Maass form invariants
Level: | \( 3 \) |
Weight: | \( 0 \) |
Character: | 3.1 |
Symmetry: | odd |
Fricke sign: | $-1$ |
Spectral parameter: | \(16.9905650918938697774436857509 \pm 3 \cdot 10^{-6}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= +1.59187815 \pm 2.6 \cdot 10^{-3} \) | \(a_{3}= +0.57735027 \pm 1.0 \cdot 10^{-8} \) |
\(a_{4}= +1.53407605 \pm 4.8 \cdot 10^{-3} \) | \(a_{5}= +1.84128560 \pm 3.6 \cdot 10^{-3} \) | \(a_{6}= +0.91907128 \pm 2.6 \cdot 10^{-3} \) |
\(a_{7}= -0.58632653 \pm 3.0 \cdot 10^{-3} \) | \(a_{8}= +0.85018399 \pm 3.2 \cdot 10^{-3} \) | \(a_{9}= +0.33333333 \pm 4.2 \cdot 10^{-8} \) |
\(a_{10}= +2.93110232 \pm 2.1 \cdot 10^{-3} \) | \(a_{11}= -0.06533740 \pm 3.3 \cdot 10^{-3} \) | \(a_{12}= +0.88569922 \pm 4.8 \cdot 10^{-3} \) |
\(a_{13}= -0.62373348 \pm 3.2 \cdot 10^{-3} \) | \(a_{14}= -0.93336040 \pm 2.0 \cdot 10^{-3} \) | \(a_{15}= +1.06306674 \pm 3.6 \cdot 10^{-3} \) |
\(a_{16}= -0.18068673 \pm 3.9 \cdot 10^{-3} \) | \(a_{17}= +0.59673171 \pm 2.4 \cdot 10^{-3} \) | \(a_{18}= +0.53062605 \pm 2.6 \cdot 10^{-3} \) |
\(a_{19}= +0.12792492 \pm 2.0 \cdot 10^{-3} \) | \(a_{20}= +2.82467213 \pm 3.4 \cdot 10^{-3} \) | \(a_{21}= -0.33851578 \pm 3.0 \cdot 10^{-3} \) |
\(a_{22}= -0.10400917 \pm 1.7 \cdot 10^{-3} \) | \(a_{23}= -0.25387485 \pm 7.4 \cdot 10^{-3} \) | \(a_{24}= +0.49085395 \pm 3.2 \cdot 10^{-3} \) |
\(a_{25}= +2.39033266 \pm 3.0 \cdot 10^{-3} \) | \(a_{26}= -0.99290770 \pm 1.1 \cdot 10^{-3} \) | \(a_{27}= +0.19245009 \pm 9.4 \cdot 10^{-8} \) |
\(a_{28}= -0.89946949 \pm 2.0 \cdot 10^{-3} \) | \(a_{29}= -0.67260630 \pm 6.9 \cdot 10^{-3} \) | \(a_{30}= +1.69227271 \pm 6.3 \cdot 10^{-3} \) |
\(a_{31}= +0.67027640 \pm 3.1 \cdot 10^{-3} \) | \(a_{32}= -1.13781525 \pm 4.3 \cdot 10^{-3} \) | \(a_{33}= -0.03772256 \pm 3.3 \cdot 10^{-3} \) |
\(a_{34}= +0.94992417 \pm 2.9 \cdot 10^{-3} \) | \(a_{35}= -1.07959460 \pm 1.3 \cdot 10^{-3} \) | \(a_{36}= +0.51135868 \pm 4.8 \cdot 10^{-3} \) |
\(a_{37}= -0.53701226 \pm 3.7 \cdot 10^{-3} \) | \(a_{38}= +0.20364089 \pm 9.1 \cdot 10^{-4} \) | \(a_{39}= -0.36011269 \pm 3.2 \cdot 10^{-3} \) |
\(a_{40}= +1.56543153 \pm 2.0 \cdot 10^{-3} \) | \(a_{41}= -0.93660130 \pm 7.1 \cdot 10^{-3} \) | \(a_{42}= -0.53887588 \pm 5.7 \cdot 10^{-3} \) |
\(a_{43}= +0.80999460 \pm 4.7 \cdot 10^{-3} \) | \(a_{44}= -0.10023253 \pm 2.9 \cdot 10^{-3} \) | \(a_{45}= +0.61376187 \pm 3.6 \cdot 10^{-3} \) |
\(a_{46}= -0.40413783 \pm 2.1 \cdot 10^{-3} \) | \(a_{47}= -1.72643484 \pm 5.8 \cdot 10^{-3} \) | \(a_{48}= -0.10431953 \pm 3.9 \cdot 10^{-3} \) |
\(a_{49}= -0.65622120 \pm 5.1 \cdot 10^{-3} \) | \(a_{50}= +3.80511834 \pm 1.5 \cdot 10^{-3} \) | \(a_{51}= +0.34452321 \pm 2.4 \cdot 10^{-3} \) |
\(a_{52}= -0.95685459 \pm 3.0 \cdot 10^{-3} \) | \(a_{53}= -1.56262872 \pm 2.9 \cdot 10^{-3} \) | \(a_{54}= +0.30635709 \pm 2.6 \cdot 10^{-3} \) |
\(a_{55}= -0.12030481 \pm 2.3 \cdot 10^{-3} \) | \(a_{56}= -0.49848543 \pm 2.9 \cdot 10^{-3} \) | \(a_{57}= +0.07385749 \pm 2.0 \cdot 10^{-3} \) |
\(a_{58}= -1.07070727 \pm 2.8 \cdot 10^{-3} \) | \(a_{59}= +1.46394498 \pm 4.7 \cdot 10^{-3} \) | \(a_{60}= +1.63082522 \pm 8.5 \cdot 10^{-3} \) |
\(a_{61}= -0.88256351 \pm 3.8 \cdot 10^{-3} \) | \(a_{62}= +1.06699836 \pm 1.4 \cdot 10^{-3} \) | \(a_{63}= -0.19544218 \pm 3.0 \cdot 10^{-3} \) |
\(a_{64}= -1.63057650 \pm 3.6 \cdot 10^{-3} \) | \(a_{65}= -1.14847147 \pm 2.3 \cdot 10^{-3} \) | \(a_{66}= -0.06004972 \pm 6.0 \cdot 10^{-3} \) |
\(a_{67}= +1.35796405 \pm 8.3 \cdot 10^{-3} \) | \(a_{68}= +0.91543182 \pm 2.8 \cdot 10^{-3} \) | \(a_{69}= -0.14657471 \pm 7.4 \cdot 10^{-3} \) |
\(a_{70}= -1.71858306 \pm 1.0 \cdot 10^{-3} \) | \(a_{71}= +1.08120287 \pm 5.5 \cdot 10^{-3} \) | \(a_{72}= +0.28339466 \pm 3.2 \cdot 10^{-3} \) |
\(a_{73}= -0.29520543 \pm 2.3 \cdot 10^{-3} \) | \(a_{74}= -0.85485808 \pm 3.7 \cdot 10^{-3} \) | \(a_{75}= +1.38005921 \pm 3.0 \cdot 10^{-3} \) |
\(a_{76}= +0.19624656 \pm 1.8 \cdot 10^{-3} \) | \(a_{77}= +0.03830905 \pm 2.0 \cdot 10^{-3} \) | \(a_{78}= -0.57325553 \pm 5.9 \cdot 10^{-3} \) |
\(a_{79}= +0.28409298 \pm 4.1 \cdot 10^{-3} \) | \(a_{80}= -0.33269588 \pm 2.8 \cdot 10^{-3} \) | \(a_{81}= +0.11111111 \pm 2.3 \cdot 10^{-7} \) |
\(a_{82}= -1.49095515 \pm 2.2 \cdot 10^{-3} \) | \(a_{83}= +0.18111495 \pm 5.8 \cdot 10^{-3} \) | \(a_{84}= -0.51930895 \pm 7.9 \cdot 10^{-3} \) |
\(a_{85}= +1.09875350 \pm 1.9 \cdot 10^{-3} \) | \(a_{86}= +1.28941270 \pm 3.5 \cdot 10^{-3} \) | \(a_{87}= -0.38832943 \pm 6.9 \cdot 10^{-3} \) |
\(a_{88}= -0.05554881 \pm 2.1 \cdot 10^{-3} \) | \(a_{89}= -0.24189965 \pm 2.4 \cdot 10^{-3} \) | \(a_{90}= +0.97703411 \pm 6.3 \cdot 10^{-3} \) |
\(a_{91}= +0.36571149 \pm 1.2 \cdot 10^{-3} \) | \(a_{92}= -0.38946333 \pm 6.8 \cdot 10^{-3} \) | \(a_{93}= +0.38698426 \pm 3.1 \cdot 10^{-3} \) |
\(a_{94}= -2.74827390 \pm 2.3 \cdot 10^{-3} \) | \(a_{95}= +0.23554632 \pm 1.5 \cdot 10^{-3} \) | \(a_{96}= -0.65691794 \pm 4.3 \cdot 10^{-3} \) |
\(a_{97}= +0.58166981 \pm 5.6 \cdot 10^{-3} \) | \(a_{98}= -1.04462419 \pm 2.4 \cdot 10^{-3} \) | \(a_{99}= -0.02177913 \pm 3.3 \cdot 10^{-3} \) |
\(a_{100}= +3.66695208 \pm 2.5 \cdot 10^{-3} \) | \(a_{101}= +0.26068732 \pm 3.1 \cdot 10^{-3} \) | \(a_{102}= +0.54843897 \pm 5.1 \cdot 10^{-3} \) |
\(a_{103}= -0.68344299 \pm 3.9 \cdot 10^{-3} \) | \(a_{104}= -0.53028822 \pm 1.8 \cdot 10^{-3} \) | \(a_{105}= -0.62330423 \pm 6.7 \cdot 10^{-3} \) |
\(a_{106}= -2.48751452 \pm 1.8 \cdot 10^{-3} \) | \(a_{107}= +1.70269971 \pm 2.7 \cdot 10^{-3} \) | \(a_{108}= +0.29523307 \pm 4.8 \cdot 10^{-3} \) |
\(a_{109}= +0.00759142 \pm 5.4 \cdot 10^{-3} \) | \(a_{110}= -0.19151059 \pm 1.4 \cdot 10^{-3} \) | \(a_{111}= -0.31004417 \pm 3.7 \cdot 10^{-3} \) |
\(a_{112}= +0.10594143 \pm 1.0 \cdot 10^{-3} \) | \(a_{113}= +0.66143353 \pm 3.0 \cdot 10^{-3} \) | \(a_{114}= +0.11757212 \pm 4.6 \cdot 10^{-3} \) |
\(a_{115}= -0.46745611 \pm 5.1 \cdot 10^{-3} \) | \(a_{116}= -1.03182921 \pm 6.4 \cdot 10^{-3} \) | \(a_{117}= -0.20791116 \pm 3.2 \cdot 10^{-3} \) |
\(a_{118}= +2.33042203 \pm 3.1 \cdot 10^{-3} \) | \(a_{119}= -0.34987963 \pm 1.3 \cdot 10^{-3} \) | \(a_{120}= +0.90380232 \pm 6.9 \cdot 10^{-3} \) |
\(a_{121}= -0.99573102 \pm 3.2 \cdot 10^{-3} \) | \(a_{122}= -1.40493357 \pm 1.6 \cdot 10^{-3} \) | \(a_{123}= -0.54074701 \pm 7.1 \cdot 10^{-3} \) |
\(a_{124}= +1.02825497 \pm 2.7 \cdot 10^{-3} \) | \(a_{125}= +2.55999951 \pm 5.4 \cdot 10^{-3} \) | \(a_{126}= -0.31112013 \pm 5.7 \cdot 10^{-3} \) |
\(a_{127}= -0.36407682 \pm 6.0 \cdot 10^{-3} \) | \(a_{128}= -1.45786386 \pm 4.5 \cdot 10^{-3} \) | \(a_{129}= +0.46765060 \pm 4.7 \cdot 10^{-3} \) |
\(a_{130}= -1.82822664 \pm 8.8 \cdot 10^{-4} \) | \(a_{131}= -1.10371374 \pm 3.5 \cdot 10^{-3} \) | \(a_{132}= -0.05786928 \pm 8.2 \cdot 10^{-3} \) |
\(a_{133}= -0.07500578 \pm 5.6 \cdot 10^{-4} \) | \(a_{134}= +2.16171329 \pm 2.7 \cdot 10^{-3} \) | \(a_{135}= +0.35435558 \pm 3.6 \cdot 10^{-3} \) |
\(a_{136}= +0.50733174 \pm 1.2 \cdot 10^{-3} \) | \(a_{137}= +1.49349994 \pm 6.0 \cdot 10^{-3} \) | \(a_{138}= -0.23332909 \pm 1.0 \cdot 10^{-2} \) |
\(a_{139}= +0.33764880 \pm 4.1 \cdot 10^{-3} \) | \(a_{140}= -1.65618022 \pm 1.1 \cdot 10^{-3} \) | \(a_{141}= -0.99675762 \pm 5.8 \cdot 10^{-3} \) |
\(a_{142}= +1.72114322 \pm 2.4 \cdot 10^{-3} \) | \(a_{143}= +0.04075312 \pm 2.0 \cdot 10^{-3} \) | \(a_{144}= -0.06022891 \pm 3.9 \cdot 10^{-3} \) |
\(a_{145}= -1.23846029 \pm 4.8 \cdot 10^{-3} \) | \(a_{146}= -0.46993107 \pm 1.9 \cdot 10^{-3} \) | \(a_{147}= -0.37886949 \pm 5.1 \cdot 10^{-3} \) |
\(a_{148}= -0.82381764 \pm 3.9 \cdot 10^{-3} \) | \(a_{149}= -1.21309411 \pm 4.5 \cdot 10^{-3} \) | \(a_{150}= +2.19688610 \pm 5.7 \cdot 10^{-3} \) |
\(a_{151}= +0.35760366 \pm 6.9 \cdot 10^{-3} \) | \(a_{152}= +0.10875972 \pm 1.1 \cdot 10^{-3} \) | \(a_{153}= +0.19891057 \pm 2.4 \cdot 10^{-3} \) |
\(a_{154}= +0.06098334 \pm 1.3 \cdot 10^{-3} \) | \(a_{155}= +1.23417029 \pm 2.0 \cdot 10^{-3} \) | \(a_{156}= -0.55244025 \pm 8.1 \cdot 10^{-3} \) |
\(a_{157}= +1.30990406 \pm 7.3 \cdot 10^{-3} \) | \(a_{158}= +0.45224140 \pm 2.0 \cdot 10^{-3} \) | \(a_{159}= -0.90218411 \pm 2.9 \cdot 10^{-3} \) |
\(a_{160}= -2.09504283 \pm 3.0 \cdot 10^{-3} \) | \(a_{161}= +0.14885356 \pm 1.8 \cdot 10^{-3} \) | \(a_{162}= +0.17687535 \pm 2.6 \cdot 10^{-3} \) |
\(a_{163}= +0.93627338 \pm 9.2 \cdot 10^{-4} \) | \(a_{164}= -1.43681762 \pm 6.4 \cdot 10^{-3} \) | \(a_{165}= -0.06945801 \pm 7.0 \cdot 10^{-3} \) |
\(a_{166}= +0.28831293 \pm 2.2 \cdot 10^{-3} \) | \(a_{167}= +0.41986859 \pm 3.4 \cdot 10^{-3} \) | \(a_{168}= -0.28780070 \pm 6.3 \cdot 10^{-3} \) |
\(a_{169}= -0.61095655 \pm 3.5 \cdot 10^{-3} \) | \(a_{170}= +1.74908169 \pm 2.6 \cdot 10^{-3} \) | \(a_{171}= +0.04264164 \pm 2.0 \cdot 10^{-3} \) |
\(a_{172}= +1.24259331 \pm 4.0 \cdot 10^{-3} \) | \(a_{173}= -1.87311921 \pm 3.0 \cdot 10^{-3} \) | \(a_{174}= -0.61817313 \pm 9.6 \cdot 10^{-3} \) |
\(a_{175}= -1.40151546 \pm 2.5 \cdot 10^{-3} \) | \(a_{176}= +0.01180560 \pm 2.4 \cdot 10^{-3} \) | \(a_{177}= +0.84520903 \pm 4.7 \cdot 10^{-3} \) |
\(a_{178}= -0.38507476 \pm 1.8 \cdot 10^{-3} \) | \(a_{179}= +1.43855783 \pm 4.6 \cdot 10^{-3} \) | \(a_{180}= +0.94155738 \pm 8.5 \cdot 10^{-3} \) |
\(a_{181}= +0.89512525 \pm 5.5 \cdot 10^{-3} \) | \(a_{182}= +0.58216813 \pm 7.2 \cdot 10^{-4} \) | \(a_{183}= -0.50954828 \pm 3.8 \cdot 10^{-3} \) |
\(a_{184}= -0.21584033 \pm 3.9 \cdot 10^{-3} \) | \(a_{185}= -0.98879294 \pm 2.8 \cdot 10^{-3} \) | \(a_{186}= +0.61603179 \pm 5.8 \cdot 10^{-3} \) |
\(a_{187}= -0.03898890 \pm 1.4 \cdot 10^{-3} \) | \(a_{188}= -2.64848233 \pm 5.2 \cdot 10^{-3} \) | \(a_{189}= -0.11283859 \pm 3.0 \cdot 10^{-3} \) |
\(a_{190}= +0.37496104 \pm 9.6 \cdot 10^{-4} \) | \(a_{191}= -0.18173236 \pm 3.8 \cdot 10^{-3} \) | \(a_{192}= -0.94141378 \pm 3.6 \cdot 10^{-3} \) |
\(a_{193}= +1.30828058 \pm 6.4 \cdot 10^{-3} \) | \(a_{194}= +0.92594746 \pm 2.1 \cdot 10^{-3} \) | \(a_{195}= -0.66307031 \pm 6.9 \cdot 10^{-3} \) |
\(a_{196}= -1.00669322 \pm 4.5 \cdot 10^{-3} \) | \(a_{197}= +0.96269668 \pm 9.4 \cdot 10^{-3} \) | \(a_{198}= -0.03466972 \pm 6.0 \cdot 10^{-3} \) |
\(a_{199}= -0.26654830 \pm 3.6 \cdot 10^{-3} \) | \(a_{200}= +2.03222255 \pm 2.2 \cdot 10^{-3} \) | \(a_{201}= +0.78402091 \pm 8.3 \cdot 10^{-3} \) |
\(a_{202}= +0.41498245 \pm 2.2 \cdot 10^{-3} \) | \(a_{203}= +0.39436692 \pm 3.0 \cdot 10^{-3} \) | \(a_{204}= +0.52852481 \pm 7.3 \cdot 10^{-3} \) |
\(a_{205}= -1.72455049 \pm 4.8 \cdot 10^{-3} \) | \(a_{206}= -1.08795796 \pm 3.0 \cdot 10^{-3} \) | \(a_{207}= -0.08462495 \pm 7.4 \cdot 10^{-3} \) |
\(a_{208}= +0.11270036 \pm 2.4 \cdot 10^{-3} \) | \(a_{209}= -0.00835828 \pm 1.3 \cdot 10^{-3} \) | \(a_{210}= -0.99222439 \pm 9.4 \cdot 10^{-3} \) |
\(a_{211}= -1.04646133 \pm 2.1 \cdot 10^{-3} \) | \(a_{212}= -2.39719129 \pm 2.7 \cdot 10^{-3} \) | \(a_{213}= +0.62423277 \pm 5.5 \cdot 10^{-3} \) |
\(a_{214}= +2.71049046 \pm 1.8 \cdot 10^{-3} \) | \(a_{215}= +1.49143139 \pm 3.0 \cdot 10^{-3} \) | \(a_{216}= +0.16361798 \pm 3.2 \cdot 10^{-3} \) |
\(a_{217}= -0.39300084 \pm 1.9 \cdot 10^{-3} \) | \(a_{218}= +0.01208461 \pm 2.3 \cdot 10^{-3} \) | \(a_{219}= -0.17043693 \pm 2.3 \cdot 10^{-3} \) |
\(a_{220}= -0.18455672 \pm 2.1 \cdot 10^{-3} \) | \(a_{221}= -0.37220154 \pm 1.0 \cdot 10^{-3} \) | \(a_{222}= -0.49355254 \pm 6.4 \cdot 10^{-3} \) |
\(a_{223}= +0.06555458 \pm 1.9 \cdot 10^{-3} \) | \(a_{224}= +0.66713127 \pm 2.8 \cdot 10^{-3} \) | \(a_{225}= +0.79677755 \pm 3.0 \cdot 10^{-3} \) |
\(a_{226}= +1.05292158 \pm 2.5 \cdot 10^{-3} \) | \(a_{227}= -1.70744304 \pm 7.2 \cdot 10^{-3} \) | \(a_{228}= +0.11330301 \pm 6.8 \cdot 10^{-3} \) |
\(a_{229}= +1.05635348 \pm 3.1 \cdot 10^{-3} \) | \(a_{230}= -0.74413317 \pm 1.6 \cdot 10^{-3} \) | \(a_{231}= +0.02211774 \pm 6.4 \cdot 10^{-3} \) |
\(a_{232}= -0.57183910 \pm 3.9 \cdot 10^{-3} \) | \(a_{233}= +0.72312010 \pm 5.2 \cdot 10^{-3} \) | \(a_{234}= -0.33096923 \pm 5.9 \cdot 10^{-3} \) |
\(a_{235}= -3.17885961 \pm 4.1 \cdot 10^{-3} \) | \(a_{236}= +2.24580293 \pm 3.6 \cdot 10^{-3} \) | \(a_{237}= +0.16402116 \pm 4.1 \cdot 10^{-3} \) |
\(a_{238}= -0.55696574 \pm 1.5 \cdot 10^{-3} \) | \(a_{239}= +1.64413783 \pm 4.4 \cdot 10^{-3} \) | \(a_{240}= -0.19208206 \pm 7.6 \cdot 10^{-3} \) |
\(a_{241}= +1.41643646 \pm 4.4 \cdot 10^{-3} \) | \(a_{242}= -1.58508246 \pm 1.6 \cdot 10^{-3} \) | \(a_{243}= +0.06415003 \pm 5.5 \cdot 10^{-7} \) |
\(a_{244}= -1.35391955 \pm 3.4 \cdot 10^{-3} \) | \(a_{245}= -1.20829064 \pm 3.4 \cdot 10^{-3} \) | \(a_{246}= -0.86080336 \pm 9.8 \cdot 10^{-3} \) |
\(a_{247}= -0.07979106 \pm 1.4 \cdot 10^{-3} \) | \(a_{248}= +0.56985826 \pm 1.9 \cdot 10^{-3} \) | \(a_{249}= +0.10456677 \pm 5.8 \cdot 10^{-3} \) |
\(a_{250}= +4.07520728 \pm 2.5 \cdot 10^{-3} \) | \(a_{251}= +0.70637132 \pm 6.3 \cdot 10^{-3} \) | \(a_{252}= -0.29982316 \pm 7.9 \cdot 10^{-3} \) |
\(a_{253}= +0.01658752 \pm 4.5 \cdot 10^{-3} \) | \(a_{254}= -0.57956593 \pm 2.9 \cdot 10^{-3} \) | \(a_{255}= +0.63436563 \pm 6.1 \cdot 10^{-3} \) |
\(a_{256}= -0.69016512 \pm 2.6 \cdot 10^{-3} \) | \(a_{257}= -0.33082978 \pm 5.8 \cdot 10^{-3} \) | \(a_{258}= +0.74444277 \pm 7.4 \cdot 10^{-3} \) |
\(a_{259}= +0.31486454 \pm 1.9 \cdot 10^{-3} \) | \(a_{260}= -1.76184258 \pm 2.1 \cdot 10^{-3} \) | \(a_{261}= -0.22420210 \pm 6.9 \cdot 10^{-3} \) |
\(a_{262}= -1.75697778 \pm 1.9 \cdot 10^{-3} \) | \(a_{263}= +1.06524369 \pm 4.1 \cdot 10^{-3} \) | \(a_{264}= -0.03207112 \pm 6.6 \cdot 10^{-3} \) |
\(a_{265}= -2.87724576 \pm 2.0 \cdot 10^{-3} \) | \(a_{266}= -0.11940006 \pm 3.1 \cdot 10^{-4} \) | \(a_{267}= -0.13966083 \pm 2.4 \cdot 10^{-3} \) |
\(a_{268}= +2.08322011 \pm 7.7 \cdot 10^{-3} \) | \(a_{269}= +0.51375856 \pm 3.6 \cdot 10^{-3} \) | \(a_{270}= +0.56409090 \pm 6.3 \cdot 10^{-3} \) |
\(a_{271}= +0.15311127 \pm 4.9 \cdot 10^{-3} \) | \(a_{272}= -0.10782150 \pm 1.6 \cdot 10^{-3} \) | \(a_{273}= +0.21114363 \pm 6.3 \cdot 10^{-3} \) |
\(a_{274}= +2.37746992 \pm 3.2 \cdot 10^{-3} \) | \(a_{275}= -0.15617811 \pm 1.9 \cdot 10^{-3} \) | \(a_{276}= -0.22485676 \pm 1.2 \cdot 10^{-2} \) |
\(a_{277}= -0.52840953 \pm 2.6 \cdot 10^{-3} \) | \(a_{278}= +0.53749574 \pm 3.7 \cdot 10^{-3} \) | \(a_{279}= +0.22342547 \pm 3.1 \cdot 10^{-3} \) |
\(a_{280}= -0.91785404 \pm 1.0 \cdot 10^{-3} \) | \(a_{281}= -0.61482061 \pm 5.6 \cdot 10^{-3} \) | \(a_{282}= -1.58671668 \pm 8.5 \cdot 10^{-3} \) |
\(a_{283}= -0.19069193 \pm 7.8 \cdot 10^{-3} \) | \(a_{284}= +1.65864742 \pm 4.8 \cdot 10^{-3} \) | \(a_{285}= +0.13599273 \pm 5.6 \cdot 10^{-3} \) |
\(a_{286}= +0.06487400 \pm 7.5 \cdot 10^{-4} \) | \(a_{287}= +0.54915419 \pm 3.2 \cdot 10^{-3} \) | \(a_{288}= -0.37927175 \pm 4.3 \cdot 10^{-3} \) |
\(a_{289}= -0.64391127 \pm 5.1 \cdot 10^{-3} \) | \(a_{290}= -1.97147788 \pm 2.1 \cdot 10^{-3} \) | \(a_{291}= +0.33582722 \pm 5.6 \cdot 10^{-3} \) |
\(a_{292}= -0.45286757 \pm 2.4 \cdot 10^{-3} \) | \(a_{293}= +0.85948122 \pm 8.4 \cdot 10^{-3} \) | \(a_{294}= -0.60311406 \pm 7.8 \cdot 10^{-3} \) |
\(a_{295}= +2.69554081 \pm 2.5 \cdot 10^{-3} \) | \(a_{296}= -0.45655922 \pm 2.0 \cdot 10^{-3} \) | \(a_{297}= -0.01257419 \pm 3.3 \cdot 10^{-3} \) |
\(a_{298}= -1.93109800 \pm 2.4 \cdot 10^{-3} \) | \(a_{299}= +0.15835025 \pm 4.7 \cdot 10^{-3} \) | \(a_{300}= +2.11711577 \pm 7.9 \cdot 10^{-3} \) |
\(a_{301}= -0.47492132 \pm 4.4 \cdot 10^{-3} \) | \(a_{302}= +0.56926145 \pm 2.2 \cdot 10^{-3} \) | \(a_{303}= +0.15050789 \pm 3.1 \cdot 10^{-3} \) |
\(a_{304}= -0.02311434 \pm 1.5 \cdot 10^{-3} \) | \(a_{305}= -1.62505149 \pm 2.9 \cdot 10^{-3} \) | \(a_{306}= +0.31664139 \pm 5.1 \cdot 10^{-3} \) |
\(a_{307}= -1.00763148 \pm 2.4 \cdot 10^{-3} \) | \(a_{308}= +0.05876899 \pm 1.2 \cdot 10^{-3} \) | \(a_{309}= -0.39458599 \pm 3.9 \cdot 10^{-3} \) |
\(a_{310}= +1.96464871 \pm 1.0 \cdot 10^{-3} \) | \(a_{311}= +0.32649613 \pm 7.8 \cdot 10^{-3} \) | \(a_{312}= -0.30616204 \pm 6.5 \cdot 10^{-3} \) |
\(a_{313}= +0.70104891 \pm 3.3 \cdot 10^{-3} \) | \(a_{314}= +2.08520766 \pm 2.2 \cdot 10^{-3} \) | \(a_{315}= -0.35986487 \pm 6.7 \cdot 10^{-3} \) |
\(a_{316}= +0.43582023 \pm 3.5 \cdot 10^{-3} \) | \(a_{317}= -1.36133167 \pm 3.3 \cdot 10^{-3} \) | \(a_{318}= -1.43616718 \pm 5.6 \cdot 10^{-3} \) |
\(a_{319}= +0.04394634 \pm 4.3 \cdot 10^{-3} \) | \(a_{320}= -3.00235703 \pm 2.5 \cdot 10^{-3} \) | \(a_{321}= +0.98305413 \pm 2.7 \cdot 10^{-3} \) |
\(a_{322}= +0.23695673 \pm 6.3 \cdot 10^{-4} \) | \(a_{323}= +0.07633686 \pm 7.3 \cdot 10^{-4} \) | \(a_{324}= +0.17045289 \pm 4.8 \cdot 10^{-3} \) |
\(a_{325}= -1.49093051 \pm 1.7 \cdot 10^{-3} \) | \(a_{326}= +1.49043313 \pm 1.1 \cdot 10^{-3} \) | \(a_{327}= +0.00438291 \pm 5.4 \cdot 10^{-3} \) |
\(a_{328}= -0.79628343 \pm 4.1 \cdot 10^{-3} \) | \(a_{329}= +1.01225455 \pm 2.9 \cdot 10^{-3} \) | \(a_{330}= -0.11056869 \pm 9.7 \cdot 10^{-3} \) |
\(a_{331}= -0.12541123 \pm 3.1 \cdot 10^{-3} \) | \(a_{332}= +0.27784411 \pm 5.0 \cdot 10^{-3} \) | \(a_{333}= -0.17900409 \pm 3.7 \cdot 10^{-3} \) |
\(a_{334}= +0.66837963 \pm 2.7 \cdot 10^{-3} \) | \(a_{335}= +2.50039964 \pm 5.8 \cdot 10^{-3} \) | \(a_{336}= +0.06116531 \pm 6.9 \cdot 10^{-3} \) |
\(a_{337}= -1.35669651 \pm 6.1 \cdot 10^{-3} \) | \(a_{338}= -0.97256838 \pm 2.2 \cdot 10^{-3} \) | \(a_{339}= +0.38187883 \pm 3.0 \cdot 10^{-3} \) |
\(a_{340}= +1.68557142 \pm 2.3 \cdot 10^{-3} \) | \(a_{341}= -0.04379411 \pm 1.9 \cdot 10^{-3} \) | \(a_{342}= +0.06788030 \pm 4.6 \cdot 10^{-3} \) |
\(a_{343}= +0.97108643 \pm 2.5 \cdot 10^{-3} \) | \(a_{344}= +0.68864444 \pm 3.6 \cdot 10^{-3} \) | \(a_{345}= -0.26988591 \pm 1.1 \cdot 10^{-2} \) |
\(a_{346}= -2.98177755 \pm 2.0 \cdot 10^{-3} \) | \(a_{347}= -0.69550122 \pm 1.9 \cdot 10^{-3} \) | \(a_{348}= -0.59572687 \pm 1.1 \cdot 10^{-2} \) |
\(a_{349}= +0.02823456 \pm 8.4 \cdot 10^{-3} \) | \(a_{350}= -2.23104184 \pm 1.6 \cdot 10^{-3} \) | \(a_{351}= -0.12003756 \pm 3.2 \cdot 10^{-3} \) |
\(a_{352}= +0.07434189 \pm 2.7 \cdot 10^{-3} \) | \(a_{353}= -1.31858544 \pm 7.3 \cdot 10^{-3} \) | \(a_{354}= +1.34546979 \pm 7.4 \cdot 10^{-3} \) |
\(a_{355}= +1.99080327 \pm 3.6 \cdot 10^{-3} \) | \(a_{356}= -0.37109246 \pm 1.8 \cdot 10^{-3} \) | \(a_{357}= -0.20200310 \pm 5.5 \cdot 10^{-3} \) |
\(a_{358}= +2.29000878 \pm 2.7 \cdot 10^{-3} \) | \(a_{359}= +0.54618117 \pm 3.8 \cdot 10^{-3} \) | \(a_{360}= +0.52181051 \pm 6.9 \cdot 10^{-3} \) |
\(a_{361}= -0.98363521 \pm 4.6 \cdot 10^{-3} \) | \(a_{362}= +1.42493033 \pm 3.5 \cdot 10^{-3} \) | \(a_{363}= -0.57488558 \pm 3.2 \cdot 10^{-3} \) |
\(a_{364}= +0.56102923 \pm 9.1 \cdot 10^{-4} \) | \(a_{365}= -0.54355750 \pm 1.7 \cdot 10^{-3} \) | \(a_{366}= -0.81113878 \pm 6.5 \cdot 10^{-3} \) |
\(a_{367}= -0.95653497 \pm 3.5 \cdot 10^{-3} \) | \(a_{368}= +0.04587182 \pm 5.8 \cdot 10^{-3} \) | \(a_{369}= -0.31220043 \pm 7.1 \cdot 10^{-3} \) |
\(a_{370}= -1.57403788 \pm 3.2 \cdot 10^{-3} \) | \(a_{371}= +0.91621068 \pm 1.7 \cdot 10^{-3} \) | \(a_{372}= +0.59366329 \pm 7.9 \cdot 10^{-3} \) |
\(a_{373}= +1.24207100 \pm 3.1 \cdot 10^{-3} \) | \(a_{374}= -0.06206557 \pm 1.6 \cdot 10^{-3} \) | \(a_{375}= +1.47801641 \pm 5.4 \cdot 10^{-3} \) |
\(a_{376}= -1.46778726 \pm 3.5 \cdot 10^{-3} \) | \(a_{377}= +0.41952707 \pm 4.3 \cdot 10^{-3} \) | \(a_{378}= -0.17962529 \pm 5.7 \cdot 10^{-3} \) |
\(a_{379}= -0.71785721 \pm 1.3 \cdot 10^{-3} \) | \(a_{380}= +0.36134597 \pm 1.3 \cdot 10^{-3} \) | \(a_{381}= -0.21019985 \pm 6.0 \cdot 10^{-3} \) |
\(a_{382}= -0.28929578 \pm 3.7 \cdot 10^{-3} \) | \(a_{383}= -0.96984759 \pm 4.0 \cdot 10^{-3} \) | \(a_{384}= -0.84169809 \pm 4.5 \cdot 10^{-3} \) |
\(a_{385}= +0.07053790 \pm 8.8 \cdot 10^{-4} \) | \(a_{386}= +2.08262327 \pm 2.7 \cdot 10^{-3} \) | \(a_{387}= +0.26999820 \pm 4.7 \cdot 10^{-3} \) |
\(a_{388}= +0.89232572 \pm 4.8 \cdot 10^{-3} \) | \(a_{389}= -1.69919125 \pm 1.8 \cdot 10^{-3} \) | \(a_{390}= -1.05552715 \pm 9.6 \cdot 10^{-3} \) |
\(a_{391}= -0.15149517 \pm 2.1 \cdot 10^{-3} \) | \(a_{392}= -0.55790875 \pm 3.2 \cdot 10^{-3} \) | \(a_{393}= -0.63722942 \pm 3.5 \cdot 10^{-3} \) |
\(a_{394}= +1.53249580 \pm 2.7 \cdot 10^{-3} \) | \(a_{395}= +0.52309631 \pm 2.8 \cdot 10^{-3} \) | \(a_{396}= -0.03341084 \pm 8.2 \cdot 10^{-3} \) |
\(a_{397}= +0.22032185 \pm 6.4 \cdot 10^{-3} \) | \(a_{398}= -0.42431242 \pm 2.4 \cdot 10^{-3} \) | \(a_{399}= -0.04330461 \pm 5.0 \cdot 10^{-3} \) |
\(a_{400}= -0.43190140 \pm 2.0 \cdot 10^{-3} \) | \(a_{401}= +1.40854926 \pm 7.4 \cdot 10^{-3} \) | \(a_{402}= +1.24806575 \pm 1.1 \cdot 10^{-2} \) |
\(a_{403}= -0.41807383 \pm 1.8 \cdot 10^{-3} \) | \(a_{404}= +0.39991417 \pm 2.4 \cdot 10^{-3} \) | \(a_{405}= +0.20458729 \pm 3.6 \cdot 10^{-3} \) |
\(a_{406}= +0.62778408 \pm 1.9 \cdot 10^{-3} \) | \(a_{407}= +0.03508698 \pm 2.2 \cdot 10^{-3} \) | \(a_{408}= +0.29290812 \pm 5.7 \cdot 10^{-3} \) |
\(a_{409}= +0.52904927 \pm 7.6 \cdot 10^{-3} \) | \(a_{410}= -2.74527425 \pm 1.4 \cdot 10^{-3} \) | \(a_{411}= +0.86227259 \pm 6.0 \cdot 10^{-3} \) |
\(a_{412}= -1.04845351 \pm 3.8 \cdot 10^{-3} \) | \(a_{413}= -0.85834978 \pm 5.2 \cdot 10^{-3} \) | \(a_{414}= -0.13471261 \pm 1.0 \cdot 10^{-2} \) |
\(a_{415}= +0.33348435 \pm 3.7 \cdot 10^{-3} \) | \(a_{416}= +0.70969346 \pm 2.5 \cdot 10^{-3} \) | \(a_{417}= +0.19494162 \pm 4.1 \cdot 10^{-3} \) |
\(a_{418}= -0.01330537 \pm 7.3 \cdot 10^{-4} \) | \(a_{419}= +0.27914865 \pm 2.9 \cdot 10^{-3} \) | \(a_{420}= -0.95619609 \pm 1.1 \cdot 10^{-2} \) |
\(a_{421}= -1.61065152 \pm 8.2 \cdot 10^{-3} \) | \(a_{422}= -1.66583892 \pm 2.1 \cdot 10^{-3} \) | \(a_{423}= -0.57547828 \pm 5.8 \cdot 10^{-3} \) |
\(a_{424}= -1.32852192 \pm 1.8 \cdot 10^{-3} \) | \(a_{425}= +1.42638729 \pm 1.0 \cdot 10^{-3} \) | \(a_{426}= +0.99370250 \pm 8.2 \cdot 10^{-3} \) |
\(a_{427}= +0.51747040 \pm 1.0 \cdot 10^{-3} \) | \(a_{428}= +2.61207083 \pm 2.6 \cdot 10^{-3} \) | \(a_{429}= +0.02352883 \pm 6.6 \cdot 10^{-3} \) |
\(a_{430}= +2.37417704 \pm 2.8 \cdot 10^{-3} \) | \(a_{431}= -0.29057369 \pm 3.4 \cdot 10^{-3} \) | \(a_{432}= -0.03477318 \pm 3.9 \cdot 10^{-3} \) |
\(a_{433}= +0.83686040 \pm 6.6 \cdot 10^{-3} \) | \(a_{434}= -0.62560945 \pm 1.3 \cdot 10^{-3} \) | \(a_{435}= -0.71502538 \pm 1.0 \cdot 10^{-2} \) |
\(a_{436}= +0.01164581 \pm 5.0 \cdot 10^{-3} \) | \(a_{437}= -0.03247692 \pm 2.8 \cdot 10^{-3} \) | \(a_{438}= -0.27131483 \pm 5.0 \cdot 10^{-3} \) |
\(a_{439}= -0.14103768 \pm 5.0 \cdot 10^{-3} \) | \(a_{440}= -0.10228122 \pm 1.3 \cdot 10^{-3} \) | \(a_{441}= -0.21874040 \pm 5.1 \cdot 10^{-3} \) |
\(a_{442}= -0.59249950 \pm 8.9 \cdot 10^{-4} \) | \(a_{443}= +0.12673556 \pm 7.6 \cdot 10^{-3} \) | \(a_{444}= -0.47563134 \pm 8.6 \cdot 10^{-3} \) |
\(a_{445}= -0.44540634 \pm 1.4 \cdot 10^{-3} \) | \(a_{446}= +0.10435490 \pm 1.9 \cdot 10^{-3} \) | \(a_{447}= -0.70038021 \pm 4.5 \cdot 10^{-3} \) |
\(a_{448}= +0.95605027 \pm 2.4 \cdot 10^{-3} \) | \(a_{449}= -1.86486090 \pm 7.6 \cdot 10^{-3} \) | \(a_{450}= +1.26837278 \pm 5.7 \cdot 10^{-3} \) |
\(a_{451}= +0.06119509 \pm 4.4 \cdot 10^{-3} \) | \(a_{452}= +1.01468933 \pm 2.2 \cdot 10^{-3} \) | \(a_{453}= +0.20646257 \pm 6.9 \cdot 10^{-3} \) |
\(a_{454}= -2.71804127 \pm 3.5 \cdot 10^{-3} \) | \(a_{455}= +0.67337930 \pm 7.0 \cdot 10^{-4} \) | \(a_{456}= +0.06279245 \pm 5.2 \cdot 10^{-3} \) |
\(a_{457}= -0.47999870 \pm 4.7 \cdot 10^{-3} \) | \(a_{458}= +1.68158602 \pm 2.6 \cdot 10^{-3} \) | \(a_{459}= +0.11484107 \pm 2.4 \cdot 10^{-3} \) |
\(a_{460}= -0.71711322 \pm 4.7 \cdot 10^{-3} \) | \(a_{461}= -0.41813216 \pm 2.4 \cdot 10^{-3} \) | \(a_{462}= +0.03520875 \pm 9.0 \cdot 10^{-3} \) |
\(a_{463}= +1.34429778 \pm 5.7 \cdot 10^{-3} \) | \(a_{464}= +0.12153103 \pm 5.2 \cdot 10^{-3} \) | \(a_{465}= +0.71254855 \pm 6.8 \cdot 10^{-3} \) |
\(a_{466}= +1.15111908 \pm 2.4 \cdot 10^{-3} \) | \(a_{467}= +0.99249997 \pm 6.6 \cdot 10^{-3} \) | \(a_{468}= -0.31895153 \pm 8.1 \cdot 10^{-3} \) |
\(a_{469}= -0.79621035 \pm 2.7 \cdot 10^{-3} \) | \(a_{470}= -5.06035716 \pm 2.1 \cdot 10^{-3} \) | \(a_{471}= +0.75627346 \pm 7.3 \cdot 10^{-3} \) |
\(a_{472}= +1.24462258 \pm 4.0 \cdot 10^{-3} \) | \(a_{473}= -0.05292294 \pm 3.0 \cdot 10^{-3} \) | \(a_{474}= +0.26110170 \pm 6.8 \cdot 10^{-3} \) |
\(a_{475}= +0.30578313 \pm 1.0 \cdot 10^{-3} \) | \(a_{476}= -0.53674196 \pm 1.3 \cdot 10^{-3} \) | \(a_{477}= -0.52087624 \pm 2.9 \cdot 10^{-3} \) |
\(a_{478}= +2.61726709 \pm 1.8 \cdot 10^{-3} \) | \(a_{479}= +0.57892408 \pm 4.4 \cdot 10^{-3} \) | \(a_{480}= -1.20957354 \pm 8.0 \cdot 10^{-3} \) |
\(a_{481}= +0.33495253 \pm 1.9 \cdot 10^{-3} \) | \(a_{482}= +2.25479426 \pm 2.6 \cdot 10^{-3} \) | \(a_{483}= +0.08594064 \pm 1.0 \cdot 10^{-2} \) |
\(a_{484}= -1.52752711 \pm 3.0 \cdot 10^{-3} \) | \(a_{485}= +1.07102025 \pm 3.6 \cdot 10^{-3} \) | \(a_{486}= +0.10211903 \pm 2.6 \cdot 10^{-3} \) |
\(a_{487}= -0.74489987 \pm 3.1 \cdot 10^{-3} \) | \(a_{488}= -0.75034137 \pm 2.1 \cdot 10^{-3} \) | \(a_{489}= +0.54055769 \pm 9.2 \cdot 10^{-4} \) |
\(a_{490}= -1.92345147 \pm 1.8 \cdot 10^{-3} \) | \(a_{491}= -1.63806680 \pm 2.9 \cdot 10^{-3} \) | \(a_{492}= -0.82954704 \pm 1.1 \cdot 10^{-2} \) |
\(a_{493}= -0.40136550 \pm 2.8 \cdot 10^{-3} \) | \(a_{494}= -0.12701764 \pm 5.7 \cdot 10^{-4} \) | \(a_{495}= -0.04010160 \pm 7.0 \cdot 10^{-3} \) |
\(a_{496}= -0.12111005 \pm 2.2 \cdot 10^{-3} \) | \(a_{497}= -0.63393793 \pm 3.5 \cdot 10^{-3} \) | \(a_{498}= +0.16645755 \pm 8.5 \cdot 10^{-3} \) |
\(a_{499}= -0.12723968 \pm 8.2 \cdot 10^{-3} \) | \(a_{500}= +3.92723392 \pm 5.0 \cdot 10^{-3} \) | \(a_{501}= +0.24241124 \pm 3.4 \cdot 10^{-3} \) |
\(a_{502}= +1.12445707 \pm 2.1 \cdot 10^{-3} \) | \(a_{503}= -0.85662670 \pm 7.7 \cdot 10^{-3} \) | \(a_{504}= -0.16616181 \pm 6.3 \cdot 10^{-3} \) |
\(a_{505}= +0.47999981 \pm 2.2 \cdot 10^{-3} \) | \(a_{506}= +0.02640531 \pm 1.3 \cdot 10^{-3} \) | \(a_{507}= -0.35273593 \pm 3.5 \cdot 10^{-3} \) |
\(a_{508}= -0.55852153 \pm 5.0 \cdot 10^{-3} \) | \(a_{509}= +0.91605537 \pm 1.8 \cdot 10^{-3} \) | \(a_{510}= +1.00983278 \pm 8.8 \cdot 10^{-3} \) |
\(a_{511}= +0.17308677 \pm 8.4 \cdot 10^{-4} \) | \(a_{512}= +0.35920509 \pm 5.0 \cdot 10^{-3} \) | \(a_{513}= +0.02461916 \pm 2.0 \cdot 10^{-3} \) |
\(a_{514}= -0.52664070 \pm 2.4 \cdot 10^{-3} \) | \(a_{515}= -1.25841373 \pm 2.9 \cdot 10^{-3} \) | \(a_{516}= +0.71741158 \pm 9.5 \cdot 10^{-3} \) |
\(a_{517}= +0.11280076 \pm 3.7 \cdot 10^{-3} \) | \(a_{518}= +0.50122598 \pm 2.0 \cdot 10^{-3} \) | \(a_{519}= -1.08144588 \pm 3.0 \cdot 10^{-3} \) |
\(a_{520}= -0.97641206 \pm 1.3 \cdot 10^{-3} \) | \(a_{521}= +0.86451180 \pm 7.0 \cdot 10^{-3} \) | \(a_{522}= -0.35690242 \pm 9.6 \cdot 10^{-3} \) |
\(a_{523}= +0.40221763 \pm 2.8 \cdot 10^{-3} \) | \(a_{524}= -1.69318080 \pm 2.7 \cdot 10^{-3} \) | \(a_{525}= -0.80916533 \pm 6.0 \cdot 10^{-3} \) |
\(a_{526}= +1.69573815 \pm 3.1 \cdot 10^{-3} \) | \(a_{527}= +0.39997518 \pm 1.2 \cdot 10^{-3} \) | \(a_{528}= +0.00681597 \pm 7.3 \cdot 10^{-3} \) |
\(a_{529}= -0.93554756 \pm 6.7 \cdot 10^{-3} \) | \(a_{530}= -4.58022466 \pm 1.5 \cdot 10^{-3} \) | \(a_{531}= +0.48798166 \pm 4.7 \cdot 10^{-3} \) |
\(a_{532}= -0.11506457 \pm 5.0 \cdot 10^{-4} \) | \(a_{533}= +0.58418959 \pm 4.5 \cdot 10^{-3} \) | \(a_{534}= -0.22232302 \pm 5.1 \cdot 10^{-3} \) |
\(a_{535}= +3.13515645 \pm 1.9 \cdot 10^{-3} \) | \(a_{536}= +1.15451929 \pm 4.5 \cdot 10^{-3} \) | \(a_{537}= +0.83055175 \pm 4.6 \cdot 10^{-3} \) |
\(a_{538}= +0.81784103 \pm 1.5 \cdot 10^{-3} \) | \(a_{539}= +0.04287578 \pm 3.2 \cdot 10^{-3} \) | \(a_{540}= +0.54360841 \pm 8.5 \cdot 10^{-3} \) |
\(a_{541}= -1.37144267 \pm 2.3 \cdot 10^{-3} \) | \(a_{542}= +0.24373449 \pm 3.5 \cdot 10^{-3} \) | \(a_{543}= +0.51680080 \pm 5.5 \cdot 10^{-3} \) |
\(a_{544}= -0.67897044 \pm 2.9 \cdot 10^{-3} \) | \(a_{545}= +0.01397797 \pm 3.8 \cdot 10^{-3} \) | \(a_{546}= +0.33611492 \pm 9.0 \cdot 10^{-3} \) |
\(a_{547}= -1.93517543 \pm 3.7 \cdot 10^{-3} \) | \(a_{548}= +2.29114248 \pm 5.6 \cdot 10^{-3} \) | \(a_{549}= -0.29418784 \pm 3.8 \cdot 10^{-3} \) |
\(a_{550}= -0.24861652 \pm 1.0 \cdot 10^{-3} \) | \(a_{551}= -0.08604311 \pm 2.5 \cdot 10^{-3} \) | \(a_{552}= -0.12461548 \pm 1.0 \cdot 10^{-2} \) |
\(a_{553}= -0.16657125 \pm 2.7 \cdot 10^{-3} \) | \(a_{554}= -0.84116359 \pm 2.0 \cdot 10^{-3} \) | \(a_{555}= -0.57087987 \pm 7.4 \cdot 10^{-3} \) |
\(a_{556}= +0.51797893 \pm 3.6 \cdot 10^{-3} \) | \(a_{557}= +0.13084101 \pm 4.2 \cdot 10^{-3} \) | \(a_{558}= +0.35566612 \pm 5.8 \cdot 10^{-3} \) |
\(a_{559}= -0.50522075 \pm 2.3 \cdot 10^{-3} \) | \(a_{560}= +0.19506842 \pm 7.7 \cdot 10^{-4} \) | \(a_{561}= -0.02251025 \pm 5.8 \cdot 10^{-3} \) |
\(a_{562}= -0.97871949 \pm 1.9 \cdot 10^{-3} \) | \(a_{563}= +1.64971387 \pm 7.3 \cdot 10^{-3} \) | \(a_{564}= -1.52910199 \pm 1.0 \cdot 10^{-2} \) |
\(a_{565}= +1.21788803 \pm 1.9 \cdot 10^{-3} \) | \(a_{566}= -0.30355831 \pm 2.3 \cdot 10^{-3} \) | \(a_{567}= -0.06514739 \pm 3.0 \cdot 10^{-3} \) |
\(a_{568}= +0.91922136 \pm 3.5 \cdot 10^{-3} \) | \(a_{569}= -0.86729669 \pm 4.1 \cdot 10^{-3} \) | \(a_{570}= +0.21648386 \pm 8.3 \cdot 10^{-3} \) |
\(a_{571}= -0.52268664 \pm 4.8 \cdot 10^{-3} \) | \(a_{572}= +0.06251839 \pm 1.8 \cdot 10^{-3} \) | \(a_{573}= -0.10492323 \pm 3.8 \cdot 10^{-3} \) |
\(a_{574}= +0.87418656 \pm 1.8 \cdot 10^{-3} \) | \(a_{575}= -0.60684535 \pm 3.8 \cdot 10^{-3} \) | \(a_{576}= -0.54352550 \pm 3.6 \cdot 10^{-3} \) |
\(a_{577}= +0.45516382 \pm 5.2 \cdot 10^{-3} \) | \(a_{578}= -1.02502828 \pm 3.3 \cdot 10^{-3} \) | \(a_{579}= +0.75533614 \pm 6.4 \cdot 10^{-3} \) |
\(a_{580}= -1.89989227 \pm 4.5 \cdot 10^{-3} \) | \(a_{581}= -0.10619250 \pm 3.9 \cdot 10^{-3} \) | \(a_{582}= +0.53459602 \pm 8.3 \cdot 10^{-3} \) |
\(a_{583}= +0.10209809 \pm 1.8 \cdot 10^{-3} \) | \(a_{584}= -0.25097893 \pm 1.1 \cdot 10^{-3} \) | \(a_{585}= -0.38282382 \pm 6.9 \cdot 10^{-3} \) |
\(a_{586}= +1.36818937 \pm 2.3 \cdot 10^{-3} \) | \(a_{587}= +0.52902661 \pm 5.3 \cdot 10^{-3} \) | \(a_{588}= -0.58121460 \pm 9.9 \cdot 10^{-3} \) |
\(a_{589}= +0.08574506 \pm 1.0 \cdot 10^{-3} \) | \(a_{590}= +4.29097252 \pm 1.8 \cdot 10^{-3} \) | \(a_{591}= +0.55581319 \pm 9.4 \cdot 10^{-3} \) |
\(a_{592}= +0.09703099 \pm 2.6 \cdot 10^{-3} \) | \(a_{593}= -0.76914405 \pm 5.3 \cdot 10^{-3} \) | \(a_{594}= -0.02001657 \pm 6.0 \cdot 10^{-3} \) |
\(a_{595}= -0.64422833 \pm 9.3 \cdot 10^{-4} \) | \(a_{596}= -1.86097861 \pm 3.6 \cdot 10^{-3} \) | \(a_{597}= -0.15389173 \pm 3.6 \cdot 10^{-3} \) |
\(a_{598}= +0.25207430 \pm 1.3 \cdot 10^{-3} \) | \(a_{599}= -0.29141214 \pm 2.1 \cdot 10^{-3} \) | \(a_{600}= +1.17330424 \pm 6.3 \cdot 10^{-3} \) |
\(a_{601}= +0.23267547 \pm 3.2 \cdot 10^{-3} \) | \(a_{602}= -0.75601688 \pm 3.1 \cdot 10^{-3} \) | \(a_{603}= +0.45265468 \pm 8.3 \cdot 10^{-3} \) |
\(a_{604}= +0.54859121 \pm 6.3 \cdot 10^{-3} \) | \(a_{605}= -1.83342520 \pm 2.2 \cdot 10^{-3} \) | \(a_{606}= +0.23959023 \pm 5.7 \cdot 10^{-3} \) |
\(a_{607}= -0.68270617 \pm 8.0 \cdot 10^{-3} \) | \(a_{608}= -0.14555493 \pm 1.5 \cdot 10^{-3} \) | \(a_{609}= +0.22768785 \pm 1.0 \cdot 10^{-2} \) |
\(a_{610}= -2.58688396 \pm 1.8 \cdot 10^{-3} \) | \(a_{611}= +1.07683521 \pm 3.6 \cdot 10^{-3} \) | \(a_{612}= +0.30514394 \pm 7.3 \cdot 10^{-3} \) |
\(a_{613}= -0.15076849 \pm 4.5 \cdot 10^{-3} \) | \(a_{614}= -1.60402653 \pm 1.9 \cdot 10^{-3} \) | \(a_{615}= -0.99566969 \pm 1.0 \cdot 10^{-2} \) |
\(a_{616}= +0.03256974 \pm 1.9 \cdot 10^{-3} \) | \(a_{617}= +0.15440179 \pm 8.3 \cdot 10^{-3} \) | \(a_{618}= -0.62813282 \pm 6.6 \cdot 10^{-3} \) |
\(a_{619}= +1.36340260 \pm 3.4 \cdot 10^{-3} \) | \(a_{620}= +1.89331107 \pm 1.9 \cdot 10^{-3} \) | \(a_{621}= -0.04885824 \pm 7.4 \cdot 10^{-3} \) |
\(a_{622}= +0.51974206 \pm 3.2 \cdot 10^{-3} \) | \(a_{623}= +0.14183218 \pm 2.8 \cdot 10^{-3} \) | \(a_{624}= +0.06506759 \pm 7.2 \cdot 10^{-3} \) |
\(a_{625}= +2.32335757 \pm 2.0 \cdot 10^{-3} \) | \(a_{626}= +1.11598444 \pm 3.3 \cdot 10^{-3} \) | \(a_{627}= -0.00482566 \pm 5.3 \cdot 10^{-3} \) |
\(a_{628}= +2.00949245 \pm 6.7 \cdot 10^{-3} \) | \(a_{629}= -0.32045224 \pm 3.9 \cdot 10^{-3} \) | \(a_{630}= -0.57286102 \pm 9.4 \cdot 10^{-3} \) |
\(a_{631}= -0.54918512 \pm 4.9 \cdot 10^{-3} \) | \(a_{632}= +0.24153130 \pm 2.7 \cdot 10^{-3} \) | \(a_{633}= -0.60417473 \pm 2.1 \cdot 10^{-3} \) |
\(a_{634}= -2.16707414 \pm 1.4 \cdot 10^{-3} \) | \(a_{635}= -0.67036940 \pm 3.6 \cdot 10^{-3} \) | \(a_{636}= -1.38401903 \pm 7.8 \cdot 10^{-3} \) |
\(a_{637}= +0.40930713 \pm 3.0 \cdot 10^{-3} \) | \(a_{638}= +0.06995723 \pm 1.7 \cdot 10^{-3} \) | \(a_{639}= +0.36040096 \pm 5.5 \cdot 10^{-3} \) |
\(a_{640}= -2.68434372 \pm 3.2 \cdot 10^{-3} \) | \(a_{641}= +1.72980374 \pm 2.0 \cdot 10^{-3} \) | \(a_{642}= +1.56490240 \pm 5.4 \cdot 10^{-3} \) |
\(a_{643}= -0.71256563 \pm 5.1 \cdot 10^{-3} \) | \(a_{644}= +0.22835268 \pm 1.6 \cdot 10^{-3} \) | \(a_{645}= +0.86107831 \pm 8.4 \cdot 10^{-3} \) |
\(a_{646}= +0.12151898 \pm 7.5 \cdot 10^{-4} \) | \(a_{647}= +0.01376871 \pm 4.0 \cdot 10^{-3} \) | \(a_{648}= +0.09446489 \pm 3.2 \cdot 10^{-3} \) |
\(a_{649}= -0.09565035 \pm 3.1 \cdot 10^{-3} \) | \(a_{650}= -2.37337970 \pm 6.1 \cdot 10^{-4} \) | \(a_{651}= -0.22689914 \pm 6.1 \cdot 10^{-3} \) |
\(a_{652}= +1.43631456 \pm 9.9 \cdot 10^{-4} \) | \(a_{653}= +0.20094142 \pm 3.7 \cdot 10^{-3} \) | \(a_{654}= +0.00697705 \pm 8.1 \cdot 10^{-3} \) |
\(a_{655}= -2.03225221 \pm 2.1 \cdot 10^{-3} \) | \(a_{656}= +0.16923143 \pm 5.3 \cdot 10^{-3} \) | \(a_{657}= -0.09840181 \pm 2.3 \cdot 10^{-3} \) |
\(a_{658}= +1.61138591 \pm 1.8 \cdot 10^{-3} \) | \(a_{659}= +1.00753131 \pm 4.8 \cdot 10^{-3} \) | \(a_{660}= -0.10655387 \pm 1.1 \cdot 10^{-2} \) |
\(a_{661}= -1.16895472 \pm 5.3 \cdot 10^{-3} \) | \(a_{662}= -0.19963940 \pm 2.3 \cdot 10^{-3} \) | \(a_{663}= -0.21489066 \pm 5.7 \cdot 10^{-3} \) |
\(a_{664}= +0.15398103 \pm 3.8 \cdot 10^{-3} \) | \(a_{665}= -0.13810706 \pm 4.3 \cdot 10^{-4} \) | \(a_{666}= -0.28495269 \pm 6.4 \cdot 10^{-3} \) |
\(a_{667}= +0.17075782 \pm 1.0 \cdot 10^{-2} \) | \(a_{668}= +0.64411034 \pm 3.3 \cdot 10^{-3} \) | \(a_{669}= +0.03784795 \pm 1.9 \cdot 10^{-3} \) |
\(a_{670}= +3.98033156 \pm 2.0 \cdot 10^{-3} \) | \(a_{671}= +0.05766440 \pm 2.5 \cdot 10^{-3} \) | \(a_{672}= +0.38516842 \pm 7.4 \cdot 10^{-3} \) |
\(a_{673}= -1.05218112 \pm 4.0 \cdot 10^{-3} \) | \(a_{674}= -2.15969552 \pm 2.6 \cdot 10^{-3} \) | \(a_{675}= +0.46001974 \pm 3.0 \cdot 10^{-3} \) |
\(a_{676}= -0.93725380 \pm 3.1 \cdot 10^{-3} \) | \(a_{677}= -1.57703611 \pm 3.7 \cdot 10^{-3} \) | \(a_{678}= +0.60790456 \pm 5.7 \cdot 10^{-3} \) |
\(a_{679}= -0.34104844 \pm 3.6 \cdot 10^{-3} \) | \(a_{680}= +0.93414263 \pm 9.0 \cdot 10^{-4} \) | \(a_{681}= -0.98579270 \pm 7.2 \cdot 10^{-3} \) |
\(a_{682}= -0.06971489 \pm 9.4 \cdot 10^{-4} \) | \(a_{683}= -0.74548385 \pm 8.5 \cdot 10^{-3} \) | \(a_{684}= +0.06541552 \pm 6.8 \cdot 10^{-3} \) |
\(a_{685}= +2.74995993 \pm 4.2 \cdot 10^{-3} \) | \(a_{686}= +1.54585127 \pm 1.7 \cdot 10^{-3} \) | \(a_{687}= +0.60988597 \pm 3.1 \cdot 10^{-3} \) |
\(a_{688}= -0.14635528 \pm 2.9 \cdot 10^{-3} \) | \(a_{689}= +0.97466385 \pm 1.7 \cdot 10^{-3} \) | \(a_{690}= -0.42962548 \pm 1.3 \cdot 10^{-2} \) |
\(a_{691}= +0.33292300 \pm 6.8 \cdot 10^{-3} \) | \(a_{692}= -2.87350731 \pm 2.8 \cdot 10^{-3} \) | \(a_{693}= +0.01276968 \pm 6.4 \cdot 10^{-3} \) |
\(a_{694}= -1.10715320 \pm 2.1 \cdot 10^{-3} \) | \(a_{695}= +0.62170787 \pm 2.6 \cdot 10^{-3} \) | \(a_{696}= -0.33015146 \pm 1.0 \cdot 10^{-2} \) |
\(a_{697}= -0.55889969 \pm 2.0 \cdot 10^{-3} \) | \(a_{698}= +0.04494598 \pm 3.0 \cdot 10^{-3} \) | \(a_{699}= +0.41749358 \pm 5.2 \cdot 10^{-3} \) |
\(a_{700}= -2.15003129 \pm 1.4 \cdot 10^{-3} \) | \(a_{701}= +1.01965036 \pm 4.8 \cdot 10^{-3} \) | \(a_{702}= -0.19108518 \pm 5.9 \cdot 10^{-3} \) |
\(a_{703}= -0.06869725 \pm 1.2 \cdot 10^{-3} \) | \(a_{704}= +0.10653762 \pm 2.2 \cdot 10^{-3} \) | \(a_{705}= -1.83531545 \pm 9.5 \cdot 10^{-3} \) |
\(a_{706}= -2.09902736 \pm 3.5 \cdot 10^{-3} \) | \(a_{707}= -0.15284789 \pm 2.8 \cdot 10^{-3} \) | \(a_{708}= +1.29661492 \pm 9.5 \cdot 10^{-3} \) |
\(a_{709}= +0.81548021 \pm 2.3 \cdot 10^{-3} \) | \(a_{710}= +3.16911623 \pm 1.8 \cdot 10^{-3} \) | \(a_{711}= +0.09469766 \pm 4.1 \cdot 10^{-3} \) |
\(a_{712}= -0.20565921 \pm 2.1 \cdot 10^{-3} \) | \(a_{713}= -0.17016632 \pm 4.2 \cdot 10^{-3} \) | \(a_{714}= -0.32156432 \pm 8.1 \cdot 10^{-3} \) |
\(a_{715}= +0.07503814 \pm 1.4 \cdot 10^{-3} \) | \(a_{716}= +2.20685711 \pm 4.3 \cdot 10^{-3} \) | \(a_{717}= +0.94924342 \pm 4.4 \cdot 10^{-3} \) |
\(a_{718}= +0.86945387 \pm 3.2 \cdot 10^{-3} \) | \(a_{719}= -0.76519802 \pm 2.1 \cdot 10^{-3} \) | \(a_{720}= -0.11089863 \pm 7.6 \cdot 10^{-3} \) |
\(a_{721}= +0.40072076 \pm 2.3 \cdot 10^{-3} \) | \(a_{722}= -1.56582740 \pm 2.4 \cdot 10^{-3} \) | \(a_{723}= +0.81777997 \pm 4.4 \cdot 10^{-3} \) |
\(a_{724}= +1.37319020 \pm 5.0 \cdot 10^{-3} \) | \(a_{725}= -1.60775280 \pm 3.7 \cdot 10^{-3} \) | \(a_{726}= -0.91514779 \pm 5.9 \cdot 10^{-3} \) |
\(a_{727}= +1.41045204 \pm 2.2 \cdot 10^{-3} \) | \(a_{728}= +0.31092205 \pm 1.0 \cdot 10^{-3} \) | \(a_{729}= +0.03703704 \pm 1.3 \cdot 10^{-6} \) |
\(a_{730}= -0.86527731 \pm 1.6 \cdot 10^{-3} \) | \(a_{731}= +0.48334946 \pm 3.0 \cdot 10^{-3} \) | \(a_{732}= -0.78168581 \pm 8.7 \cdot 10^{-3} \) |
\(a_{733}= -0.29740603 \pm 9.4 \cdot 10^{-3} \) | \(a_{734}= -1.52268712 \pm 2.0 \cdot 10^{-3} \) | \(a_{735}= -0.69760693 \pm 8.8 \cdot 10^{-3} \) |
\(a_{736}= +0.28886268 \pm 5.4 \cdot 10^{-3} \) | \(a_{737}= -0.08872583 \pm 5.1 \cdot 10^{-3} \) | \(a_{738}= -0.49698505 \pm 9.8 \cdot 10^{-3} \) |
\(a_{739}= -0.50081085 \pm 5.6 \cdot 10^{-3} \) | \(a_{740}= -1.51688357 \pm 3.2 \cdot 10^{-3} \) | \(a_{741}= -0.04606739 \pm 5.2 \cdot 10^{-3} \) |
\(a_{742}= +1.45849576 \pm 1.3 \cdot 10^{-3} \) | \(a_{743}= -0.14903587 \pm 7.7 \cdot 10^{-3} \) | \(a_{744}= +0.32900782 \pm 6.4 \cdot 10^{-3} \) |
\(a_{745}= -2.23365271 \pm 2.6 \cdot 10^{-3} \) | \(a_{746}= +1.97722569 \pm 1.8 \cdot 10^{-3} \) | \(a_{747}= +0.06037165 \pm 5.8 \cdot 10^{-3} \) |
\(a_{748}= -0.05981193 \pm 1.5 \cdot 10^{-3} \) | \(a_{749}= -0.99833801 \pm 1.3 \cdot 10^{-3} \) | \(a_{750}= +2.35282202 \pm 8.0 \cdot 10^{-3} \) |
\(a_{751}= +0.04661542 \pm 4.4 \cdot 10^{-3} \) | \(a_{752}= +0.31194387 \pm 4.5 \cdot 10^{-3} \) | \(a_{753}= +0.40782367 \pm 6.3 \cdot 10^{-3} \) |
\(a_{754}= +0.66783597 \pm 1.3 \cdot 10^{-3} \) | \(a_{755}= +0.65845047 \pm 4.8 \cdot 10^{-3} \) | \(a_{756}= -0.17310298 \pm 7.9 \cdot 10^{-3} \) |
\(a_{757}= +0.29609535 \pm 1.5 \cdot 10^{-3} \) | \(a_{758}= -1.14274121 \pm 1.4 \cdot 10^{-3} \) | \(a_{759}= +0.00957681 \pm 1.0 \cdot 10^{-2} \) |
\(a_{760}= +0.20025771 \pm 9.4 \cdot 10^{-4} \) | \(a_{761}= +1.72178586 \pm 8.4 \cdot 10^{-3} \) | \(a_{762}= -0.33461255 \pm 8.7 \cdot 10^{-3} \) |
\(a_{763}= -0.00445105 \pm 2.1 \cdot 10^{-3} \) | \(a_{764}= -0.27879126 \pm 3.1 \cdot 10^{-3} \) | \(a_{765}= +0.36625117 \pm 6.1 \cdot 10^{-3} \) |
\(a_{766}= -1.54387918 \pm 1.6 \cdot 10^{-3} \) | \(a_{767}= -0.91311150 \pm 2.4 \cdot 10^{-3} \) | \(a_{768}= -0.39846702 \pm 2.6 \cdot 10^{-3} \) |
\(a_{769}= -0.41183057 \pm 4.5 \cdot 10^{-3} \) | \(a_{770}= +0.11228774 \pm 6.6 \cdot 10^{-4} \) | \(a_{771}= -0.19100466 \pm 5.8 \cdot 10^{-3} \) |
\(a_{772}= +2.00700190 \pm 6.0 \cdot 10^{-3} \) | \(a_{773}= -0.69937937 \pm 3.9 \cdot 10^{-3} \) | \(a_{774}= +0.42980423 \pm 7.4 \cdot 10^{-3} \) |
\(a_{775}= +1.60218358 \pm 1.8 \cdot 10^{-3} \) | \(a_{776}= +0.49452636 \pm 3.6 \cdot 10^{-3} \) | \(a_{777}= +0.18178712 \pm 6.7 \cdot 10^{-3} \) |
\(a_{778}= -2.70490543 \pm 1.4 \cdot 10^{-3} \) | \(a_{779}= -0.11981465 \pm 2.6 \cdot 10^{-3} \) | \(a_{780}= -1.01720029 \pm 1.1 \cdot 10^{-2} \) |
\(a_{781}= -0.07064298 \pm 3.5 \cdot 10^{-3} \) | \(a_{782}= -0.24116186 \pm 9.8 \cdot 10^{-4} \) | \(a_{783}= -0.12944314 \pm 6.9 \cdot 10^{-3} \) |
\(a_{784}= +0.11857046 \pm 3.6 \cdot 10^{-3} \) | \(a_{785}= +2.41190749 \pm 5.2 \cdot 10^{-3} \) | \(a_{786}= -1.01439160 \pm 6.2 \cdot 10^{-3} \) |
\(a_{787}= -1.28886414 \pm 8.1 \cdot 10^{-3} \) | \(a_{788}= +1.47684991 \pm 8.7 \cdot 10^{-3} \) | \(a_{789}= +0.61501873 \pm 4.1 \cdot 10^{-3} \) |
\(a_{790}= +0.83270558 \pm 1.7 \cdot 10^{-3} \) | \(a_{791}= -0.38781603 \pm 3.6 \cdot 10^{-3} \) | \(a_{792}= -0.01851627 \pm 6.6 \cdot 10^{-3} \) |
\(a_{793}= +0.55048441 \pm 2.4 \cdot 10^{-3} \) | \(a_{794}= +0.35072553 \pm 2.4 \cdot 10^{-3} \) | \(a_{795}= -1.66117861 \pm 6.6 \cdot 10^{-3} \) |
\(a_{796}= -0.40890537 \pm 3.5 \cdot 10^{-3} \) | \(a_{797}= -1.20562473 \pm 1.9 \cdot 10^{-3} \) | \(a_{798}= -0.06893566 \pm 7.7 \cdot 10^{-3} \) |
\(a_{799}= -1.03021841 \pm 1.8 \cdot 10^{-3} \) | \(a_{800}= -2.71975695 \pm 2.4 \cdot 10^{-3} \) | \(a_{801}= -0.08063322 \pm 2.4 \cdot 10^{-3} \) |
\(a_{802}= +2.24223879 \pm 2.2 \cdot 10^{-3} \) | \(a_{803}= +0.01928795 \pm 1.4 \cdot 10^{-3} \) | \(a_{804}= +1.20274769 \pm 1.3 \cdot 10^{-2} \) |
\(a_{805}= +0.27408192 \pm 1.2 \cdot 10^{-3} \) | \(a_{806}= -0.66552260 \pm 6.3 \cdot 10^{-4} \) | \(a_{807}= +0.29661865 \pm 3.6 \cdot 10^{-3} \) |
\(a_{808}= +0.22163218 \pm 2.4 \cdot 10^{-3} \) | \(a_{809}= +1.30407610 \pm 4.7 \cdot 10^{-3} \) | \(a_{810}= +0.32567804 \pm 6.3 \cdot 10^{-3} \) |
\(a_{811}= -0.06246643 \pm 2.0 \cdot 10^{-3} \) | \(a_{812}= +0.60498884 \pm 2.1 \cdot 10^{-3} \) | \(a_{813}= +0.08839883 \pm 4.9 \cdot 10^{-3} \) |
\(a_{814}= +0.05585420 \pm 2.0 \cdot 10^{-3} \) | \(a_{815}= +1.72394669 \pm 8.6 \cdot 10^{-4} \) | \(a_{816}= -0.06225077 \pm 6.4 \cdot 10^{-3} \) |
\(a_{817}= +0.10361850 \pm 1.4 \cdot 10^{-3} \) | \(a_{818}= +0.84218197 \pm 2.6 \cdot 10^{-3} \) | \(a_{819}= +0.12190383 \pm 6.3 \cdot 10^{-3} \) |
\(a_{820}= -2.64559160 \pm 4.4 \cdot 10^{-3} \) | \(a_{821}= -0.40690723 \pm 5.9 \cdot 10^{-3} \) | \(a_{822}= +1.37263290 \pm 8.7 \cdot 10^{-3} \) |
\(a_{823}= +1.07990104 \pm 2.5 \cdot 10^{-3} \) | \(a_{824}= -0.58105228 \pm 2.4 \cdot 10^{-3} \) | \(a_{825}= -0.09016948 \pm 6.4 \cdot 10^{-3} \) |
\(a_{826}= -1.36638827 \pm 3.6 \cdot 10^{-3} \) | \(a_{827}= -1.42276590 \pm 3.8 \cdot 10^{-3} \) | \(a_{828}= -0.12982111 \pm 1.2 \cdot 10^{-2} \) |
\(a_{829}= -0.28695105 \pm 5.8 \cdot 10^{-3} \) | \(a_{830}= +0.53086645 \pm 1.2 \cdot 10^{-3} \) | \(a_{831}= -0.30507739 \pm 2.6 \cdot 10^{-3} \) |
\(a_{832}= +1.01704515 \pm 1.9 \cdot 10^{-3} \) | \(a_{833}= -0.39158800 \pm 2.0 \cdot 10^{-3} \) | \(a_{834}= +0.31032331 \pm 6.7 \cdot 10^{-3} \) |
\(a_{835}= +0.77309799 \pm 2.5 \cdot 10^{-3} \) | \(a_{836}= -0.01282224 \pm 1.1 \cdot 10^{-3} \) | \(a_{837}= +0.12899475 \pm 3.1 \cdot 10^{-3} \) |
\(a_{838}= +0.44437063 \pm 1.2 \cdot 10^{-3} \) | \(a_{839}= -0.17352798 \pm 2.6 \cdot 10^{-3} \) | \(a_{840}= -0.52992328 \pm 1.0 \cdot 10^{-2} \) |
\(a_{841}= -0.54760077 \pm 4.3 \cdot 10^{-3} \) | \(a_{842}= -2.56396096 \pm 3.8 \cdot 10^{-3} \) | \(a_{843}= -0.35496684 \pm 5.6 \cdot 10^{-3} \) |
\(a_{844}= -1.60535126 \pm 2.2 \cdot 10^{-3} \) | \(a_{845}= -1.12494549 \pm 2.4 \cdot 10^{-3} \) | \(a_{846}= -0.91609130 \pm 8.5 \cdot 10^{-3} \) |
\(a_{847}= +0.58382352 \pm 1.6 \cdot 10^{-3} \) | \(a_{848}= +0.28234628 \pm 2.1 \cdot 10^{-3} \) | \(a_{849}= -0.11009604 \pm 7.8 \cdot 10^{-3} \) |
\(a_{850}= +2.27063476 \pm 8.3 \cdot 10^{-4} \) | \(a_{851}= +0.13633391 \pm 4.1 \cdot 10^{-3} \) | \(a_{852}= +0.95762053 \pm 1.0 \cdot 10^{-2} \) |
\(a_{853}= +1.83993191 \pm 6.4 \cdot 10^{-3} \) | \(a_{854}= +0.82374983 \pm 4.6 \cdot 10^{-4} \) | \(a_{855}= +0.07851544 \pm 5.6 \cdot 10^{-3} \) |
\(a_{856}= +1.44760803 \pm 1.5 \cdot 10^{-3} \) | \(a_{857}= -0.51403891 \pm 3.6 \cdot 10^{-3} \) | \(a_{858}= +0.03745502 \pm 9.3 \cdot 10^{-3} \) |
\(a_{859}= -0.04047890 \pm 4.1 \cdot 10^{-3} \) | \(a_{860}= +2.28796917 \pm 2.9 \cdot 10^{-3} \) | \(a_{861}= +0.31705432 \pm 1.0 \cdot 10^{-2} \) |
\(a_{862}= -0.46255791 \pm 2.4 \cdot 10^{-3} \) | \(a_{863}= +1.59894610 \pm 6.0 \cdot 10^{-3} \) | \(a_{864}= -0.21897265 \pm 4.3 \cdot 10^{-3} \) |
\(a_{865}= -3.44894743 \pm 2.2 \cdot 10^{-3} \) | \(a_{866}= +1.33217978 \pm 3.3 \cdot 10^{-3} \) | \(a_{867}= -0.37176235 \pm 5.1 \cdot 10^{-3} \) |
\(a_{868}= -0.60289317 \pm 1.2 \cdot 10^{-3} \) | \(a_{869}= -0.01856190 \pm 2.6 \cdot 10^{-3} \) | \(a_{870}= -1.13823328 \pm 1.3 \cdot 10^{-2} \) |
\(a_{871}= -0.84700764 \pm 5.3 \cdot 10^{-3} \) | \(a_{872}= +0.00645410 \pm 3.0 \cdot 10^{-3} \) | \(a_{873}= +0.19388994 \pm 5.6 \cdot 10^{-3} \) |
\(a_{874}= -0.05169930 \pm 8.8 \cdot 10^{-4} \) | \(a_{875}= -1.50099563 \pm 2.1 \cdot 10^{-3} \) | \(a_{876}= -0.26146321 \pm 7.2 \cdot 10^{-3} \) |
\(a_{877}= -0.91317892 \pm 3.2 \cdot 10^{-3} \) | \(a_{878}= -0.22451480 \pm 2.3 \cdot 10^{-3} \) | \(a_{879}= +0.49622171 \pm 8.4 \cdot 10^{-3} \) |
\(a_{880}= +0.02173748 \pm 1.9 \cdot 10^{-3} \) | \(a_{881}= +1.68560998 \pm 8.0 \cdot 10^{-3} \) | \(a_{882}= -0.34820806 \pm 7.8 \cdot 10^{-3} \) |
\(a_{883}= +0.42292150 \pm 1.3 \cdot 10^{-3} \) | \(a_{884}= -0.57098547 \pm 1.1 \cdot 10^{-3} \) | \(a_{885}= +1.55627121 \pm 8.4 \cdot 10^{-3} \) |
\(a_{886}= +0.20174756 \pm 4.1 \cdot 10^{-3} \) | \(a_{887}= -0.68967406 \pm 6.7 \cdot 10^{-3} \) | \(a_{888}= -0.26359459 \pm 7.0 \cdot 10^{-3} \) |
\(a_{889}= +0.21346790 \pm 5.2 \cdot 10^{-3} \) | \(a_{890}= -0.70903262 \pm 1.4 \cdot 10^{-3} \) | \(a_{891}= -0.00725971 \pm 3.3 \cdot 10^{-3} \) |
\(a_{892}= +0.10056571 \pm 1.9 \cdot 10^{-3} \) | \(a_{893}= -0.22085405 \pm 2.3 \cdot 10^{-3} \) | \(a_{894}= -1.11491995 \pm 7.2 \cdot 10^{-3} \) |
\(a_{895}= +2.64879582 \pm 3.2 \cdot 10^{-3} \) | \(a_{896}= +0.85478426 \pm 1.6 \cdot 10^{-3} \) | \(a_{897}= +0.09142356 \pm 1.0 \cdot 10^{-2} \) |
\(a_{898}= -2.96863132 \pm 3.5 \cdot 10^{-3} \) | \(a_{899}= -0.45083213 \pm 4.0 \cdot 10^{-3} \) | \(a_{900}= +1.22231736 \pm 7.9 \cdot 10^{-3} \) |
\(a_{901}= -0.93247010 \pm 1.7 \cdot 10^{-3} \) | \(a_{902}= +0.09741513 \pm 1.4 \cdot 10^{-3} \) | \(a_{903}= -0.27419595 \pm 7.7 \cdot 10^{-3} \) |
\(a_{904}= +0.56234019 \pm 2.7 \cdot 10^{-3} \) | \(a_{905}= +1.64818123 \pm 3.9 \cdot 10^{-3} \) | \(a_{906}= +0.32866325 \pm 9.6 \cdot 10^{-3} \) |
\(a_{907}= +0.99540375 \pm 9.5 \cdot 10^{-3} \) | \(a_{908}= -2.61934747 \pm 6.9 \cdot 10^{-3} \) | \(a_{909}= +0.08689577 \pm 3.1 \cdot 10^{-3} \) |
\(a_{910}= +1.07193779 \pm 3.9 \cdot 10^{-4} \) | \(a_{911}= -0.42518154 \pm 6.7 \cdot 10^{-3} \) | \(a_{912}= -0.01334507 \pm 5.9 \cdot 10^{-3} \) |
\(a_{913}= -0.01183358 \pm 3.6 \cdot 10^{-3} \) | \(a_{914}= -0.76409945 \pm 3.0 \cdot 10^{-3} \) | \(a_{915}= -0.93822391 \pm 7.5 \cdot 10^{-3} \) |
\(a_{916}= +1.62052657 \pm 2.5 \cdot 10^{-3} \) | \(a_{917}= +0.64713665 \pm 3.4 \cdot 10^{-3} \) | \(a_{918}= +0.18281299 \pm 5.1 \cdot 10^{-3} \) |
\(a_{919}= +1.66437012 \pm 3.6 \cdot 10^{-3} \) | \(a_{920}= -0.39742370 \pm 2.7 \cdot 10^{-3} \) | \(a_{921}= -0.58175630 \pm 2.4 \cdot 10^{-3} \) |
\(a_{922}= -0.66561544 \pm 1.2 \cdot 10^{-3} \) | \(a_{923}= -0.67438243 \pm 3.3 \cdot 10^{-3} \) | \(a_{924}= +0.03393029 \pm 1.1 \cdot 10^{-2} \) |
\(a_{925}= -1.28363795 \pm 1.7 \cdot 10^{-3} \) | \(a_{926}= +2.13995826 \pm 2.9 \cdot 10^{-3} \) | \(a_{927}= -0.22781433 \pm 3.9 \cdot 10^{-3} \) |
\(a_{928}= +0.76530170 \pm 5.4 \cdot 10^{-3} \) | \(a_{929}= -1.32136082 \pm 5.0 \cdot 10^{-3} \) | \(a_{930}= +1.13429046 \pm 9.4 \cdot 10^{-3} \) |
\(a_{931}= -0.08394705 \pm 1.8 \cdot 10^{-3} \) | \(a_{932}= +1.10932122 \pm 4.8 \cdot 10^{-3} \) | \(a_{933}= +0.18850263 \pm 7.8 \cdot 10^{-3} \) |
\(a_{934}= +1.57993902 \pm 3.0 \cdot 10^{-3} \) | \(a_{935}= -0.07178969 \pm 1.1 \cdot 10^{-3} \) | \(a_{936}= -0.17676274 \pm 6.5 \cdot 10^{-3} \) |
\(a_{937}= -1.25674077 \pm 3.6 \cdot 10^{-3} \) | \(a_{938}= -1.26746986 \pm 1.5 \cdot 10^{-3} \) | \(a_{939}= +0.40475077 \pm 3.3 \cdot 10^{-3} \) |
\(a_{940}= -4.87661238 \pm 3.6 \cdot 10^{-3} \) | \(a_{941}= -0.80138297 \pm 3.9 \cdot 10^{-3} \) | \(a_{942}= +1.20389520 \pm 1.0 \cdot 10^{-2} \) |
\(a_{943}= +0.23777952 \pm 1.0 \cdot 10^{-2} \) | \(a_{944}= -0.26451544 \pm 2.3 \cdot 10^{-3} \) | \(a_{945}= -0.20776808 \pm 6.7 \cdot 10^{-3} \) |
\(a_{946}= -0.08424687 \pm 2.2 \cdot 10^{-3} \) | \(a_{947}= +0.01237323 \pm 2.6 \cdot 10^{-3} \) | \(a_{948}= +0.25162093 \pm 8.9 \cdot 10^{-3} \) |
\(a_{949}= +0.18412951 \pm 1.4 \cdot 10^{-3} \) | \(a_{950}= +0.48676948 \pm 5.5 \cdot 10^{-4} \) | \(a_{951}= -0.78596521 \pm 3.3 \cdot 10^{-3} \) |
\(a_{952}= -0.29746206 \pm 1.0 \cdot 10^{-3} \) | \(a_{953}= +1.75968208 \pm 9.2 \cdot 10^{-3} \) | \(a_{954}= -0.82917151 \pm 5.6 \cdot 10^{-3} \) |
\(a_{955}= -0.33462118 \pm 2.2 \cdot 10^{-3} \) | \(a_{956}= +2.52223246 \pm 3.9 \cdot 10^{-3} \) | \(a_{957}= +0.02537243 \pm 1.0 \cdot 10^{-2} \) |
\(a_{958}= +0.92157660 \pm 2.6 \cdot 10^{-3} \) | \(a_{959}= -0.87567864 \pm 2.9 \cdot 10^{-3} \) | \(a_{960}= -1.73341164 \pm 7.3 \cdot 10^{-3} \) |
\(a_{961}= -0.55072954 \pm 3.5 \cdot 10^{-3} \) | \(a_{962}= +0.53320361 \pm 1.1 \cdot 10^{-3} \) | \(a_{963}= +0.56756657 \pm 2.7 \cdot 10^{-3} \) |
\(a_{964}= +2.17292125 \pm 3.6 \cdot 10^{-3} \) | \(a_{965}= +2.40891819 \pm 4.6 \cdot 10^{-3} \) | \(a_{966}= +0.13680703 \pm 1.3 \cdot 10^{-2} \) |
\(a_{967}= +0.13744631 \pm 9.3 \cdot 10^{-3} \) | \(a_{968}= -0.84655457 \pm 1.9 \cdot 10^{-3} \) | \(a_{969}= +0.04407311 \pm 4.4 \cdot 10^{-3} \) |
\(a_{970}= +1.70493373 \pm 1.1 \cdot 10^{-3} \) | \(a_{971}= -1.22621965 \pm 8.4 \cdot 10^{-3} \) | \(a_{972}= +0.09841102 \pm 4.8 \cdot 10^{-3} \) |
\(a_{973}= -0.19797245 \pm 4.1 \cdot 10^{-3} \) | \(a_{974}= -1.18578983 \pm 1.5 \cdot 10^{-3} \) | \(a_{975}= -0.86078913 \pm 6.3 \cdot 10^{-3} \) |
\(a_{976}= +0.15946752 \pm 3.1 \cdot 10^{-3} \) | \(a_{977}= +0.31085145 \pm 5.1 \cdot 10^{-3} \) | \(a_{978}= +0.86050197 \pm 3.6 \cdot 10^{-3} \) |
\(a_{979}= +0.01580509 \pm 1.6 \cdot 10^{-3} \) | \(a_{980}= -1.85360973 \pm 3.1 \cdot 10^{-3} \) | \(a_{981}= +0.00253047 \pm 5.4 \cdot 10^{-3} \) |
\(a_{982}= -2.60760275 \pm 1.6 \cdot 10^{-3} \) | \(a_{983}= +1.02944067 \pm 2.2 \cdot 10^{-3} \) | \(a_{984}= -0.45973445 \pm 1.0 \cdot 10^{-2} \) |
\(a_{985}= +1.77259953 \pm 6.5 \cdot 10^{-3} \) | \(a_{986}= -0.63892498 \pm 3.1 \cdot 10^{-3} \) | \(a_{987}= +0.58442544 \pm 8.9 \cdot 10^{-3} \) |
\(a_{988}= -0.12240555 \pm 1.3 \cdot 10^{-3} \) | \(a_{989}= -0.20563726 \pm 4.8 \cdot 10^{-3} \) | \(a_{990}= -0.06383686 \pm 9.7 \cdot 10^{-3} \) |
\(a_{991}= -1.51468916 \pm 6.2 \cdot 10^{-3} \) | \(a_{992}= -0.76265071 \pm 2.5 \cdot 10^{-3} \) | \(a_{993}= -0.07240621 \pm 3.1 \cdot 10^{-3} \) |
\(a_{994}= -1.00915194 \pm 2.3 \cdot 10^{-3} \) | \(a_{995}= -0.49079155 \pm 2.6 \cdot 10^{-3} \) | \(a_{996}= +0.16041337 \pm 1.0 \cdot 10^{-2} \) |
\(a_{997}= +0.49130388 \pm 7.5 \cdot 10^{-3} \) | \(a_{998}= -0.20255006 \pm 3.2 \cdot 10^{-3} \) | \(a_{999}= -0.10334806 \pm 3.7 \cdot 10^{-3} \) |
\(a_{1000}= +2.17647059 \pm 3.0 \cdot 10^{-3} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000