(a_{178}= +0.07449596 \pm 3.5 \cdot 10^{-5} \) | \(a_{179}= +0.26830305 \pm 8.8 \cdot 10^{-5} \) | \(a_{180}= -0.15653830 \pm 1.6 \cdot 10^{-4} \) |
\(a_{181}= -0.36467888 \pm 1.0 \cdot 10^{-4} \) | \(a_{182}= -0.00469100 \pm 1.3 \cdot 10^{-5} \) | \(a_{183}= -0.53066548 \pm 7.4 \cdot 10^{-5} \) |
\(a_{184}= +0.30744050 \pm 7.5 \cdot 10^{-5} \) | \(a_{185}= +0.41278308 \pm 5.5 \cdot 10^{-5} \) | \(a_{186}= -0.06854556 \pm 1.1 \cdot 10^{-4} \) |
\(a_{187}= -1.58379116 \pm 2.7 \cdot 10^{-5} \) | \(a_{188}= -0.70808388 \pm 1.0 \cdot 10^{-4} \) | \(a_{189}= +0.00723973 \pm 5.8 \cdot 10^{-5} \) |
\(a_{190}= -0.08014084 \pm 1.8 \cdot 10^{-5} \) | \(a_{191}= +1.21407807 \pm 7.4 \cdot 10^{-5} \) | \(a_{192}= -0.52770396 \pm 6.9 \cdot 10^{-5} \) |
\(a_{193}= +0.69008446 \pm 1.2 \cdot 10^{-4} \) | \(a_{194}= +0.01407079 \pm 4.1 \cdot 10^{-5} \) | \(a_{195}= +0.28484393 \pm 1.3 \cdot 10^{-4} \) |
\(a_{196}= +0.98409885 \pm 8.7 \cdot 10^{-5} \) | \(a_{197}= +0.69670933 \pm 1.8 \cdot 10^{-4} \) | \(a_{198}= +0.04752131 \pm 1.1 \cdot 10^{-4} \) |
\(a_{199}= -0.87131173 \pm 6.9 \cdot 10^{-5} \) | \(a_{200}= -0.18483547 \pm 4.2 \cdot 10^{-5} \) | \(a_{201}= +0.29691899 \pm 1.6 \cdot 10^{-4} \) |
\(a_{202}= -0.17894711 \pm 4.3 \cdot 10^{-5} \) | \(a_{203}= +0.00513860 \pm 5.8 \cdot 10^{-5} \) | \(a_{204}= -0.76131242 \pm 1.4 \cdot 10^{-4} \) |
\(a_{205}= -0.22678930 \pm 9.3 \cdot 10^{-5} \) | \(a_{206}= +0.13775155 \pm 5.9 \cdot 10^{-5} \) | \(a_{207}= +0.42853850 \pm 1.4 \cdot 10^{-4} \) |
\(a_{208}= +0.99049238 \pm 4.7 \cdot 10^{-5} \) | \(a_{209}= -1.65277001 \pm 2.5 \cdot 10^{-5} \) | \(a_{210}= -0.00124656 \pm 1.8 \cdot 10^{-4} \) |
\(a_{211}= -0.70423315 \pm 4.1 \cdot 10^{-5} \) | \(a_{212}= +0.06932373 \pm 5.2 \cdot 10^{-5} \) | \(a_{213}= +0.49417527 \pm 1.0 \cdot 10^{-4} \) |
\(a_{214}= +0.20199066 \pm 3.5 \cdot 10^{-5} \) | \(a_{215}= -0.83135087 \pm 5.9 \cdot 10^{-5} \) | \(a_{216}= +0.04602228 \pm 6.3 \cdot 10^{-5} \) |
\(a_{217}= +0.03708196 \pm 3.8 \cdot 10^{-5} \) | \(a_{218}= -0.03250922 \pm 4.4 \cdot 10^{-5} \) | \(a_{219}= +0.36772816 \pm 4.5 \cdot 10^{-5} \) |
\(a_{220}= +0.55586584 \pm 4.0 \cdot 10^{-5} \) | \(a_{221}= +1.38531736 \pm 2.0 \cdot 10^{-5} \) | \(a_{222}= -0.06023580 \pm 1.2 \cdot 10^{-4} \) |
\(a_{223}= +0.44915129 \pm 3.6 \cdot 10^{-5} \) | \(a_{224}= -0.01333078 \pm 5.4 \cdot 10^{-5} \) | \(a_{225}= -0.25764047 \pm 5.8 \cdot 10^{-5} \) |
\(a_{226}= -0.02898775 \pm 4.8 \cdot 10^{-5} \) | \(a_{227}= +0.71100935 \pm 1.3 \cdot 10^{-4} \) | \(a_{228}= -0.79446986 \pm 1.3 \cdot 10^{-4} \) |
\(a_{229}= -1.61908301 \pm 6.1 \cdot 10^{-5} \) | \(a_{230}= -0.07378715 \pm 3.1 \cdot 10^{-5} \) | \(a_{231}= -0.02570820 \pm 1.2 \cdot 10^{-4} \) |
\(a_{232}= +0.03266557 \pm 7.6 \cdot 10^{-5} \) | \(a_{233}= +0.17070060 \pm 1.0 \cdot 10^{-4} \) | \(a_{234}= -0.04156615 \pm 1.1 \cdot 10^{-4} \) |
\(a_{235}= +0.34238840 \pm 7.9 \cdot 10^{-5} \) | \(a_{236}= -1.40622967 \pm 6.9 \cdot 10^{-5} \) | \(a_{237}= -0.02894235 \pm 7.9 \cdot 10^{-5} \) |
\(a_{238}= -0.00606255 \pm 3.0 \cdot 10^{-5} \) | \(a_{239}= +1.44298863 \pm 8.6 \cdot 10^{-5} \) | \(a_{240}= +0.26320802 \pm 1.4 \cdot 10^{-4} \) |
\(a_{241}= -1.12673419 \pm 8.5 \cdot 10^{-5} \) | \(a_{242}= -0.04830468 \pm 3.2 \cdot 10^{-5} \) | \(a_{243}= +0.06415003 \pm 5.5 \cdot 10^{-7} \) |
\(a_{244}= +0.90580606 \pm 6.6 \cdot 10^{-5} \) | \(a_{245}= -0.47585327 \pm 6.6 \cdot 10^{-5} \) | \(a_{246}= +0.03309446 \pm 1.8 \cdot 10^{-4} \) |
\(a_{247}= +1.44565208 \pm 2.8 \cdot 10^{-5} \) | \(a_{248}= +0.23572651 \pm 3.8 \cdot 10^{-5} \) | \(a_{249}= +0.15930671 \pm 1.1 \cdot 10^{-4} \) |
\(a_{250}= +0.10175578 \pm 4.9 \cdot 10^{-5} \) | \(a_{251}= +0.06173602 \pm 1.2 \cdot 10^{-4} \) | \(a_{252}= -0.01235767 \pm 1.5 \cdot 10^{-4} \) |
\(a_{253}= -1.52173572 \pm 8.7 \cdot 10^{-5} \) | \(a_{254}= +0.00538700 \pm 5.6 \cdot 10^{-5} \) | \(a_{255}= +0.36812664 \pm 1.1 \cdot 10^{-4} \) |
\(a_{256}= +0.85807013 \pm 5.1 \cdot 10^{-5} \) | \(a_{257}= -1.72506262 \pm 1.1 \cdot 10^{-4} \) | \(a_{258}= +0.12131574 \pm 1.4 \cdot 10^{-4} \) |
\(a_{259}= +0.03258652 \pm 3.7 \cdot 10^{-5} \) | \(a_{260}= -0.48620716 \pm 4.1 \cdot 10^{-5} \) | \(a_{261}= +0.04553224 \pm 1.3 \cdot 10^{-4} \) |
\(a_{262}= -0.21873905 \pm 3.8 \cdot 10^{-5} \) | \(a_{263}= +0.37337558 \pm 8.0 \cdot 10^{-5} \) | \(a_{264}= -0.16342462 \pm 1.2 \cdot 10^{-4} \) |
\(a_{265}= -0.03352094 \pm 4.0 \cdot 10^{-5} \) | \(a_{266}= -0.00632659 \pm 6.0 \cdot 10^{-6} \) | \(a_{267}= -0.35710062 \pm 4.6 \cdot 10^{-5} \) |
\(a_{268}= -0.50681838 \pm 1.4 \cdot 10^{-4} \) | \(a_{269}= +0.65332215 \pm 7.0 \cdot 10^{-5} \) | \(a_{270}= -0.01104556 \pm 1.2 \cdot 10^{-4} \) |
\(a_{271}= +0.57937935 \pm 9.5 \cdot 10^{-5} \) | \(a_{272}= +1.28009272 \pm 3.2 \cdot 10^{-5} \) | \(a_{273}= +0.02248656 \pm 1.2 \cdot 10^{-4} \) |
\(a_{274}= +0.13752601 \pm 6.2 \cdot 10^{-5} \) | \(a_{275}= +0.91487859 \pm 3.8 \cdot 10^{-5} \) | \(a_{276}= -0.73148300 \pm 2.3 \cdot 10^{-4} \) |
\(a_{277}= -0.40302025 \pm 5.1 \cdot 10^{-5} \) | \(a_{278}= -0.03709467 \pm 7.3 \cdot 10^{-5} \) | \(a_{279}= +0.32857703 \pm 6.0 \cdot 10^{-5} \) |
\(a_{280}= +0.00428689 \pm 2.0 \cdot 10^{-5} \) | \(a_{281}= -0.18745757 \pm 1.0 \cdot 10^{-4} \) | \(a_{282}= -0.04996338 \pm 1.6 \cdot 10^{-4} \) |
\(a_{283}= -0.89257823 \pm 1.5 \cdot 10^{-4} \) | \(a_{284}= -0.84352002 \pm 9.3 \cdot 10^{-5} \) | \(a_{285}= +0.38415966 \pm 1.0 \cdot 10^{-4} \) |
\(a_{286}= +0.14760094 \pm 1.4 \cdot 10^{-5} \) | \(a_{287}= -0.01790353 \pm 6.1 \cdot 10^{-5} \) | \(a_{288}= -0.11812182 \pm 8.4 \cdot 10^{-5} \) |
\(a_{289}= +0.79035671 \pm 9.9 \cdot 10^{-5} \) | \(a_{290}= -0.00783989 \pm 4.1 \cdot 10^{-5} \) | \(a_{291}= -0.06744912 \pm 1.0 \cdot 10^{-4} \) |
\(a_{292}= -0.62768432 \pm 4.6 \cdot 10^{-5} \) | \(a_{293}= -1.74197653 \pm 1.6 \cdot 10^{-4} \) | \(a_{294}= +0.06943938 \pm 1.5 \cdot 10^{-4} \) |
\(a_{295}= +0.67997132 \pm 4.9 \cdot 10^{-5} \) | \(a_{296}= +0.20714944 \pm 3.8 \cdot 10^{-5} \) | \(a_{297}= -0.22779608 \pm 6.4 \cdot 10^{-5} \) |
\(a_{298}= -0.08213078 \pm 4.6 \cdot 10^{-5} \) | \(a_{299}= +1.33103844 \pm 9.2 \cdot 10^{-5} \) | \(a_{300}= +0.43977290 \pm 1.5 \cdot 10^{-4} \) |
\(a_{301}= -0.06562970 \pm 8.5 \cdot 10^{-5} \) | \(a_{302}= -0.11672246 \pm 4.2 \cdot 10^{-5} \) | \(a_{303}= +0.85779309 \pm 5.9 \cdot 10^{-5} \) |
\(a_{304}= +1.33584459 \pm 3.0 \cdot 10^{-5} \) | \(a_{305}= -0.43799541 \pm 5.7 \cdot 10^{-5} \) | \(a_{306}= -0.05371926 \pm 9.9 \cdot 10^{-5} \) |
\(a_{307}= -0.06172582 \pm 4.7 \cdot 10^{-5} \) | \(a_{308}= +0.04388197 \pm 2.5 \cdot 10^{-5} \) | \(a_{309}= -0.66031983 \pm 7.7 \cdot 10^{-5} \) |
\(a_{310}= -0.05657546 \pm 2.0 \cdot 10^{-5} \) | \(a_{311}= -0.86524255 \pm 1.5 \cdot 10^{-4} \) | \(a_{312}= +0.14294496 \pm 1.2 \cdot 10^{-4} \) |
\(a_{313}= -1.33296789 \pm 6.4 \cdot 10^{-5} \) | \(a_{314}= -0.01535563 \pm 4.4 \cdot 10^{-5} \) | \(a_{315}= +0.00597546 \pm 1.2 \cdot 10^{-4} \) |
\(a_{316}= +0.04940241 \pm 6.9 \cdot 10^{-5} \) | \(a_{317}= +0.75845259 \pm 6.5 \cdot 10^{-5} \) | \(a_{318}= +0.00489158 \pm 1.0 \cdot 10^{-4} \) |
\(a_{319}= -0.16168450 \pm 8.3 \cdot 10^{-5} \) | \(a_{320}= -0.43555106 \pm 4.9 \cdot 10^{-5} \) | \(a_{321}= -0.96825368 \pm 5.2 \cdot 10^{-5} \) |
\(a_{322}= -0.00582501 \pm 1.2 \cdot 10^{-5} \) | \(a_{323}= +1.86833210 \pm 1.4 \cdot 10^{-5} \) | \(a_{324}= -0.10949928 \pm 9.3 \cdot 10^{-5} \) |
\(a_{325}= -0.80023000 \pm 3.3 \cdot 10^{-5} \) | \(a_{326}= +0.16341874 \pm 2.2 \cdot 10^{-5} \) | \(a_{327}= +0.15583478 \pm 1.0 \cdot 10^{-4} \) |
\(a_{328}= -0.11381105 \pm 7.9 \cdot 10^{-5} \) | \(a_{329}= +0.02702932 \pm 5.6 \cdot 10^{-5} \) | \(a_{330}= +0.03922267 \pm 1.8 \cdot 10^{-4} \) |
\(a_{331}= +0.97635595 \pm 6.1 \cdot 10^{-5} \) | \(a_{332}= -0.27192456 \pm 9.8 \cdot 10^{-5} \) | \(a_{333}= +0.28874371 \pm 7.2 \cdot 10^{-5} \) |
\(a_{334}= +0.07526274 \pm 5.2 \cdot 10^{-5} \) | \(a_{335}= +0.24506805 \pm 1.1 \cdot 10^{-4} \) | \(a_{336}= +0.02077855 \pm 1.3 \cdot 10^{-4} \) |
\(a_{337}= +1.22252038 \pm 1.1 \cdot 10^{-4} \) | \(a_{338}= -0.00866125 \pm 4.3 \cdot 10^{-5} \) | \(a_{339}= +0.13895444 \pm 5.9 \cdot 10^{-5} \) |
\(a_{340}= -0.62836450 \pm 4.5 \cdot 10^{-5} \) | \(a_{341}= -1.16677356 \pm 3.7 \cdot 10^{-5} \) | \(a_{342}= -0.05605890 \pm 9.0 \cdot 10^{-5} \) |
\(a_{343}= -0.07518423 \pm 4.9 \cdot 10^{-5} \) | \(a_{344}= -0.41720186 \pm 6.9 \cdot 10^{-5} \) | \(a_{345}= +0.35370286 \pm 2.1 \cdot 10^{-4} \) |
\(a_{346}= -0.01144033 \pm 3.9 \cdot 10^{-5} \) | \(a_{347}= -0.66545897 \pm 3.7 \cdot 10^{-5} \) | \(a_{348}= -0.07772010 \pm 2.2 \cdot 10^{-4} \) |
\(a_{349}= -1.19349269 \pm 1.6 \cdot 10^{-4} \) | \(a_{350}= +0.00350204 \pm 3.1 \cdot 10^{-5} \) | \(a_{351}= +0.19924967 \pm 6.3 \cdot 10^{-5} \) |
\(a_{352}= +0.41944935 \pm 5.2 \cdot 10^{-5} \) | \(a_{353}= +0.13929863 \pm 1.4 \cdot 10^{-4} \) | \(a_{354}= -0.09922552 \pm 1.4 \cdot 10^{-4} \) |
\(a_{355}= +0.40787748 \pm 7.1 \cdot 10^{-5} \) | \(a_{356}= +0.60954391 \pm 3.4 \cdot 10^{-5} \) | \(a_{357}= +0.02906119 \pm 1.0 \cdot 10^{-4} \) |
\(a_{358}= -0.03231522 \pm 5.3 \cdot 10^{-5} \) | \(a_{359}= -0.80428647 \pm 7.4 \cdot 10^{-5} \) | \(a_{360}= +0.03798541 \pm 1.3 \cdot 10^{-4} \) |
\(a_{361}= +0.94970356 \pm 9.0 \cdot 10^{-5} \) | \(a_{362}= +0.04392301 \pm 6.7 \cdot 10^{-5} \) | \(a_{363}= +0.23155122 \pm 6.3 \cdot 10^{-5} \) |
\(a_{364}= -0.03838287 \pm 1.7 \cdot 10^{-5} \) | \(a_{365}= +0.30351183 \pm 3.4 \cdot 10^{-5} \) | \(a_{366}= +0.06391493 \pm 1.2 \cdot 10^{-4} \) |
\(a_{367}= -0.05222713 \pm 6.8 \cdot 10^{-5} \) | \(a_{368}= +1.22993666 \pm 1.1 \cdot 10^{-4} \) | \(a_{369}= -0.15864019 \pm 1.3 \cdot 10^{-4} \) |
\(a_{370}= -0.04971683 \pm 6.3 \cdot 10^{-5} \) | \(a_{371}= -0.00264626 \pm 3.3 \cdot 10^{-5} \) | \(a_{372}= -0.56085627 \pm 1.5 \cdot 10^{-4} \) |
\(a_{373}= -0.60390872 \pm 6.1 \cdot 10^{-5} \) | \(a_{374}= +0.19075653 \pm 3.1 \cdot 10^{-5} \) | \(a_{375}= -0.48777210 \pm 1.0 \cdot 10^{-4} \) |
\(a_{376}= +0.17182285 \pm 6.7 \cdot 10^{-5} \) | \(a_{377}= +0.14142290 \pm 8.4 \cdot 10^{-5} \) | \(a_{378}= -0.00087197 \pm 1.1 \cdot 10^{-4} \) |
\(a_{379}= -1.58612953 \pm 2.5 \cdot 10^{-5} \) | \(a_{380}= -0.65573165 \pm 2.5 \cdot 10^{-5} \) | \(a_{381}= -0.02582287 \pm 1.1 \cdot 10^{-4} \) |
\(a_{382}= -0.14622719 \pm 7.2 \cdot 10^{-5} \) | \(a_{383}= +1.38631986 \pm 7.7 \cdot 10^{-5} \) | \(a_{384}= +0.26815124 \pm 8.8 \cdot 10^{-5} \) |
\(a_{385}= -0.02121878 \pm 1.6 \cdot 10^{-5} \) | \(a_{386}= -0.08311583 \pm 5.3 \cdot 10^{-5} \) | \(a_{387}= -0.58153386 \pm 9.1 \cdot 10^{-5} \) |
\(a_{388}= +0.11513058 \pm 9.4 \cdot 10^{-5} \) | \(a_{389}= -1.41980672 \pm 3.5 \cdot 10^{-5} \) | \(a_{390}= -0.03430745 \pm 1.8 \cdot 10^{-4} \) |
\(a_{391}= +1.72020770 \pm 4.1 \cdot 10^{-5} \) | \(a_{392}= -0.23880034 \pm 6.3 \cdot 10^{-5} \) | \(a_{393}= +1.04853801 \pm 6.8 \cdot 10^{-5} \) |
\(a_{394}= -0.08391375 \pm 5.2 \cdot 10^{-5} \) | \(a_{395}= -0.02388815 \pm 5.4 \cdot 10^{-5} \) | \(a_{396}= +0.38883078 \pm 1.5 \cdot 10^{-4} \) |
\(a_{397}= +0.49846389 \pm 1.2 \cdot 10^{-4} \) | \(a_{398}= +0.10494339 \pm 4.6 \cdot 10^{-5} \) | \(a_{399}= +0.03032689 \pm 9.7 \cdot 10^{-5} \) |
\(a_{400}= -0.73944688 \pm 3.9 \cdot 10^{-5} \) | \(a_{401}= +1.48274846 \pm 1.4 \cdot 10^{-4} \) | \(a_{402}= -0.03576181 \pm 2.1 \cdot 10^{-4} \) |
\(a_{403}= +1.02055859 \pm 3.5 \cdot 10^{-5} \) | \(a_{404}= -1.46418829 \pm 4.8 \cdot 10^{-5} \) | \(a_{405}= +0.05294752 \pm 7.1 \cdot 10^{-5} \) |
\(a_{406}= -0.00061891 \pm 3.8 \cdot 10^{-5} \) | \(a_{407}= -1.02532588 \pm 4.3 \cdot 10^{-5} \) | \(a_{408}= +0.18473923 \pm 1.1 \cdot 10^{-4} \) |
\(a_{409}= -1.91252258 \pm 1.4 \cdot 10^{-4} \) | \(a_{410}= +0.02731518 \pm 2.8 \cdot 10^{-5} \) | \(a_{411}= -0.65923871 \pm 1.1 \cdot 10^{-4} \) |
\(a_{412}= +1.12711629 \pm 7.3 \cdot 10^{-5} \) | \(a_{413}= +0.05367928 \pm 1.0 \cdot 10^{-4} \) | \(a_{414}= -0.05161446 \pm 1.9 \cdot 10^{-4} \) |
\(a_{415}= +0.13148699 \pm 7.3 \cdot 10^{-5} \) | \(a_{416}= -0.36688579 \pm 4.8 \cdot 10^{-5} \) | \(a_{417}= +0.17781541 \pm 7.9 \cdot 10^{-5} \) |
\(a_{418}= +0.19906455 \pm 1.4 \cdot 10^{-5} \) | \(a_{419}= +0.75633360 \pm 5.6 \cdot 10^{-5} \) | \(a_{420}= -0.01019965 \pm 2.2 \cdot 10^{-4} \) |
\(a_{421}= -0.81567069 \pm 1.5 \cdot 10^{-4} \) | \(a_{422}= +0.08481994 \pm 4.1 \cdot 10^{-5} \) | \(a_{423}= +0.23950230 \pm 1.1 \cdot 10^{-4} \) |
\(a_{424}= -0.01682202 \pm 3.5 \cdot 10^{-5} \) | \(a_{425}= -1.03420140 \pm 1.9 \cdot 10^{-5} \) | \(a_{426}= -0.05951994 \pm 1.5 \cdot 10^{-4} \) |
\(a_{427}= -0.03457687 \pm 1.9 \cdot 10^{-5} \) | \(a_{428}= +1.65273621 \pm 5.0 \cdot 10^{-5} \) | \(a_{429}= -0.70753348 \pm 1.2 \cdot 10^{-4} \) |
\(a_{430}= +0.10013038 \pm 5.4 \cdot 10^{-5} \) | \(a_{431}= +0.85087095 \pm 6.6 \cdot 10^{-5} \) | \(a_{432}= +0.18411525 \pm 7.6 \cdot 10^{-5} \) |
\(a_{433}= +0.47716964 \pm 1.2 \cdot 10^{-4} \) | \(a_{434}= -0.00446626 \pm 2.5 \cdot 10^{-5} \) | \(a_{435}= +0.03758095 \pm 2.0 \cdot 10^{-4} \) |
\(a_{436}= -0.26599825 \pm 9.7 \cdot 10^{-5} \) | \(a_{437}= +1.79512790 \pm 5.4 \cdot 10^{-5} \) | \(a_{438}= -0.04429028 \pm 9.7 \cdot 10^{-5} \) |
\(a_{439}= -0.39728423 \pm 9.8 \cdot 10^{-5} \) | \(a_{440}= -0.13488579 \pm 2.6 \cdot 10^{-5} \) | \(a_{441}= -0.33286161 \pm 9.8 \cdot 10^{-5} \) |
\(a_{442}= -0.16685176 \pm 1.7 \cdot 10^{-5} \) | \(a_{443}= -1.44080498 \pm 1.4 \cdot 10^{-4} \) | \(a_{444}= -0.49286380 \pm 1.6 \cdot 10^{-4} \) |
\(a_{445}= -0.29474017 \pm 2.8 \cdot 10^{-5} \) | \(a_{446}= -0.05409712 \pm 3.7 \cdot 10^{-5} \) | \(a_{447}= +0.39369855 \pm 8.7 \cdot 10^{-5} \) |
\(a_{448}= -0.03438390 \pm 4.6 \cdot 10^{-5} \) | \(a_{449}= -1.42009667 \pm 1.4 \cdot 10^{-4} \) | \(a_{450}= +0.03103099 \pm 1.1 \cdot 10^{-4} \) |
\(a_{451}= +0.56332963 \pm 8.5 \cdot 10^{-5} \) | \(a_{452}= -0.23718478 \pm 4.3 \cdot 10^{-5} \) | \(a_{453}= +0.55951571 \pm 1.3 \cdot 10^{-4} \) |
\(a_{454}= -0.08563609 \pm 6.7 \cdot 10^{-5} \) | \(a_{455}= +0.01855973 \pm 1.3 \cdot 10^{-5} \) | \(a_{456}= +0.19278518 \pm 1.0 \cdot 10^{-4} \) |
\(a_{457}= +0.16772794 \pm 9.1 \cdot 10^{-5} \) | \(a_{458}= +0.19500719 \pm 5.1 \cdot 10^{-5} \) | \(a_{459}= +0.25750633 \pm 4.7 \cdot 10^{-5} \) |
\(a_{460}= -0.60374418 \pm 9.1 \cdot 10^{-5} \) | \(a_{461}= -0.72746262 \pm 4.6 \cdot 10^{-5} \) | \(a_{462}= +0.00309637 \pm 1.7 \cdot 10^{-4} \) |
\(a_{463}= +1.79992599 \pm 1.1 \cdot 10^{-4} \) | \(a_{464}= +0.13068083 \pm 1.0 \cdot 10^{-4} \) | \(a_{465}= +0.27119765 \pm 1.3 \cdot 10^{-4} \) |
\(a_{466}= -0.02055969 \pm 4.6 \cdot 10^{-5} \) | \(a_{467}= -0.09968410 \pm 1.2 \cdot 10^{-4} \) | \(a_{468}= -0.34010420 \pm 1.5 \cdot 10^{-4} \) |
\(a_{469}= +0.01934652 \pm 5.2 \cdot 10^{-5} \) | \(a_{470}= -0.04123828 \pm 4.0 \cdot 10^{-5} \) | \(a_{471}= +0.07360810 \pm 1.4 \cdot 10^{-4} \) |
\(a_{472}= +0.34123414 \pm 7.8 \cdot 10^{-5} \) | \(a_{473}= +2.06502061 \pm 5.9 \cdot 10^{-5} \) | \(a_{474}= +0.00348590 \pm 1.3 \cdot 10^{-4} \) |
\(a_{475}= -1.07924397 \pm 2.0 \cdot 10^{-5} \) | \(a_{476}= -0.04960526 \pm 2.6 \cdot 10^{-5} \) | \(a_{477}= -0.02344806 \pm 5.6 \cdot 10^{-5} \) |
\(a_{478}= -0.17379786 \pm 3.5 \cdot 10^{-5} \) | \(a_{479}= -1.84654787 \pm 8.5 \cdot 10^{-5} \) | \(a_{480}= -0.09749422 \pm 1.5 \cdot 10^{-4} \) |
\(a_{481}= +0.89683652 \pm 3.7 \cdot 10^{-5} \) | \(a_{482}= +0.13570723 \pm 5.0 \cdot 10^{-5} \) | \(a_{483}= +0.02792252 \pm 2.0 \cdot 10^{-4} \) |
\(a_{484}= -0.39524051 \pm 5.8 \cdot 10^{-5} \) | \(a_{485}= -0.05567049 \pm 7.0 \cdot 10^{-5} \) | \(a_{486}= -0.00772642 \pm 5.1 \cdot 10^{-5} \) |
\(a_{487}= -1.91726984 \pm 6.1 \cdot 10^{-5} \) | \(a_{488}= -0.21980190 \pm 4.0 \cdot 10^{-5} \) | \(a_{489}= -0.78335700 \pm 1.7 \cdot 10^{-5} \) |
\(a_{490}= +0.05731319 \pm 3.4 \cdot 10^{-5} \) | \(a_{491}= +1.54355854 \pm 5.6 \cdot 10^{-5} \) | \(a_{492}= +0.27078687 \pm 2.3 \cdot 10^{-4} \) |
\(a_{493}= +0.18277215 \pm 5.4 \cdot 10^{-5} \) | \(a_{494}= -0.17411865 \pm 1.1 \cdot 10^{-5} \) | \(a_{495}= -0.18801607 \pm 1.3 \cdot 10^{-4} \) |
\(a_{496}= +0.94303996 \pm 4.3 \cdot 10^{-5} \) | \(a_{497}= +0.03219925 \pm 6.9 \cdot 10^{-5} \) | \(a_{498}= -0.01918738 \pm 1.6 \cdot 10^{-4} \) |
\(a_{499}= -0.43515146 \pm 1.5 \cdot 10^{-4} \) | \(a_{500}= +0.83259028 \pm 9.7 \cdot 10^{-5} \) | \(a_{501}= -0.36077623 \pm 6.6 \cdot 10^{-5} \) |
\(a_{502}= -0.00743567 \pm 4.2 \cdot 10^{-5} \) | \(a_{503}= +0.61859552 \pm 1.5 \cdot 10^{-4} \) | \(a_{504}= +0.00299870 \pm 1.2 \cdot 10^{-4} \) |
\(a_{505}= +0.70799675 \pm 4.3 \cdot 10^{-5} \) | \(a_{506}= +0.18328239 \pm 2.6 \cdot 10^{-5} \) | \(a_{507}= +0.04151821 \pm 6.8 \cdot 10^{-5} \) |
\(a_{508}= +0.04407770 \pm 9.6 \cdot 10^{-5} \) | \(a_{509}= -0.20954786 \pm 3.5 \cdot 10^{-5} \) | \(a_{510}= -0.04433827 \pm 1.7 \cdot 10^{-4} \) |
\(a_{511}= +0.02396027 \pm 1.6 \cdot 10^{-5} \) | \(a_{512}= -0.56780010 \pm 9.6 \cdot 10^{-5} \) | \(a_{513}= +0.26872150 \pm 3.8 \cdot 10^{-5} \) |
\(a_{514}= +0.20777169 \pm 4.6 \cdot 10^{-5} \) | \(a_{515}= -0.54500823 \pm 5.6 \cdot 10^{-5} \) | \(a_{516}= +0.99263456 \pm 1.8 \cdot 10^{-4} \) |
\(a_{517}= -0.85047016 \pm 7.2 \cdot 10^{-5} \) | \(a_{518}= -0.00392482 \pm 3.9 \cdot 10^{-5} \) | \(a_{519}= +0.05483985 \pm 5.8 \cdot 10^{-5} \) |
\(a_{520}= +0.11798249 \pm 2.5 \cdot 10^{-5} \) | \(a_{521}= -1.34311296 \pm 1.3 \cdot 10^{-4} \) | \(a_{522}= -0.00548404 \pm 1.8 \cdot 10^{-4} \) |
\(a_{523}= +0.35394673 \pm 5.4 \cdot 10^{-5} \) | \(a_{524}= -1.78977553 \pm 5.3 \cdot 10^{-5} \) | \(a_{525}= -0.01678722 \pm 1.1 \cdot 10^{-4} \) |
\(a_{526}= -0.04497047 \pm 6.1 \cdot 10^{-5} \) | \(a_{527}= +1.31894970 \pm 2.4 \cdot 10^{-5} \) | \(a_{528}= -0.65379131 \pm 1.4 \cdot 10^{-4} \) |
\(a_{529}= +0.65280725 \pm 1.3 \cdot 10^{-4} \) | \(a_{530}= +0.00403736 \pm 2.9 \cdot 10^{-5} \) | \(a_{531}= +0.47564315 \pm 9.1 \cdot 10^{-5} \) |
\(a_{532}= -0.05176572 \pm 9.6 \cdot 10^{-6} \) | \(a_{533}= -0.49273562 \pm 8.6 \cdot 10^{-5} \) | \(a_{534}= +0.04301027 \pm 9.8 \cdot 10^{-5} \) |
\(a_{535}= -0.79916762 \pm 3.7 \cdot 10^{-5} \) | \(a_{536}= +0.12298399 \pm 8.7 \cdot 10^{-5} \) | \(a_{537}= +0.15490484 \pm 8.8 \cdot 10^{-5} \) |
\(a_{538}= -0.07868807 \pm 3.0 \cdot 10^{-5} \) | \(a_{539}= +1.18198807 \pm 6.2 \cdot 10^{-5} \) | \(a_{540}= -0.09037743 \pm 1.6 \cdot 10^{-4} \) |
\(a_{541}= +0.77153120 \pm 4.4 \cdot 10^{-5} \) | \(a_{542}= -0.06978218 \pm 6.8 \cdot 10^{-5} \) | \(a_{543}= -0.21054745 \pm 1.0 \cdot 10^{-4} \) |
\(a_{544}= -0.47415592 \pm 5.7 \cdot 10^{-5} \) | \(a_{545}= +0.12862136 \pm 7.3 \cdot 10^{-5} \) | \(a_{546}= -0.00270835 \pm 1.7 \cdot 10^{-4} \) |
\(a_{547}= +1.11987005 \pm 7.1 \cdot 10^{-5} \) | \(a_{548}= +1.12527089 \pm 1.0 \cdot 10^{-4} \) | \(a_{549}= -0.30637986 \pm 7.4 \cdot 10^{-5} \) |
\(a_{550}= -0.11019071 \pm 2.1 \cdot 10^{-5} \) | \(a_{551}= +0.19073243 \pm 4.9 \cdot 10^{-5} \) | \(a_{552}= +0.17750086 \pm 2.0 \cdot 10^{-4} \) |
\(a_{553}= -0.00188581 \pm 5.3 \cdot 10^{-5} \) | \(a_{554}= +0.04854096 \pm 3.9 \cdot 10^{-5} \) | \(a_{555}= +0.23832042 \pm 1.4 \cdot 10^{-4} \) |
\(a_{556}= -0.30351753 \pm 7.0 \cdot 10^{-5} \) | \(a_{557}= -1.29823425 \pm 8.1 \cdot 10^{-5} \) | \(a_{558}= -0.03957480 \pm 1.1 \cdot 10^{-4} \) |
\(a_{559}= -1.80624124 \pm 4.5 \cdot 10^{-5} \) | \(a_{560}= +0.01714999 \pm 1.4 \cdot 10^{-5} \) | \(a_{561}= -0.91440225 \pm 1.1 \cdot 10^{-4} \) |
\(a_{562}= +0.02257795 \pm 3.6 \cdot 10^{-5} \) | \(a_{563}= +0.63115121 \pm 1.4 \cdot 10^{-4} \) | \(a_{564}= -0.40881242 \pm 2.0 \cdot 10^{-4} \) |
\(a_{565}= +0.11468884 \pm 3.7 \cdot 10^{-5} \) | \(a_{566}= +0.10750479 \pm 4.4 \cdot 10^{-5} \) | \(a_{567}= +0.00417986 \pm 5.8 \cdot 10^{-5} \) |
\(a_{568}= +0.20468764 \pm 6.8 \cdot 10^{-5} \) | \(a_{569}= +0.16023603 \pm 7.9 \cdot 10^{-5} \) | \(a_{570}= -0.04626934 \pm 1.6 \cdot 10^{-4} \) |
\(a_{571}= -0.40218145 \pm 9.2 \cdot 10^{-5} \) | \(a_{572}= +1.20770644 \pm 3.5 \cdot 10^{-5} \) | \(a_{573}= +0.70094830 \pm 7.4 \cdot 10^{-5} \) |
\(a_{574}= +0.00215635 \pm 3.6 \cdot 10^{-5} \) | \(a_{575}= -0.99367975 \pm 7.3 \cdot 10^{-5} \) | \(a_{576}= -0.30467002 \pm 6.9 \cdot 10^{-5} \) |
\(a_{577}= +0.59257732 \pm 1.0 \cdot 10^{-4} \) | \(a_{578}= -0.09519292 \pm 6.4 \cdot 10^{-5} \) | \(a_{579}= +0.39842045 \pm 1.2 \cdot 10^{-4} \) |
\(a_{580}= -0.06414785 \pm 8.7 \cdot 10^{-5} \) | \(a_{581}= +0.01038004 \pm 7.5 \cdot 10^{-5} \) | \(a_{582}= +0.00812377 \pm 1.6 \cdot 10^{-4} \) |
\(a_{583}= +0.08326381 \pm 3.5 \cdot 10^{-5} \) | \(a_{584}= +0.15231318 \pm 2.3 \cdot 10^{-5} \) | \(a_{585}= +0.16445472 \pm 1.3 \cdot 10^{-4} \) |
\(a_{586}= +0.20980885 \pm 4.6 \cdot 10^{-5} \) | \(a_{587}= -0.98341085 \pm 1.0 \cdot 10^{-4} \) | \(a_{588}= +0.56816973 \pm 1.9 \cdot 10^{-4} \) |
\(a_{589}= +1.37639391 \pm 2.1 \cdot 10^{-5} \) | \(a_{590}= -0.08189778 \pm 3.5 \cdot 10^{-5} \) | \(a_{591}= +0.40224532 \pm 1.8 \cdot 10^{-4} \) |
\(a_{592}= +0.82871545 \pm 5.1 \cdot 10^{-5} \) | \(a_{593}= -0.41796647 \pm 1.0 \cdot 10^{-4} \) | \(a_{594}= +0.02743644 \pm 1.1 \cdot 10^{-4} \) |
\(a_{595}= +0.02398623 \pm 1.7 \cdot 10^{-5} \) | \(a_{596}= -0.67201382 \pm 6.9 \cdot 10^{-5} \) | \(a_{597}= -0.50305206 \pm 6.9 \cdot 10^{-5} \) |
\(a_{598}= -0.16031424 \pm 2.5 \cdot 10^{-5} \) | \(a_{599}= -0.23691787 \pm 4.0 \cdot 10^{-5} \) | \(a_{600}= -0.10671481 \pm 1.2 \cdot 10^{-4} \) |
\(a_{601}= -1.45692694 \pm 6.2 \cdot 10^{-5} \) | \(a_{602}= +0.00790464 \pm 6.1 \cdot 10^{-5} \) | \(a_{603}= +0.17142626 \pm 1.6 \cdot 10^{-4} \) |
\(a_{604}= -0.95505124 \pm 1.2 \cdot 10^{-4} \) | \(a_{605}= +0.19111545 \pm 4.3 \cdot 10^{-5} \) | \(a_{606}= -0.10331516 \pm 1.1 \cdot 10^{-4} \) |
\(a_{607}= +0.13373511 \pm 1.5 \cdot 10^{-4} \) | \(a_{608}= -0.49480683 \pm 3.0 \cdot 10^{-5} \) | \(a_{609}= +0.00296677 \pm 1.9 \cdot 10^{-4} \) |
\(a_{610}= +0.05275347 \pm 3.5 \cdot 10^{-5} \) | \(a_{611}= +0.74389295 \pm 7.0 \cdot 10^{-5} \) | \(a_{612}= -0.43954393 \pm 1.4 \cdot 10^{-4} \) |
\(a_{613}= +0.68909029 \pm 8.7 \cdot 10^{-5} \) | \(a_{614}= +0.00743444 \pm 3.7 \cdot 10^{-5} \) | \(a_{615}= -0.13093686 \pm 2.0 \cdot 10^{-4} \) |
\(a_{616}= -0.01064835 \pm 3.8 \cdot 10^{-5} \) | \(a_{617}= +1.49473192 \pm 1.6 \cdot 10^{-4} \) | \(a_{618}= +0.07953089 \pm 1.2 \cdot 10^{-4} \) |
\(a_{619}= -0.65191152 \pm 6.6 \cdot 10^{-5} \) | \(a_{620}= -0.46291399 \pm 3.6 \cdot 10^{-5} \) | \(a_{621}= +0.24741682 \pm 1.4 \cdot 10^{-4} \) |
\(a_{622}= +0.10421240 \pm 6.2 \cdot 10^{-5} \) | \(a_{623}= -0.02326781 \pm 5.4 \cdot 10^{-5} \) | \(a_{624}= +0.57186104 \pm 1.3 \cdot 10^{-4} \) |
\(a_{625}= +0.37032891 \pm 3.9 \cdot 10^{-5} \) | \(a_{626}= +0.16054663 \pm 6.5 \cdot 10^{-5} \) | \(a_{627}= -0.95422721 \pm 1.0 \cdot 10^{-4} \) |
\(a_{628}= -0.12564350 \pm 1.3 \cdot 10^{-4} \) | \(a_{629}= +1.15905374 \pm 7.5 \cdot 10^{-5} \) | \(a_{630}= -0.00071970 \pm 1.8 \cdot 10^{-4} \) |
\(a_{631}= +0.88549044 \pm 9.4 \cdot 10^{-5} \) | \(a_{632}= -0.01198793 \pm 5.2 \cdot 10^{-5} \) | \(a_{633}= -0.40658920 \pm 4.1 \cdot 10^{-5} \) |
\(a_{634}= -0.09135029 \pm 2.6 \cdot 10^{-5} \) | \(a_{635}= -0.02131343 \pm 7.0 \cdot 10^{-5} \) | \(a_{636}= +0.04002407 \pm 1.5 \cdot 10^{-4} \) |
\(a_{637}= -1.03386649 \pm 5.9 \cdot 10^{-5} \) | \(a_{638}= +0.01947376 \pm 3.3 \cdot 10^{-5} \) | \(a_{639}= +0.28531223 \pm 1.0 \cdot 10^{-4} \) |
\(a_{640}= +0.22132401 \pm 6.3 \cdot 10^{-5} \) | \(a_{641}= +0.32890993 \pm 3.9 \cdot 10^{-5} \) | \(a_{642}= +0.11661936 \pm 1.0 \cdot 10^{-4} \) |
\(a_{643}= -0.46271187 \pm 9.9 \cdot 10^{-5} \) | \(a_{644}= -0.04766165 \pm 3.2 \cdot 10^{-5} \) | \(a_{645}= -0.47998065 \pm 1.6 \cdot 10^{-4} \) |
\(a_{646}= -0.22502750 \pm 1.4 \cdot 10^{-5} \) | \(a_{647}= -0.80490874 \pm 7.8 \cdot 10^{-5} \) | \(a_{648}= +0.02657097 \pm 6.3 \cdot 10^{-5} \) |
\(a_{649}= -1.68900380 \pm 5.9 \cdot 10^{-5} \) | \(a_{650}= +0.09638209 \pm 1.1 \cdot 10^{-5} \) | \(a_{651}= +0.02140928 \pm 1.1 \cdot 10^{-4} \) |
\(a_{652}= +1.33713149 \pm 1.9 \cdot 10^{-5} \) | \(a_{653}= -0.56374449 \pm 7.1 \cdot 10^{-5} \) | \(a_{654}= -0.01876921 \pm 1.5 \cdot 10^{-4} \) |
\(a_{655}= +0.86543191 \pm 4.1 \cdot 10^{-5} \) | \(a_{656}= -0.45530887 \pm 1.0 \cdot 10^{-4} \) | \(a_{657}= +0.21230795 \pm 4.5 \cdot 10^{-5} \) |
\(a_{658}= -0.00325549 \pm 3.5 \cdot 10^{-5} \) | \(a_{659}= -1.40541613 \pm 9.3 \cdot 10^{-5} \) | \(a_{660}= +0.32092929 \pm 2.2 \cdot 10^{-4} \) |
\(a_{661}= +1.02399882 \pm 1.0 \cdot 10^{-4} \) | \(a_{662}= -0.11759522 \pm 4.4 \cdot 10^{-5} \) | \(a_{663}= +0.79981335 \pm 1.1 \cdot 10^{-4} \) |
\(a_{664}= +0.06598491 \pm 7.4 \cdot 10^{-5} \) | \(a_{665}= +0.02503091 \pm 8.4 \cdot 10^{-6} \) | \(a_{666}= -0.03477715 \pm 1.2 \cdot 10^{-4} \) |
\(a_{667}= +0.17561085 \pm 1.9 \cdot 10^{-4} \) | \(a_{668}= +0.61581789 \pm 6.5 \cdot 10^{-5} \) | \(a_{669}= +0.25931762 \pm 3.6 \cdot 10^{-5} \) |
\(a_{670}= -0.02951673 \pm 3.9 \cdot 10^{-5} \) | \(a_{671}= +1.08795164 \pm 4.9 \cdot 10^{-5} \) | \(a_{672}= -0.00769653 \pm 1.4 \cdot 10^{-4} \) |
\(a_{673}= +0.17010709 \pm 7.8 \cdot 10^{-5} \) | \(a_{674}= -0.14724400 \pm 5.1 \cdot 10^{-5} \) | \(a_{675}= -0.14874879 \pm 5.8 \cdot 10^{-5} \) |
\(a_{676}= -0.07086845 \pm 6.0 \cdot 10^{-5} \) | \(a_{677}= -0.99063202 \pm 7.2 \cdot 10^{-5} \) | \(a_{678}= -0.01673609 \pm 1.1 \cdot 10^{-4} \) |
\(a_{679}= -0.00439482 \pm 7.0 \cdot 10^{-5} \) | \(a_{680}= +0.15247824 \pm 1.7 \cdot 10^{-5} \) | \(a_{681}= +0.41050144 \pm 1.3 \cdot 10^{-4} \) |
\(a_{682}= +0.14052969 \pm 1.8 \cdot 10^{-5} \) | \(a_{683}= +0.67588993 \pm 1.6 \cdot 10^{-4} \) | \(a_{684}= -0.45868739 \pm 1.3 \cdot 10^{-4} \) |
\(a_{685}= -0.54411591 \pm 8.2 \cdot 10^{-5} \) | \(a_{686}= +0.00905541 \pm 3.3 \cdot 10^{-5} \) | \(a_{687}= -0.93477801 \pm 6.1 \cdot 10^{-5} \) |
\(a_{688}= -1.66904445 \pm 5.6 \cdot 10^{-5} \) | \(a_{689}= -0.07282955 \pm 3.3 \cdot 10^{-5} \) | \(a_{690}= -0.04260103 \pm 2.6 \cdot 10^{-4} \) |
\(a_{691}= +0.54210901 \pm 1.3 \cdot 10^{-4} \) | \(a_{692}= -0.09360749 \pm 5.5 \cdot 10^{-5} \) | \(a_{693}= -0.01484264 \pm 1.2 \cdot 10^{-4} \) |
\(a_{694}= +0.08014987 \pm 4.0 \cdot 10^{-5} \) | \(a_{695}= +0.14676352 \pm 5.1 \cdot 10^{-5} \) | \(a_{696}= +0.01885947 \pm 1.9 \cdot 10^{-4} \) |
\(a_{697}= -0.63680175 \pm 3.9 \cdot 10^{-5} \) | \(a_{698}= +0.14374782 \pm 5.9 \cdot 10^{-5} \) | \(a_{699}= +0.09855403 \pm 1.0 \cdot 10^{-4} \) |
\(a_{700}= +0.02865453 \pm 2.8 \cdot 10^{-5} \) | \(a_{701}= -0.62200075 \pm 9.3 \cdot 10^{-5} \) | \(a_{702}= -0.02399823 \pm 1.1 \cdot 10^{-4} \) |
\(a_{703}= +1.20953400 \pm 2.3 \cdot 10^{-5} \) | \(a_{704}= +1.08188004 \pm 4.2 \cdot 10^{-5} \) | \(a_{705}= +0.19767804 \pm 1.8 \cdot 10^{-4} \) |
\(a_{706}= -0.01677754 \pm 6.9 \cdot 10^{-5} \) | \(a_{707}= +0.05589170 \pm 5.4 \cdot 10^{-5} \) | \(a_{708}= -0.81188708 \pm 1.8 \cdot 10^{-4} \) |
\(a_{709}= -0.21343506 \pm 4.5 \cdot 10^{-5} \) | \(a_{710}= -0.04912598 \pm 3.5 \cdot 10^{-5} \) | \(a_{711}= -0.01670987 \pm 7.9 \cdot 10^{-5} \) |
\(a_{712}= -0.14791125 \pm 4.1 \cdot 10^{-5} \) | \(a_{713}= +1.26727117 \pm 8.2 \cdot 10^{-5} \) | \(a_{714}= -0.00350022 \pm 1.5 \cdot 10^{-4} \) |
\(a_{715}= -0.58397697 \pm 2.8 \cdot 10^{-5} \) | \(a_{716}= -0.26441091 \pm 8.3 \cdot 10^{-5} \) | \(a_{717}= +0.83310987 \pm 8.6 \cdot 10^{-5} \) |
\(a_{718}= +0.09687066 \pm 6.2 \cdot 10^{-5} \) | \(a_{719}= +0.89284388 \pm 4.2 \cdot 10^{-5} \) | \(a_{720}= +0.15196322 \pm 1.4 \cdot 10^{-4} \) |
\(a_{721}= -0.04302483 \pm 4.5 \cdot 10^{-5} \) | \(a_{722}= -0.11438513 \pm 4.6 \cdot 10^{-5} \) | \(a_{723}= -0.65052029 \pm 8.5 \cdot 10^{-5} \) |
\(a_{724}= +0.35938866 \pm 9.8 \cdot 10^{-5} \) | \(a_{725}= -0.10557852 \pm 7.2 \cdot 10^{-5} \) | \(a_{726}= -0.02788872 \pm 1.1 \cdot 10^{-4} \) |
\(a_{727}= +1.53692116 \pm 4.3 \cdot 10^{-5} \) | \(a_{728}= +0.00931394 \pm 2.0 \cdot 10^{-5} \) | \(a_{729}= +0.03703704 \pm 1.3 \cdot 10^{-6} \) |
\(a_{730}= -0.03655587 \pm 3.2 \cdot 10^{-5} \) | \(a_{731}= -2.33435039 \pm 5.9 \cdot 10^{-5} \) | \(a_{732}= +0.52296737 \pm 1.6 \cdot 10^{-4} \) |
\(a_{733}= -1.49066533 \pm 1.8 \cdot 10^{-4} \) | \(a_{734}= +0.00629039 \pm 3.9 \cdot 10^{-5} \) | \(a_{735}= -0.27473402 \pm 1.7 \cdot 10^{-4} \) |
\(a_{736}= -0.45557775 \pm 1.0 \cdot 10^{-4} \) | \(a_{737}= -0.60873283 \pm 9.9 \cdot 10^{-5} \) | \(a_{738}= +0.01910710 \pm 1.8 \cdot 10^{-4} \) |
\(a_{739}= +0.16275361 \pm 1.0 \cdot 10^{-4} \) | \(a_{740}= -0.40679504 \pm 6.1 \cdot 10^{-5} \) | \(a_{741}= +0.83464762 \pm 1.0 \cdot 10^{-4} \) |
\(a_{742}= +0.00031872 \pm 2.5 \cdot 10^{-5} \) | \(a_{743}= -0.91804422 \pm 1.4 \cdot 10^{-4} \) | \(a_{744}= +0.13609676 \pm 1.2 \cdot 10^{-4} \) |
\(a_{745}= +0.32494701 \pm 5.1 \cdot 10^{-5} \) | \(a_{746}= +0.07273657 \pm 3.4 \cdot 10^{-5} \) | \(a_{747}= +0.09197577 \pm 1.1 \cdot 10^{-4} \) |
\(a_{748}= +1.56081587 \pm 2.9 \cdot 10^{-5} \) | \(a_{749}= -0.06308905 \pm 2.6 \cdot 10^{-5} \) | \(a_{750}= +0.05874873 \pm 1.5 \cdot 10^{-4} \) |
\(a_{751}= -0.35525796 \pm 8.5 \cdot 10^{-5} \) | \(a_{752}= +0.68738902 \pm 8.6 \cdot 10^{-5} \) | \(a_{753}= +0.03564331 \pm 1.2 \cdot 10^{-4} \) |
\(a_{754}= -0.01703340 \pm 2.6 \cdot 10^{-5} \) | \(a_{755}= +0.46180753 \pm 9.2 \cdot 10^{-5} \) | \(a_{756}= -0.00713471 \pm 1.5 \cdot 10^{-4} \) |
\(a_{757}= -0.63954656 \pm 2.8 \cdot 10^{-5} \) | \(a_{758}= +0.19103818 \pm 2.7 \cdot 10^{-5} \) | \(a_{759}= -0.87857453 \pm 2.0 \cdot 10^{-4} \) |
\(a_{760}= +0.15911912 \pm 1.8 \cdot 10^{-5} \) | \(a_{761}= +0.99461068 \pm 1.6 \cdot 10^{-4} \) | \(a_{762}= +0.00311018 \pm 1.6 \cdot 10^{-4} \) |
\(a_{763}= +0.01015381 \pm 4.0 \cdot 10^{-5} \) | \(a_{764}= -1.19646603 \pm 6.1 \cdot 10^{-5} \) | \(a_{765}= +0.21253802 \pm 1.1 \cdot 10^{-4} \) |
\(a_{766}= -0.16697250 \pm 3.1 \cdot 10^{-5} \) | \(a_{767}= +1.47734522 \pm 4.6 \cdot 10^{-5} \) | \(a_{768}= +0.49540702 \pm 5.1 \cdot 10^{-5} \) |
\(a_{769}= +1.56158398 \pm 8.8 \cdot 10^{-5} \) | \(a_{770}= +0.00255565 \pm 1.2 \cdot 10^{-5} \) | \(a_{771}= -0.99596537 \pm 1.1 \cdot 10^{-4} \) |
\(a_{772}= -0.68007374 \pm 1.1 \cdot 10^{-4} \) | \(a_{773}= +0.87074911 \pm 7.6 \cdot 10^{-5} \) | \(a_{774}= +0.07004167 \pm 1.4 \cdot 10^{-4} \) |
\(a_{775}= -0.76189266 \pm 3.5 \cdot 10^{-5} \) | \(a_{776}= -0.02793746 \pm 7.0 \cdot 10^{-5} \) | \(a_{777}= +0.01881384 \pm 1.3 \cdot 10^{-4} \) |
\(a_{778}= +0.17100576 \pm 2.7 \cdot 10^{-5} \) | \(a_{779}= -0.66453638 \pm 5.1 \cdot 10^{-5} \) | \(a_{780}= -0.28071183 \pm 2.2 \cdot 10^{-4} \) |
\(a_{781}= -1.01314071 \pm 6.7 \cdot 10^{-5} \) | \(a_{782}= -0.20718695 \pm 1.8 \cdot 10^{-5} \) | \(a_{783}= +0.02628805 \pm 1.3 \cdot 10^{-4} \) |
\(a_{784}= -0.95533702 \pm 7.1 \cdot 10^{-5} \) | \(a_{785}= +0.06075393 \pm 1.0 \cdot 10^{-4} \) | \(a_{786}= -0.12628905 \pm 1.1 \cdot 10^{-4} \) |
\(a_{787}= +0.20421699 \pm 1.5 \cdot 10^{-4} \) | \(a_{788}= -0.68660250 \pm 1.6 \cdot 10^{-4} \) | \(a_{789}= +0.21556849 \pm 8.0 \cdot 10^{-5} \) |
\(a_{790}= +0.00287716 \pm 3.2 \cdot 10^{-5} \) | \(a_{791}= +0.00905393 \pm 6.9 \cdot 10^{-5} \) | \(a_{792}= -0.09435325 \pm 1.2 \cdot 10^{-4} \) |
\(a_{793}= -0.95161429 \pm 4.7 \cdot 10^{-5} \) | \(a_{794}= -0.06003648 \pm 4.7 \cdot 10^{-5} \) | \(a_{795}= -0.01935333 \pm 1.2 \cdot 10^{-4} \) |
\(a_{796}= +0.85867204 \pm 6.8 \cdot 10^{-5} \) | \(a_{797}= +1.91068965 \pm 3.7 \cdot 10^{-5} \) | \(a_{798}= -0.00365266 \pm 1.4 \cdot 10^{-4} \) |
\(a_{799}= +0.96139251 \pm 3.5 \cdot 10^{-5} \) | \(a_{800}= +0.27389666 \pm 4.7 \cdot 10^{-5} \) | \(a_{801}= -0.20617214 \pm 4.6 \cdot 10^{-5} \) |
\(a_{802}= -0.17858665 \pm 4.2 \cdot 10^{-5} \) | \(a_{803}= -0.75390331 \pm 2.7 \cdot 10^{-5} \) | \(a_{804}= -0.29261173 \pm 2.5 \cdot 10^{-4} \) |
\(a_{805}= +0.02304642 \pm 2.4 \cdot 10^{-5} \) | \(a_{806}= -0.12291912 \pm 1.2 \cdot 10^{-5} \) | \(a_{807}= +0.37719572 \pm 7.0 \cdot 10^{-5} \) |
\(a_{808}= +0.35529832 \pm 4.6 \cdot 10^{-5} \) | \(a_{809}= +0.05906554 \pm 9.1 \cdot 10^{-5} \) | \(a_{810}= -0.00637716 \pm 1.2 \cdot 10^{-4} \) |
\(a_{811}= +1.72511236 \pm 3.9 \cdot 10^{-5} \) | \(a_{812}= -0.00506405 \pm 4.2 \cdot 10^{-5} \) | \(a_{813}= +0.33450482 \pm 9.5 \cdot 10^{-5} \) |
\(a_{814}= +0.12349331 \pm 4.0 \cdot 10^{-5} \) | \(a_{815}= -0.64655944 \pm 1.6 \cdot 10^{-5} \) | \(a_{816}= +0.73906188 \pm 1.2 \cdot 10^{-4} \) |
\(a_{817}= -2.43601834 \pm 2.8 \cdot 10^{-5} \) | \(a_{818}= +0.23034993 \pm 5.1 \cdot 10^{-5} \) | \(a_{819}= +0.01298262 \pm 1.2 \cdot 10^{-4} \) |
\(a_{820}= +0.22349938 \pm 8.5 \cdot 10^{-5} \) | \(a_{821}= -0.77040121 \pm 1.1 \cdot 10^{-4} \) | \(a_{822}= +0.07940068 \pm 1.6 \cdot 10^{-4} \) |
\(a_{823}= +1.81194539 \pm 4.9 \cdot 10^{-5} \) | \(a_{824}= -0.27350480 \pm 4.6 \cdot 10^{-5} \) | \(a_{825}= +0.52820540 \pm 1.2 \cdot 10^{-4} \) |
\(a_{826}= -0.00646529 \pm 6.9 \cdot 10^{-5} \) | \(a_{827}= -1.56181052 \pm 7.4 \cdot 10^{-5} \) | \(a_{828}= -0.42232191 \pm 2.3 \cdot 10^{-4} \) |
\(a_{829}= +0.26144878 \pm 1.1 \cdot 10^{-4} \) | \(a_{830}= -0.01583669 \pm 2.3 \cdot 10^{-5} \) | \(a_{831}= -0.23268385 \pm 5.1 \cdot 10^{-5} \) |
\(a_{832}= -0.94630356 \pm 3.7 \cdot 10^{-5} \) | \(a_{833}= -1.33614856 \pm 4.0 \cdot 10^{-5} \) | \(a_{834}= -0.02141662 \pm 1.3 \cdot 10^{-4} \) |
\(a_{835}= -0.29777391 \pm 4.8 \cdot 10^{-5} \) | \(a_{836}= +1.62879408 \pm 2.2 \cdot 10^{-5} \) | \(a_{837}= +0.18970404 \pm 6.0 \cdot 10^{-5} \) |
\(a_{838}= -0.09109508 \pm 2.4 \cdot 10^{-5} \) | \(a_{839}= +0.28270731 \pm 5.0 \cdot 10^{-5} \) | \(a_{840}= +0.00247504 \pm 1.9 \cdot 10^{-4} \) |
\(a_{841}= -0.98134134 \pm 8.4 \cdot 10^{-5} \) | \(a_{842}= +0.09824181 \pm 7.4 \cdot 10^{-5} \) | \(a_{843}= -0.10822868 \pm 1.0 \cdot 10^{-4} \) |
\(a_{844}= +0.69401718 \pm 4.2 \cdot 10^{-5} \) | \(a_{845}= +0.03426788 \pm 4.7 \cdot 10^{-5} \) | \(a_{846}= -0.02884637 \pm 1.6 \cdot 10^{-4} \) |
\(a_{847}= +0.01508731 \pm 3.2 \cdot 10^{-5} \) | \(a_{848}= -0.06729763 \pm 4.1 \cdot 10^{-5} \) | \(a_{849}= -0.51533028 \pm 1.5 \cdot 10^{-4} \) |
\(a_{850}= +0.12456230 \pm 1.6 \cdot 10^{-5} \) | \(a_{851}= +1.11364019 \pm 8.0 \cdot 10^{-5} \) | \(a_{852}= -0.48700651 \pm 2.0 \cdot 10^{-4} \) |
\(a_{853}= +0.03883982 \pm 1.2 \cdot 10^{-4} \) | \(a_{854}= +0.00416454 \pm 9.0 \cdot 10^{-6} \) | \(a_{855}= +0.22179468 \pm 1.0 \cdot 10^{-4} \) |
\(a_{856}= -0.40105115 \pm 3.0 \cdot 10^{-5} \) | \(a_{857}= +1.56528922 \pm 7.0 \cdot 10^{-5} \) | \(a_{858}= +0.08521744 \pm 1.8 \cdot 10^{-4} \) |
\(a_{859}= +0.46330760 \pm 7.9 \cdot 10^{-5} \) | \(a_{860}= +0.81929087 \pm 5.5 \cdot 10^{-5} \) | \(a_{861}= -0.01033661 \pm 1.9 \cdot 10^{-4} \) |
\(a_{862}= -0.10248144 \pm 4.7 \cdot 10^{-5} \) | \(a_{863}= -0.97496393 \pm 1.1 \cdot 10^{-4} \) | \(a_{864}= -0.06819767 \pm 8.4 \cdot 10^{-5} \) |
\(a_{865}= +0.04526317 \pm 4.4 \cdot 10^{-5} \) | \(a_{866}= -0.05747174 \pm 6.4 \cdot 10^{-5} \) | \(a_{867}= +0.45631266 \pm 9.9 \cdot 10^{-5} \) |
\(a_{868}= -0.03654403 \pm 2.3 \cdot 10^{-5} \) | \(a_{869}= +0.05933658 \pm 5.1 \cdot 10^{-5} \) | \(a_{870}= -0.00452636 \pm 2.5 \cdot 10^{-4} \) |
\(a_{871}= +0.53244909 \pm 1.0 \cdot 10^{-4} \) | \(a_{872}= +0.06454684 \pm 5.8 \cdot 10^{-5} \) | \(a_{873}= -0.03894177 \pm 1.0 \cdot 10^{-4} \) |
\(a_{874}= -0.21621056 \pm 1.7 \cdot 10^{-5} \) | \(a_{875}= -0.03178204 \pm 4.2 \cdot 10^{-5} \) | \(a_{876}= -0.36239371 \pm 1.3 \cdot 10^{-4} \) |
\(a_{877}= -1.29133961 \pm 6.3 \cdot 10^{-5} \) | \(a_{878}= +0.04785010 \pm 4.5 \cdot 10^{-5} \) | \(a_{879}= -1.00573062 \pm 1.6 \cdot 10^{-4} \) |
\(a_{880}= -0.53961979 \pm 3.7 \cdot 10^{-5} \) | \(a_{881}= +0.43256356 \pm 1.5 \cdot 10^{-4} \) | \(a_{882}= +0.04009085 \pm 1.5 \cdot 10^{-4} \) |
\(a_{883}= +0.79797978 \pm 2.5 \cdot 10^{-5} \) | \(a_{884}= -1.36522124 \pm 2.1 \cdot 10^{-5} \) | \(a_{885}= +0.39258162 \pm 1.6 \cdot 10^{-4} \) |
\(a_{886}= +0.17353485 \pm 7.9 \cdot 10^{-5} \) | \(a_{887}= -1.00106676 \pm 1.2 \cdot 10^{-4} \) | \(a_{888}= +0.11959779 \pm 1.3 \cdot 10^{-4} \) |
\(a_{889}= -0.00168256 \pm 1.0 \cdot 10^{-4} \) | \(a_{890}= +0.03549939 \pm 2.7 \cdot 10^{-5} \) | \(a_{891}= -0.13151813 \pm 6.4 \cdot 10^{-5} \) |
\(a_{892}= -0.44263567 \pm 3.7 \cdot 10^{-5} \) | \(a_{893}= +1.00326403 \pm 4.4 \cdot 10^{-5} \) | \(a_{894}= -0.04741823 \pm 1.3 \cdot 10^{-4} \) |
\(a_{895}= +0.12785382 \pm 6.2 \cdot 10^{-5} \) | \(a_{896}= +0.01747208 \pm 3.1 \cdot 10^{-5} \) | \(a_{897}= +0.76847540 \pm 2.0 \cdot 10^{-4} \) |
\(a_{898}= +0.17104068 \pm 6.7 \cdot 10^{-5} \) | \(a_{899}= +0.13464762 \pm 7.7 \cdot 10^{-5} \) | \(a_{900}= +0.25390300 \pm 1.5 \cdot 10^{-4} \) |
\(a_{901}= -0.09412347 \pm 3.3 \cdot 10^{-5} \) | \(a_{902}= -0.06784910 \pm 2.8 \cdot 10^{-5} \) | \(a_{903}= -0.03789133 \pm 1.4 \cdot 10^{-4} \) |
\(a_{904}= +0.05755500 \pm 5.2 \cdot 10^{-5} \) | \(a_{905}= -0.17377956 \pm 7.6 \cdot 10^{-5} \) | \(a_{906}= -0.06738974 \pm 1.8 \cdot 10^{-4} \) |
\(a_{907}= +1.55197512 \pm 1.8 \cdot 10^{-4} \) | \(a_{908}= -0.70069509 \pm 1.3 \cdot 10^{-4} \) | \(a_{909}= +0.49524707 \pm 5.9 \cdot 10^{-5} \) |
\(a_{910}= -0.00223539 \pm 7.6 \cdot 10^{-6} \) | \(a_{911}= -1.12307604 \pm 1.2 \cdot 10^{-4} \) | \(a_{912}= +0.77125023 \pm 1.1 \cdot 10^{-4} \) |
\(a_{913}= -0.32660499 \pm 7.1 \cdot 10^{-5} \) | \(a_{914}= -0.02020165 \pm 5.8 \cdot 10^{-5} \) | \(a_{915}= -0.25287677 \pm 1.4 \cdot 10^{-4} \) |
\(a_{916}= +1.59559576 \pm 4.8 \cdot 10^{-5} \) | \(a_{917}= +0.06832018 \pm 6.6 \cdot 10^{-5} \) | \(a_{918}= -0.03101483 \pm 9.9 \cdot 10^{-5} \) |
\(a_{919}= -0.35637217 \pm 7.0 \cdot 10^{-5} \) | \(a_{920}= +0.14650390 \pm 5.2 \cdot 10^{-5} \) | \(a_{921}= -0.03563742 \pm 4.7 \cdot 10^{-5} \) |
\(a_{922}= +0.08761777 \pm 2.4 \cdot 10^{-5} \) | \(a_{923}= +0.88617834 \pm 6.3 \cdot 10^{-5} \) | \(a_{924}= +0.02533526 \pm 2.1 \cdot 10^{-4} \) |
\(a_{925}= -0.66952859 \pm 3.3 \cdot 10^{-5} \) | \(a_{926}= -0.21678846 \pm 5.6 \cdot 10^{-5} \) | \(a_{927}= -0.38123583 \pm 7.7 \cdot 10^{-5} \) |
\(a_{928}= -0.04840516 \pm 1.0 \cdot 10^{-4} \) | \(a_{929}= +0.18912224 \pm 9.7 \cdot 10^{-5} \) | \(a_{930}= -0.03266385 \pm 1.8 \cdot 10^{-4} \) |
\(a_{931}= -1.39434183 \pm 3.5 \cdot 10^{-5} \) | \(a_{932}= -0.16822433 \pm 9.3 \cdot 10^{-5} \) | \(a_{933}= -0.49954802 \pm 1.5 \cdot 10^{-4} \) |
\(a_{934}= +0.01200625 \pm 5.8 \cdot 10^{-5} \) | \(a_{935}= -0.75472026 \pm 2.1 \cdot 10^{-5} \) | \(a_{936}= +0.08252931 \pm 1.2 \cdot 10^{-4} \) |
\(a_{937}= -0.04579394 \pm 7.0 \cdot 10^{-5} \) | \(a_{938}= -0.00233015 \pm 2.9 \cdot 10^{-5} \) | \(a_{939}= -0.76958937 \pm 6.4 \cdot 10^{-5} \) |
\(a_{940}= -0.33742154 \pm 7.0 \cdot 10^{-5} \) | \(a_{941}= -0.53821648 \pm 7.6 \cdot 10^{-5} \) | \(a_{942}= -0.00886558 \pm 1.9 \cdot 10^{-4} \) |
\(a_{943}= -0.61185085 \pm 2.0 \cdot 10^{-4} \) | \(a_{944}= +1.36513041 \pm 4.6 \cdot 10^{-5} \) | \(a_{945}= +0.00344993 \pm 1.2 \cdot 10^{-4} \) |
\(a_{946}= -0.24871725 \pm 4.4 \cdot 10^{-5} \) | \(a_{947}= +1.73453653 \pm 5.0 \cdot 10^{-5} \) | \(a_{948}= +0.02852249 \pm 1.7 \cdot 10^{-4} \) |
\(a_{949}= +0.65942744 \pm 2.7 \cdot 10^{-5} \) | \(a_{950}= +0.12998736 \pm 1.0 \cdot 10^{-5} \) | \(a_{951}= +0.43789280 \pm 6.5 \cdot 10^{-5} \) |
\(a_{952}= +0.01203716 \pm 2.0 \cdot 10^{-5} \) | \(a_{953}= +0.91798360 \pm 1.7 \cdot 10^{-4} \) | \(a_{954}= +0.00282415 \pm 1.0 \cdot 10^{-4} \) |
\(a_{955}= +0.57854176 \pm 4.2 \cdot 10^{-5} \) | \(a_{956}= -1.42205589 \pm 7.5 \cdot 10^{-5} \) | \(a_{957}= -0.09334859 \pm 1.9 \cdot 10^{-4} \) |
\(a_{958}= +0.22240374 \pm 5.1 \cdot 10^{-5} \) | \(a_{959}= -0.04295439 \pm 5.6 \cdot 10^{-5} \) | \(a_{960}= -0.25146552 \pm 1.4 \cdot 10^{-4} \) |
\(a_{961}= -0.02833424 \pm 6.8 \cdot 10^{-5} \) | \(a_{962}= -0.10801767 \pm 2.2 \cdot 10^{-5} \) | \(a_{963}= -0.55902152 \pm 5.2 \cdot 10^{-5} \) |
\(a_{964}= +1.11038920 \pm 7.1 \cdot 10^{-5} \) | \(a_{965}= +0.32884432 \pm 9.0 \cdot 10^{-5} \) | \(a_{966}= -0.00336307 \pm 2.5 \cdot 10^{-4} \) |
\(a_{967}= -1.06912754 \pm 1.7 \cdot 10^{-4} \) | \(a_{968}= +0.09590863 \pm 3.7 \cdot 10^{-5} \) | \(a_{969}= +1.07868204 \pm 8.6 \cdot 10^{-5} \) |
\(a_{970}= +0.00670512 \pm 2.2 \cdot 10^{-5} \) | \(a_{971}= +0.29376659 \pm 1.6 \cdot 10^{-4} \) | \(a_{972}= -0.06321944 \pm 9.3 \cdot 10^{-5} \) |
\(a_{973}= +0.01158602 \pm 7.9 \cdot 10^{-5} \) | \(a_{974}= +0.23092170 \pm 2.9 \cdot 10^{-5} \) | \(a_{975}= -0.46201301 \pm 1.2 \cdot 10^{-4} \) |
\(a_{976}= -0.87933246 \pm 6.1 \cdot 10^{-5} \) | \(a_{977}= +0.28222096 \pm 9.9 \cdot 10^{-5} \) | \(a_{978}= +0.09434986 \pm 6.9 \cdot 10^{-5} \) |
\(a_{979}= +0.73211510 \pm 3.2 \cdot 10^{-5} \) | \(a_{980}= +0.46895030 \pm 6.0 \cdot 10^{-5} \) | \(a_{981}= +0.08997125 \pm 1.0 \cdot 10^{-4} \) |
\(a_{982}= -0.18591080 \pm 3.1 \cdot 10^{-5} \) | \(a_{983}= -0.95083876 \pm 4.3 \cdot 10^{-5} \) | \(a_{984}= -0.06570884 \pm 2.0 \cdot 10^{-4} \) |
\(a_{985}= +0.33200125 \pm 1.2 \cdot 10^{-4} \) | \(a_{986}= -0.02201362 \pm 6.0 \cdot 10^{-5} \) | \(a_{987}= +0.01560539 \pm 1.7 \cdot 10^{-4} \) |
\(a_{988}= -1.42468071 \pm 2.5 \cdot 10^{-5} \) | \(a_{989}= -2.24288685 \pm 9.4 \cdot 10^{-5} \) | \(a_{990}= +0.02264522 \pm 1.8 \cdot 10^{-4} \) |
\(a_{991}= +0.53164564 \pm 1.1 \cdot 10^{-4} \) | \(a_{992}= -0.34930906 \pm 4.8 \cdot 10^{-5} \) | \(a_{993}= +0.56369937 \pm 6.1 \cdot 10^{-5} \) |
\(a_{994}= -0.00387817 \pm 4.5 \cdot 10^{-5} \) | \(a_{995}= -0.41520412 \pm 5.1 \cdot 10^{-5} \) | \(a_{996}= -0.15699572 \pm 2.0 \cdot 10^{-4} \) |
\(a_{997}= +0.42575169 \pm 1.4 \cdot 10^{-4} \) | \(a_{998}= +0.05241094 \pm 6.1 \cdot 10^{-5} \) | \(a_{999}= +0.16670626 \pm 7.2 \cdot 10^{-5} \) |
\(a_{1000}= -0.20203544 \pm 5.7 \cdot 10^{-5} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000