Maass form invariants
Level: | \( 3 \) |
Weight: | \( 0 \) |
Character: | 3.1 |
Symmetry: | odd |
Fricke sign: | $-1$ |
Spectral parameter: | \(19.1759646544262442089015364564 \pm 2 \cdot 10^{-4}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -0.79105220 \pm 2.8 \cdot 10^{-2} \) | \(a_{3}= +0.57735027 \pm 1.0 \cdot 10^{-8} \) |
\(a_{4}= -0.37423642 \pm 5.1 \cdot 10^{-2} \) | \(a_{5}= -1.37664488 \pm 3.9 \cdot 10^{-2} \) | \(a_{6}= -0.45671420 \pm 2.8 \cdot 10^{-2} \) |
\(a_{7}= -1.12032810 \pm 3.2 \cdot 10^{-2} \) | \(a_{8}= +1.08709274 \pm 3.4 \cdot 10^{-2} \) | \(a_{9}= +0.33333333 \pm 4.2 \cdot 10^{-8} \) |
\(a_{10}= +1.08899796 \pm 2.2 \cdot 10^{-2} \) | \(a_{11}= -1.71520147 \pm 3.5 \cdot 10^{-2} \) | \(a_{12}= -0.21606550 \pm 5.1 \cdot 10^{-2} \) |
\(a_{13}= -0.44729529 \pm 3.4 \cdot 10^{-2} \) | \(a_{14}= +0.88623801 \pm 2.2 \cdot 10^{-2} \) | \(a_{15}= -0.79480629 \pm 3.9 \cdot 10^{-2} \) |
\(a_{16}= -0.48571068 \pm 4.1 \cdot 10^{-2} \) | \(a_{17}= -0.42943391 \pm 2.6 \cdot 10^{-2} \) | \(a_{18}= -0.26368407 \pm 2.8 \cdot 10^{-2} \) |
\(a_{19}= -0.85596626 \pm 2.1 \cdot 10^{-2} \) | \(a_{20}= +0.51519065 \pm 3.6 \cdot 10^{-2} \) | \(a_{21}= -0.64682173 \pm 3.2 \cdot 10^{-2} \) |
\(a_{22}= +1.35681389 \pm 1.8 \cdot 10^{-2} \) | \(a_{23}= +0.71058831 \pm 7.8 \cdot 10^{-2} \) | \(a_{24}= +0.62763329 \pm 3.4 \cdot 10^{-2} \) |
\(a_{25}= +0.89515114 \pm 3.2 \cdot 10^{-2} \) | \(a_{26}= +0.35383392 \pm 1.2 \cdot 10^{-2} \) | \(a_{27}= +0.19245009 \pm 9.4 \cdot 10^{-8} \) |
\(a_{28}= +0.41926758 \pm 2.1 \cdot 10^{-2} \) | \(a_{29}= +1.04035634 \pm 7.4 \cdot 10^{-2} \) | \(a_{30}= +0.62873327 \pm 6.7 \cdot 10^{-2} \) |
\(a_{31}= +0.62799514 \pm 3.3 \cdot 10^{-2} \) | \(a_{32}= -0.70287024 \pm 4.6 \cdot 10^{-2} \) | \(a_{33}= -0.99027203 \pm 3.5 \cdot 10^{-2} \) |
\(a_{34}= +0.33970463 \pm 3.1 \cdot 10^{-2} \) | \(a_{35}= +1.54229395 \pm 1.4 \cdot 10^{-2} \) | \(a_{36}= -0.12474547 \pm 5.1 \cdot 10^{-2} \) |
\(a_{37}= -0.22485173 \pm 3.9 \cdot 10^{-2} \) | \(a_{38}= +0.67711399 \pm 9.6 \cdot 10^{-3} \) | \(a_{39}= -0.25824606 \pm 3.4 \cdot 10^{-2} \) |
\(a_{40}= -1.49654066 \pm 2.1 \cdot 10^{-2} \) | \(a_{41}= +0.31215390 \pm 7.5 \cdot 10^{-2} \) | \(a_{42}= +0.51166975 \pm 6.0 \cdot 10^{-2} \) |
\(a_{43}= +0.28122374 \pm 5.0 \cdot 10^{-2} \) | \(a_{44}= +0.64189086 \pm 3.1 \cdot 10^{-2} \) | \(a_{45}= -0.45888163 \pm 3.9 \cdot 10^{-2} \) |
\(a_{46}= -0.56211244 \pm 2.2 \cdot 10^{-2} \) | \(a_{47}= +0.73891609 \pm 6.2 \cdot 10^{-2} \) | \(a_{48}= -0.28042519 \pm 4.1 \cdot 10^{-2} \) |
\(a_{49}= +0.25513506 \pm 5.4 \cdot 10^{-2} \) | \(a_{50}= -0.70811128 \pm 1.5 \cdot 10^{-2} \) | \(a_{51}= -0.24793378 \pm 2.6 \cdot 10^{-2} \) |
\(a_{52}= +0.16739419 \pm 3.1 \cdot 10^{-2} \) | \(a_{53}= -0.04890870 \pm 3.1 \cdot 10^{-2} \) | \(a_{54}= -0.15223807 \pm 2.8 \cdot 10^{-2} \) |
\(a_{55}= +2.36122332 \pm 2.4 \cdot 10^{-2} \) | \(a_{56}= -1.21790055 \pm 3.0 \cdot 10^{-2} \) | \(a_{57}= -0.49419235 \pm 2.1 \cdot 10^{-2} \) |
\(a_{58}= -0.82297617 \pm 3.0 \cdot 10^{-2} \) | \(a_{59}= +1.43856395 \pm 5.0 \cdot 10^{-2} \) | \(a_{60}= +0.29744546 \pm 9.0 \cdot 10^{-2} \) |
\(a_{61}= -1.49561028 \pm 4.1 \cdot 10^{-2} \) | \(a_{62}= -0.49677694 \pm 1.5 \cdot 10^{-2} \) | \(a_{63}= -0.37344270 \pm 3.2 \cdot 10^{-2} \) |
\(a_{64}= +1.04171773 \pm 3.8 \cdot 10^{-2} \) | \(a_{65}= +0.61576678 \pm 2.4 \cdot 10^{-2} \) | \(a_{66}= +0.78335686 \pm 6.4 \cdot 10^{-2} \) |
\(a_{67}= -0.47512732 \pm 8.8 \cdot 10^{-2} \) | \(a_{68}= +0.16070981 \pm 2.9 \cdot 10^{-2} \) | \(a_{69}= +0.41025835 \pm 7.8 \cdot 10^{-2} \) |
\(a_{70}= -1.22003502 \pm 1.1 \cdot 10^{-2} \) | \(a_{71}= -0.21239237 \pm 5.8 \cdot 10^{-2} \) | \(a_{72}= +0.36236425 \pm 3.4 \cdot 10^{-2} \) |
\(a_{73}= -1.53102351 \pm 2.4 \cdot 10^{-2} \) | \(a_{74}= +0.17786946 \pm 4.0 \cdot 10^{-2} \) | \(a_{75}= +0.51681575 \pm 3.2 \cdot 10^{-2} \) |
\(a_{76}= +0.32033375 \pm 1.9 \cdot 10^{-2} \) | \(a_{77}= +1.92158840 \pm 2.1 \cdot 10^{-2} \) | \(a_{78}= +0.20428611 \pm 6.3 \cdot 10^{-2} \) |
\(a_{79}= -1.90050241 \pm 4.3 \cdot 10^{-2} \) | \(a_{80}= +0.66865112 \pm 3.0 \cdot 10^{-2} \) | \(a_{81}= +0.11111111 \pm 2.3 \cdot 10^{-7} \) |
\(a_{82}= -0.24693003 \pm 2.4 \cdot 10^{-2} \) | \(a_{83}= -1.03681252 \pm 6.2 \cdot 10^{-2} \) | \(a_{84}= +0.24206425 \pm 8.3 \cdot 10^{-2} \) |
\(a_{85}= +0.59117799 \pm 2.1 \cdot 10^{-2} \) | \(a_{86}= -0.22246266 \pm 3.7 \cdot 10^{-2} \) | \(a_{87}= +0.60065001 \pm 7.4 \cdot 10^{-2} \) |
\(a_{88}= -1.86458306 \pm 2.2 \cdot 10^{-2} \) | \(a_{89}= +0.86862255 \pm 2.5 \cdot 10^{-2} \) | \(a_{90}= +0.36299932 \pm 6.7 \cdot 10^{-2} \) |
\(a_{91}= +0.50111749 \pm 1.3 \cdot 10^{-2} \) | \(a_{92}= -0.26592802 \pm 7.2 \cdot 10^{-2} \) | \(a_{93}= +0.36257316 \pm 3.3 \cdot 10^{-2} \) |
\(a_{94}= -0.58452119 \pm 2.5 \cdot 10^{-2} \) | \(a_{95}= +1.17836158 \pm 1.6 \cdot 10^{-2} \) | \(a_{96}= -0.40580232 \pm 4.6 \cdot 10^{-2} \) |
\(a_{97}= +0.06107139 \pm 5.9 \cdot 10^{-2} \) | \(a_{98}= -0.20182515 \pm 2.5 \cdot 10^{-2} \) | \(a_{99}= -0.57173382 \pm 3.5 \cdot 10^{-2} \) |
\(a_{100}= -0.33499816 \pm 2.6 \cdot 10^{-2} \) | \(a_{101}= -0.26315769 \pm 3.2 \cdot 10^{-2} \) | \(a_{102}= +0.19612856 \pm 5.4 \cdot 10^{-2} \) |
\(a_{103}= -0.55451758 \pm 4.2 \cdot 10^{-2} \) | \(a_{104}= -0.48625146 \pm 1.9 \cdot 10^{-2} \) | \(a_{105}= +0.89044383 \pm 7.1 \cdot 10^{-2} \) |
\(a_{106}= +0.03868933 \pm 1.9 \cdot 10^{-2} \) | \(a_{107}= +1.97645562 \pm 2.8 \cdot 10^{-2} \) | \(a_{108}= -0.07202183 \pm 5.1 \cdot 10^{-2} \) |
\(a_{109}= +0.56734648 \pm 5.7 \cdot 10^{-2} \) | \(a_{110}= -1.86785090 \pm 1.5 \cdot 10^{-2} \) | \(a_{111}= -0.12981821 \pm 3.9 \cdot 10^{-2} \) |
\(a_{112}= +0.54415532 \pm 1.1 \cdot 10^{-2} \) | \(a_{113}= +0.07346021 \pm 3.2 \cdot 10^{-2} \) | \(a_{114}= +0.39093195 \pm 4.9 \cdot 10^{-2} \) |
\(a_{115}= -0.97822776 \pm 5.4 \cdot 10^{-2} \) | \(a_{116}= -0.38933923 \pm 6.8 \cdot 10^{-2} \) | \(a_{117}= -0.14909843 \pm 3.4 \cdot 10^{-2} \) |
\(a_{118}= -1.13797918 \pm 3.2 \cdot 10^{-2} \) | \(a_{119}= +0.48110687 \pm 1.4 \cdot 10^{-2} \) | \(a_{120}= -0.86402815 \pm 7.3 \cdot 10^{-2} \) |
\(a_{121}= +1.94191607 \pm 3.4 \cdot 10^{-2} \) | \(a_{122}= +1.18310580 \pm 1.7 \cdot 10^{-2} \) | \(a_{123}= +0.18022214 \pm 7.5 \cdot 10^{-2} \) |
\(a_{124}= -0.23501865 \pm 2.9 \cdot 10^{-2} \) | \(a_{125}= +0.14433965 \pm 5.7 \cdot 10^{-2} \) | \(a_{126}= +0.29541267 \pm 6.0 \cdot 10^{-2} \) |
\(a_{127}= -0.98583499 \pm 6.4 \cdot 10^{-2} \) | \(a_{128}= -0.12118286 \pm 4.8 \cdot 10^{-2} \) | \(a_{129}= +0.16236460 \pm 5.0 \cdot 10^{-2} \) |
\(a_{130}= -0.48710366 \pm 9.3 \cdot 10^{-3} \) | \(a_{131}= -1.20076311 \pm 3.7 \cdot 10^{-2} \) | \(a_{132}= +0.37059586 \pm 8.7 \cdot 10^{-2} \) |
\(a_{133}= +0.95896306 \pm 5.9 \cdot 10^{-3} \) | \(a_{134}= +0.37585051 \pm 2.9 \cdot 10^{-2} \) | \(a_{135}= -0.26493543 \pm 3.9 \cdot 10^{-2} \) |
\(a_{136}= -0.46683448 \pm 1.3 \cdot 10^{-2} \) | \(a_{137}= -0.62644321 \pm 6.4 \cdot 10^{-2} \) | \(a_{138}= -0.32453577 \pm 1.0 \cdot 10^{-1} \) |
\(a_{139}= +1.39579175 \pm 4.3 \cdot 10^{-2} \) | \(a_{140}= -0.57718257 \pm 1.2 \cdot 10^{-2} \) | \(a_{141}= +0.42661340 \pm 6.2 \cdot 10^{-2} \) |
\(a_{142}= +0.16801345 \pm 2.6 \cdot 10^{-2} \) | \(a_{143}= +0.76720154 \pm 2.1 \cdot 10^{-2} \) | \(a_{144}= -0.16190356 \pm 4.1 \cdot 10^{-2} \) |
\(a_{145}= -1.43220123 \pm 5.0 \cdot 10^{-2} \) | \(a_{146}= +1.21111952 \pm 2.0 \cdot 10^{-2} \) | \(a_{147}= +0.14730229 \pm 5.4 \cdot 10^{-2} \) |
\(a_{148}= +0.08414771 \pm 4.2 \cdot 10^{-2} \) | \(a_{149}= +0.46178250 \pm 4.8 \cdot 10^{-2} \) | \(a_{150}= -0.40882824 \pm 6.0 \cdot 10^{-2} \) |
\(a_{151}= +0.09495131 \pm 7.3 \cdot 10^{-2} \) | \(a_{152}= -0.93051471 \pm 1.2 \cdot 10^{-2} \) | \(a_{153}= -0.14314464 \pm 2.6 \cdot 10^{-2} \) |
\(a_{154}= -1.52007673 \pm 1.4 \cdot 10^{-2} \) | \(a_{155}= -0.86452630 \pm 2.1 \cdot 10^{-2} \) | \(a_{156}= +0.09664508 \pm 8.6 \cdot 10^{-2} \) |
\(a_{157}= +1.15113254 \pm 7.7 \cdot 10^{-2} \) | \(a_{158}= +1.50339661 \pm 2.2 \cdot 10^{-2} \) | \(a_{159}= -0.02823745 \pm 3.1 \cdot 10^{-2} \) |
\(a_{160}= +0.96760272 \pm 3.2 \cdot 10^{-2} \) | \(a_{161}= -0.79609205 \pm 1.9 \cdot 10^{-2} \) | \(a_{162}= -0.08789469 \pm 2.8 \cdot 10^{-2} \) |
\(a_{163}= -0.10743384 \pm 9.7 \cdot 10^{-3} \) | \(a_{164}= -0.11681936 \pm 6.8 \cdot 10^{-2} \) | \(a_{165}= +1.36325292 \pm 7.4 \cdot 10^{-2} \) |
\(a_{166}= +0.82017282 \pm 2.4 \cdot 10^{-2} \) | \(a_{167}= -0.68052444 \pm 3.6 \cdot 10^{-2} \) | \(a_{168}= -0.70315521 \pm 6.6 \cdot 10^{-2} \) |
\(a_{169}= -0.79992692 \pm 3.7 \cdot 10^{-2} \) | \(a_{170}= -0.46765265 \pm 2.7 \cdot 10^{-2} \) | \(a_{171}= -0.28532209 \pm 2.1 \cdot 10^{-2} \) |
\(a_{172}= -0.10524417 \pm 4.2 \cdot 10^{-2} \) | \(a_{173}= +0.34390170 \pm 3.2 \cdot 10^{-2} \) | \(a_{174}= -0.47514551 \pm 1.0 \cdot 10^{-1} \) |
\(a_{175}= -1.00286298 \pm 2.6 \cdot 10^{-2} \) | \(a_{176}= +0.83309167 \pm 2.6 \cdot 10^{-2} \) | \(a_{177}= +0.83055529 \pm 5.0 \cdot 10^{-2} \) |
\(a_{178}= -0.68712577 \pm 1.9 \cdot 10^{-2} \) | \(a_{179}= +0.91977323 \pm 4.8 \cdot 10^{-2} \) | \(a_{180}= +0.17173022 \pm 9.0 \cdot 10^{-2} \) |
\(a_{181}= +0.94243154 \pm 5.8 \cdot 10^{-2} \) | \(a_{182}= -0.39641009 \pm 7.6 \cdot 10^{-3} \) | \(a_{183}= -0.86349100 \pm 4.1 \cdot 10^{-2} \) |
\(a_{184}= +0.77247539 \pm 4.1 \cdot 10^{-2} \) | \(a_{185}= +0.30954099 \pm 3.0 \cdot 10^{-2} \) | \(a_{186}= -0.28681430 \pm 6.1 \cdot 10^{-2} \) |
\(a_{187}= +0.73656566 \pm 1.5 \cdot 10^{-2} \) | \(a_{188}= -0.27652931 \pm 5.5 \cdot 10^{-2} \) | \(a_{189}= -0.21560724 \pm 3.2 \cdot 10^{-2} \) |
\(a_{190}= -0.93214552 \pm 1.0 \cdot 10^{-2} \) | \(a_{191}= -0.49053186 \pm 4.0 \cdot 10^{-2} \) | \(a_{192}= +0.60143601 \pm 3.8 \cdot 10^{-2} \) |
\(a_{193}= -0.57732416 \pm 6.8 \cdot 10^{-2} \) | \(a_{194}= -0.04831065 \pm 2.2 \cdot 10^{-2} \) | \(a_{195}= +0.35551311 \pm 7.3 \cdot 10^{-2} \) |
\(a_{196}= -0.09548083 \pm 4.7 \cdot 10^{-2} \) | \(a_{197}= -1.09171740 \pm 1.0 \cdot 10^{-1} \) | \(a_{198}= +0.45227130 \pm 6.4 \cdot 10^{-2} \) |
\(a_{199}= +0.57991680 \pm 3.8 \cdot 10^{-2} \) | \(a_{200}= +0.97311231 \pm 2.3 \cdot 10^{-2} \) | \(a_{201}= -0.27431489 \pm 8.8 \cdot 10^{-2} \) |
\(a_{202}= +0.20817147 \pm 2.4 \cdot 10^{-2} \) | \(a_{203}= -1.16554044 \pm 3.2 \cdot 10^{-2} \) | \(a_{204}= +0.09278585 \pm 7.7 \cdot 10^{-2} \) |
\(a_{205}= -0.42972507 \pm 5.1 \cdot 10^{-2} \) | \(a_{206}= +0.43865235 \pm 3.2 \cdot 10^{-2} \) | \(a_{207}= +0.23686277 \pm 7.8 \cdot 10^{-2} \) |
\(a_{208}= +0.21725610 \pm 2.6 \cdot 10^{-2} \) | \(a_{209}= +1.46815459 \pm 1.4 \cdot 10^{-2} \) | \(a_{210}= -0.70438755 \pm 9.9 \cdot 10^{-2} \) |
\(a_{211}= +1.59987567 \pm 2.2 \cdot 10^{-2} \) | \(a_{212}= +0.01830342 \pm 2.8 \cdot 10^{-2} \) | \(a_{213}= -0.12262479 \pm 5.8 \cdot 10^{-2} \) |
\(a_{214}= -1.56347956 \pm 1.9 \cdot 10^{-2} \) | \(a_{215}= -0.38714522 \pm 3.2 \cdot 10^{-2} \) | \(a_{216}= +0.20921110 \pm 3.4 \cdot 10^{-2} \) |
\(a_{217}= -0.70356061 \pm 2.1 \cdot 10^{-2} \) | \(a_{218}= -0.44880068 \pm 2.4 \cdot 10^{-2} \) | \(a_{219}= -0.88393684 \pm 2.4 \cdot 10^{-2} \) |
\(a_{220}= -0.88365577 \pm 2.2 \cdot 10^{-2} \) | \(a_{221}= +0.19208376 \pm 1.1 \cdot 10^{-2} \) | \(a_{222}= +0.10269298 \pm 6.8 \cdot 10^{-2} \) |
\(a_{223}= +1.56150365 \pm 2.0 \cdot 10^{-2} \) | \(a_{224}= +0.78744528 \pm 3.0 \cdot 10^{-2} \) | \(a_{225}= +0.29838371 \pm 3.2 \cdot 10^{-2} \) |
\(a_{226}= -0.05811086 \pm 2.6 \cdot 10^{-2} \) | \(a_{227}= -0.88331024 \pm 7.6 \cdot 10^{-2} \) | \(a_{228}= +0.18494478 \pm 7.2 \cdot 10^{-2} \) |
\(a_{229}= -0.29746978 \pm 3.3 \cdot 10^{-2} \) | \(a_{230}= +0.77382922 \pm 1.7 \cdot 10^{-2} \) | \(a_{231}= +1.10942958 \pm 6.7 \cdot 10^{-2} \) |
\(a_{232}= +1.13096382 \pm 4.2 \cdot 10^{-2} \) | \(a_{233}= -0.18607822 \pm 5.5 \cdot 10^{-2} \) | \(a_{234}= +0.11794464 \pm 6.3 \cdot 10^{-2} \) |
\(a_{235}= -1.01722505 \pm 4.3 \cdot 10^{-2} \) | \(a_{236}= -0.53836303 \pm 3.8 \cdot 10^{-2} \) | \(a_{237}= -1.09725558 \pm 4.3 \cdot 10^{-2} \) |
\(a_{238}= -0.38058065 \pm 1.6 \cdot 10^{-2} \) | \(a_{239}= -0.04080932 \pm 4.7 \cdot 10^{-2} \) | \(a_{240}= +0.38604591 \pm 8.0 \cdot 10^{-2} \) |
\(a_{241}= +0.67858927 \pm 4.6 \cdot 10^{-2} \) | \(a_{242}= -1.53615697 \pm 1.7 \cdot 10^{-2} \) | \(a_{243}= +0.06415003 \pm 5.5 \cdot 10^{-7} \) |
\(a_{244}= +0.55971184 \pm 3.6 \cdot 10^{-2} \) | \(a_{245}= -0.35123037 \pm 3.6 \cdot 10^{-2} \) | \(a_{246}= -0.14256512 \pm 1.0 \cdot 10^{-1} \) |
\(a_{247}= +0.38286968 \pm 1.5 \cdot 10^{-2} \) | \(a_{248}= +0.68268896 \pm 2.1 \cdot 10^{-2} \) | \(a_{249}= -0.59860399 \pm 6.2 \cdot 10^{-2} \) |
\(a_{250}= -0.11418020 \pm 2.7 \cdot 10^{-2} \) | \(a_{251}= +1.15516724 \pm 6.7 \cdot 10^{-2} \) | \(a_{252}= +0.13975586 \pm 8.3 \cdot 10^{-2} \) |
\(a_{253}= -1.21880210 \pm 4.8 \cdot 10^{-2} \) | \(a_{254}= +0.77984693 \pm 3.1 \cdot 10^{-2} \) | \(a_{255}= +0.34131677 \pm 6.5 \cdot 10^{-2} \) |
\(a_{256}= -0.94585576 \pm 2.8 \cdot 10^{-2} \) | \(a_{257}= +1.50278776 \pm 6.2 \cdot 10^{-2} \) | \(a_{258}= -0.12843887 \pm 7.8 \cdot 10^{-2} \) |
\(a_{259}= +0.25190772 \pm 2.0 \cdot 10^{-2} \) | \(a_{260}= -0.23044235 \pm 2.2 \cdot 10^{-2} \) | \(a_{261}= +0.34678545 \pm 7.4 \cdot 10^{-2} \) |
\(a_{262}= +0.94986630 \pm 2.1 \cdot 10^{-2} \) | \(a_{263}= -1.59888979 \pm 4.4 \cdot 10^{-2} \) | \(a_{264}= -1.07651753 \pm 7.0 \cdot 10^{-2} \) |
\(a_{265}= +0.06732991 \pm 2.2 \cdot 10^{-2} \) | \(a_{266}= -0.75858984 \pm 3.3 \cdot 10^{-3} \) | \(a_{267}= +0.50149946 \pm 2.5 \cdot 10^{-2} \) |
\(a_{268}= +0.17780995 \pm 8.1 \cdot 10^{-2} \) | \(a_{269}= +0.84804668 \pm 3.8 \cdot 10^{-2} \) | \(a_{270}= +0.20957776 \pm 6.7 \cdot 10^{-2} \) |
\(a_{271}= -1.23011645 \pm 5.2 \cdot 10^{-2} \) | \(a_{272}= +0.20858063 \pm 1.7 \cdot 10^{-2} \) | \(a_{273}= +0.28932032 \pm 6.7 \cdot 10^{-2} \) |
\(a_{274}= +0.49554928 \pm 3.4 \cdot 10^{-2} \) | \(a_{275}= -1.53536455 \pm 2.1 \cdot 10^{-2} \) | \(a_{276}= -0.15353362 \pm 1.2 \cdot 10^{-1} \) |
\(a_{277}= +0.03972666 \pm 2.8 \cdot 10^{-2} \) | \(a_{278}= -1.10414413 \pm 4.0 \cdot 10^{-2} \) | \(a_{279}= +0.20933171 \pm 3.3 \cdot 10^{-2} \) |
\(a_{280}= +1.67661656 \pm 1.1 \cdot 10^{-2} \) | \(a_{281}= +1.52470720 \pm 6.0 \cdot 10^{-2} \) | \(a_{282}= -0.33747347 \pm 9.0 \cdot 10^{-2} \) |
\(a_{283}= +0.51868837 \pm 8.3 \cdot 10^{-2} \) | \(a_{284}= +0.07948496 \pm 5.1 \cdot 10^{-2} \) | \(a_{285}= +0.68032737 \pm 6.0 \cdot 10^{-2} \) |
\(a_{286}= -0.60689646 \pm 8.0 \cdot 10^{-3} \) | \(a_{287}= -0.34971479 \pm 3.3 \cdot 10^{-2} \) | \(a_{288}= -0.23429008 \pm 4.6 \cdot 10^{-2} \) |
\(a_{289}= -0.81558652 \pm 5.4 \cdot 10^{-2} \) | \(a_{290}= +1.13294593 \pm 2.2 \cdot 10^{-2} \) | \(a_{291}= +0.03525958 \pm 5.9 \cdot 10^{-2} \) |
\(a_{292}= +0.57296476 \pm 2.5 \cdot 10^{-2} \) | \(a_{293}= -0.10452455 \pm 8.9 \cdot 10^{-2} \) | \(a_{294}= -0.11652380 \pm 8.2 \cdot 10^{-2} \) |
\(a_{295}= -1.98039171 \pm 2.7 \cdot 10^{-2} \) | \(a_{296}= -0.24443469 \pm 2.1 \cdot 10^{-2} \) | \(a_{297}= -0.33009068 \pm 3.5 \cdot 10^{-2} \) |
\(a_{298}= -0.36529406 \pm 2.5 \cdot 10^{-2} \) | \(a_{299}= -0.31784280 \pm 5.0 \cdot 10^{-2} \) | \(a_{300}= -0.19341128 \pm 8.3 \cdot 10^{-2} \) |
\(a_{301}= -0.31506286 \pm 4.7 \cdot 10^{-2} \) | \(a_{302}= -0.07511145 \pm 2.3 \cdot 10^{-2} \) | \(a_{303}= -0.15193416 \pm 3.2 \cdot 10^{-2} \) |
\(a_{304}= +0.41575196 \pm 1.6 \cdot 10^{-2} \) | \(a_{305}= +2.05892424 \pm 3.1 \cdot 10^{-2} \) | \(a_{306}= +0.11323488 \pm 5.4 \cdot 10^{-2} \) |
\(a_{307}= +1.86405362 \pm 2.5 \cdot 10^{-2} \) | \(a_{308}= -0.71912837 \pm 1.3 \cdot 10^{-2} \) | \(a_{309}= -0.32015087 \pm 4.2 \cdot 10^{-2} \) |
\(a_{310}= +0.68388543 \pm 1.1 \cdot 10^{-2} \) | \(a_{311}= +0.19463060 \pm 8.3 \cdot 10^{-2} \) | \(a_{312}= -0.28073741 \pm 6.9 \cdot 10^{-2} \) |
\(a_{313}= -0.60971833 \pm 3.5 \cdot 10^{-2} \) | \(a_{314}= -0.91060592 \pm 2.4 \cdot 10^{-2} \) | \(a_{315}= +0.51409798 \pm 7.1 \cdot 10^{-2} \) |
\(a_{316}= +0.71123722 \pm 3.7 \cdot 10^{-2} \) | \(a_{317}= +0.14861235 \pm 3.5 \cdot 10^{-2} \) | \(a_{318}= +0.02233730 \pm 5.9 \cdot 10^{-2} \) |
\(a_{319}= -1.78442072 \pm 4.5 \cdot 10^{-2} \) | \(a_{320}= -1.43407538 \pm 2.6 \cdot 10^{-2} \) | \(a_{321}= +1.14110718 \pm 2.8 \cdot 10^{-2} \) |
\(a_{322}= +0.62975036 \pm 6.7 \cdot 10^{-3} \) | \(a_{323}= +0.36758094 \pm 7.7 \cdot 10^{-3} \) | \(a_{324}= -0.04158182 \pm 5.1 \cdot 10^{-2} \) |
\(a_{325}= -0.40039689 \pm 1.8 \cdot 10^{-2} \) | \(a_{326}= +0.08498577 \pm 1.2 \cdot 10^{-2} \) | \(a_{327}= +0.32755764 \pm 5.7 \cdot 10^{-2} \) |
\(a_{328}= +0.33934024 \pm 4.3 \cdot 10^{-2} \) | \(a_{329}= -0.82782846 \pm 3.1 \cdot 10^{-2} \) | \(a_{330}= -1.07840422 \pm 1.0 \cdot 10^{-1} \) |
\(a_{331}= -0.74126325 \pm 3.3 \cdot 10^{-2} \) | \(a_{332}= +0.38801301 \pm 5.3 \cdot 10^{-2} \) | \(a_{333}= -0.07495058 \pm 3.9 \cdot 10^{-2} \) |
\(a_{334}= +0.53833035 \pm 2.8 \cdot 10^{-2} \) | \(a_{335}= +0.65408159 \pm 6.1 \cdot 10^{-2} \) | \(a_{336}= +0.31416822 \pm 7.3 \cdot 10^{-2} \) |
\(a_{337}= +0.48580126 \pm 6.5 \cdot 10^{-2} \) | \(a_{338}= +0.63278395 \pm 2.4 \cdot 10^{-2} \) | \(a_{339}= +0.04241227 \pm 3.2 \cdot 10^{-2} \) |
\(a_{340}= -0.22124033 \pm 2.4 \cdot 10^{-2} \) | \(a_{341}= -1.07713819 \pm 2.0 \cdot 10^{-2} \) | \(a_{342}= +0.22570466 \pm 4.9 \cdot 10^{-2} \) |
\(a_{343}= +0.83449313 \pm 2.7 \cdot 10^{-2} \) | \(a_{344}= +0.30571628 \pm 3.8 \cdot 10^{-2} \) | \(a_{345}= -0.56478006 \pm 1.1 \cdot 10^{-1} \) |
\(a_{346}= -0.27204420 \pm 2.1 \cdot 10^{-2} \) | \(a_{347}= +1.65924729 \pm 2.0 \cdot 10^{-2} \) | \(a_{348}= -0.22478511 \pm 1.2 \cdot 10^{-1} \) |
\(a_{349}= -1.76380257 \pm 8.8 \cdot 10^{-2} \) | \(a_{350}= +0.79331696 \pm 1.7 \cdot 10^{-2} \) | \(a_{351}= -0.08608202 \pm 3.4 \cdot 10^{-2} \) |
\(a_{352}= +1.20556407 \pm 2.8 \cdot 10^{-2} \) | \(a_{353}= -0.85675357 \pm 7.7 \cdot 10^{-2} \) | \(a_{354}= -0.65701258 \pm 7.8 \cdot 10^{-2} \) |
\(a_{355}= +0.29238888 \pm 3.9 \cdot 10^{-2} \) | \(a_{356}= -0.32507019 \pm 1.9 \cdot 10^{-2} \) | \(a_{357}= +0.27776718 \pm 5.8 \cdot 10^{-2} \) |
\(a_{358}= -0.72758863 \pm 2.9 \cdot 10^{-2} \) | \(a_{359}= -1.29618265 \pm 4.0 \cdot 10^{-2} \) | \(a_{360}= -0.49884689 \pm 7.3 \cdot 10^{-2} \) |
\(a_{361}= -0.26732176 \pm 4.9 \cdot 10^{-2} \) | \(a_{362}= -0.74551254 \pm 3.7 \cdot 10^{-2} \) | \(a_{363}= +1.12116576 \pm 3.4 \cdot 10^{-2} \) |
\(a_{364}= -0.18753641 \pm 9.7 \cdot 10^{-3} \) | \(a_{365}= +2.10767569 \pm 1.8 \cdot 10^{-2} \) | \(a_{366}= +0.68306645 \pm 6.9 \cdot 10^{-2} \) |
\(a_{367}= -0.60776047 \pm 3.7 \cdot 10^{-2} \) | \(a_{368}= -0.34514033 \pm 6.1 \cdot 10^{-2} \) | \(a_{369}= +0.10405130 \pm 7.5 \cdot 10^{-2} \) |
\(a_{370}= -0.24486308 \pm 3.4 \cdot 10^{-2} \) | \(a_{371}= +0.05479379 \pm 1.8 \cdot 10^{-2} \) | \(a_{372}= -0.13568808 \pm 8.4 \cdot 10^{-2} \) |
\(a_{373}= +1.93263835 \pm 3.3 \cdot 10^{-2} \) | \(a_{374}= -0.58266189 \pm 1.7 \cdot 10^{-2} \) | \(a_{375}= +0.08333453 \pm 5.7 \cdot 10^{-2} \) |
\(a_{376}= +0.80327031 \pm 3.7 \cdot 10^{-2} \) | \(a_{377}= -0.46534649 \pm 4.6 \cdot 10^{-2} \) | \(a_{378}= +0.17055658 \pm 6.0 \cdot 10^{-2} \) |
\(a_{379}= +0.92651591 \pm 1.3 \cdot 10^{-2} \) | \(a_{380}= -0.44098582 \pm 1.4 \cdot 10^{-2} \) | \(a_{381}= -0.56917210 \pm 6.4 \cdot 10^{-2} \) |
\(a_{382}= +0.38803630 \pm 3.9 \cdot 10^{-2} \) | \(a_{383}= -0.17126469 \pm 4.2 \cdot 10^{-2} \) | \(a_{384}= -0.06996496 \pm 4.8 \cdot 10^{-2} \) |
\(a_{385}= -2.64534485 \pm 9.3 \cdot 10^{-3} \) | \(a_{386}= +0.45669354 \pm 2.9 \cdot 10^{-2} \) | \(a_{387}= +0.09374125 \pm 5.0 \cdot 10^{-2} \) |
\(a_{388}= -0.02285514 \pm 5.1 \cdot 10^{-2} \) | \(a_{389}= -1.36154383 \pm 1.9 \cdot 10^{-2} \) | \(a_{390}= -0.28122943 \pm 1.0 \cdot 10^{-1} \) |
\(a_{391}= -0.30515071 \pm 2.3 \cdot 10^{-2} \) | \(a_{392}= +0.27735547 \pm 3.4 \cdot 10^{-2} \) | \(a_{393}= -0.69326090 \pm 3.7 \cdot 10^{-2} \) |
\(a_{394}= +0.86360545 \pm 2.9 \cdot 10^{-2} \) | \(a_{395}= +2.61631692 \pm 2.9 \cdot 10^{-2} \) | \(a_{396}= +0.21396362 \pm 8.7 \cdot 10^{-2} \) |
\(a_{397}= -0.55978928 \pm 6.8 \cdot 10^{-2} \) | \(a_{398}= -0.45874446 \pm 2.5 \cdot 10^{-2} \) | \(a_{399}= +0.55365758 \pm 5.3 \cdot 10^{-2} \) |
\(a_{400}= -0.43478447 \pm 2.1 \cdot 10^{-2} \) | \(a_{401}= +0.57395715 \pm 7.8 \cdot 10^{-2} \) | \(a_{402}= +0.21699739 \pm 1.1 \cdot 10^{-1} \) |
\(a_{403}= -0.28089927 \pm 1.9 \cdot 10^{-2} \) | \(a_{404}= +0.09848319 \pm 2.6 \cdot 10^{-2} \) | \(a_{405}= -0.15296054 \pm 3.9 \cdot 10^{-2} \) |
\(a_{406}= +0.92200333 \pm 2.1 \cdot 10^{-2} \) | \(a_{407}= +0.38566602 \pm 2.3 \cdot 10^{-2} \) | \(a_{408}= -0.26952701 \pm 6.0 \cdot 10^{-2} \) |
\(a_{409}= -0.72329318 \pm 8.0 \cdot 10^{-2} \) | \(a_{410}= +0.33993496 \pm 1.5 \cdot 10^{-2} \) | \(a_{411}= -0.36167716 \pm 6.4 \cdot 10^{-2} \) |
\(a_{412}= +0.20752067 \pm 4.0 \cdot 10^{-2} \) | \(a_{413}= -1.61166362 \pm 5.5 \cdot 10^{-2} \) | \(a_{414}= -0.18737081 \pm 1.0 \cdot 10^{-1} \) |
\(a_{415}= +1.42732265 \pm 4.0 \cdot 10^{-2} \) | \(a_{416}= +0.31439055 \pm 2.6 \cdot 10^{-2} \) | \(a_{417}= +0.80586074 \pm 4.3 \cdot 10^{-2} \) |
\(a_{418}= -1.16138691 \pm 7.7 \cdot 10^{-3} \) | \(a_{419}= +0.82291663 \pm 3.0 \cdot 10^{-2} \) | \(a_{420}= -0.33323651 \pm 1.2 \cdot 10^{-1} \) |
\(a_{421}= -0.67883488 \pm 8.7 \cdot 10^{-2} \) | \(a_{422}= -1.26558516 \pm 2.2 \cdot 10^{-2} \) | \(a_{423}= +0.24630536 \pm 6.2 \cdot 10^{-2} \) |
\(a_{424}= -0.05316829 \pm 1.9 \cdot 10^{-2} \) | \(a_{425}= -0.38440825 \pm 1.0 \cdot 10^{-2} \) | \(a_{426}= +0.09700261 \pm 8.7 \cdot 10^{-2} \) |
\(a_{427}= +1.67557422 \pm 1.0 \cdot 10^{-2} \) | \(a_{428}= -0.73966168 \pm 2.7 \cdot 10^{-2} \) | \(a_{429}= +0.44294402 \pm 7.0 \cdot 10^{-2} \) |
\(a_{430}= +0.30625208 \pm 2.9 \cdot 10^{-2} \) | \(a_{431}= -1.64428955 \pm 3.6 \cdot 10^{-2} \) | \(a_{432}= -0.09347506 \pm 4.1 \cdot 10^{-2} \) |
\(a_{433}= -0.40310474 \pm 7.0 \cdot 10^{-2} \) | \(a_{434}= +0.55655316 \pm 1.4 \cdot 10^{-2} \) | \(a_{435}= -0.82688177 \pm 1.1 \cdot 10^{-1} \) |
\(a_{436}= -0.21232172 \pm 5.3 \cdot 10^{-2} \) | \(a_{437}= -0.60823962 \pm 3.0 \cdot 10^{-2} \) | \(a_{438}= +0.69924018 \pm 5.3 \cdot 10^{-2} \) |
\(a_{439}= +1.38133064 \pm 5.3 \cdot 10^{-2} \) | \(a_{440}= +2.56686874 \pm 1.4 \cdot 10^{-2} \) | \(a_{441}= +0.08504502 \pm 5.4 \cdot 10^{-2} \) |
\(a_{442}= -0.15194828 \pm 9.5 \cdot 10^{-3} \) | \(a_{443}= +1.81569625 \pm 8.1 \cdot 10^{-2} \) | \(a_{444}= +0.04858270 \pm 9.1 \cdot 10^{-2} \) |
\(a_{445}= -1.19578478 \pm 1.5 \cdot 10^{-2} \) | \(a_{446}= -1.23523090 \pm 2.0 \cdot 10^{-2} \) | \(a_{447}= +0.26661025 \pm 4.8 \cdot 10^{-2} \) |
\(a_{448}= -1.16706564 \pm 2.5 \cdot 10^{-2} \) | \(a_{449}= +0.36537837 \pm 8.1 \cdot 10^{-2} \) | \(a_{450}= -0.23603709 \pm 6.0 \cdot 10^{-2} \) |
\(a_{451}= -0.53540683 \pm 4.6 \cdot 10^{-2} \) | \(a_{452}= -0.02749149 \pm 2.4 \cdot 10^{-2} \) | \(a_{453}= +0.05482017 \pm 7.3 \cdot 10^{-2} \) |
\(a_{454}= +0.69874450 \pm 3.7 \cdot 10^{-2} \) | \(a_{455}= -0.68986082 \pm 7.4 \cdot 10^{-3} \) | \(a_{456}= -0.53723292 \pm 5.5 \cdot 10^{-2} \) |
\(a_{457}= -0.17409005 \pm 5.0 \cdot 10^{-2} \) | \(a_{458}= +0.23531413 \pm 2.8 \cdot 10^{-2} \) | \(a_{459}= -0.08264459 \pm 2.6 \cdot 10^{-2} \) |
\(a_{460}= +0.36608845 \pm 5.0 \cdot 10^{-2} \) | \(a_{461}= +0.19677318 \pm 2.5 \cdot 10^{-2} \) | \(a_{462}= -0.87761671 \pm 9.6 \cdot 10^{-2} \) |
\(a_{463}= -0.63220209 \pm 6.1 \cdot 10^{-2} \) | \(a_{464}= -0.50531218 \pm 5.5 \cdot 10^{-2} \) | \(a_{465}= -0.49913449 \pm 7.2 \cdot 10^{-2} \) |
\(a_{466}= +0.14719759 \pm 2.5 \cdot 10^{-2} \) | \(a_{467}= +0.12581244 \pm 7.0 \cdot 10^{-2} \) | \(a_{468}= +0.05579806 \pm 8.6 \cdot 10^{-2} \) |
\(a_{469}= +0.53229849 \pm 2.9 \cdot 10^{-2} \) | \(a_{470}= +0.80467811 \pm 2.2 \cdot 10^{-2} \) | \(a_{471}= +0.66460668 \pm 7.7 \cdot 10^{-2} \) |
\(a_{472}= +1.56385243 \pm 4.2 \cdot 10^{-2} \) | \(a_{473}= -0.48235537 \pm 3.2 \cdot 10^{-2} \) | \(a_{474}= +0.86798644 \pm 7.2 \cdot 10^{-2} \) |
\(a_{475}= -0.76621918 \pm 1.1 \cdot 10^{-2} \) | \(a_{476}= -0.18004771 \pm 1.4 \cdot 10^{-2} \) | \(a_{477}= -0.01630290 \pm 3.1 \cdot 10^{-2} \) |
\(a_{478}= +0.03228230 \pm 1.9 \cdot 10^{-2} \) | \(a_{479}= +0.99291468 \pm 4.7 \cdot 10^{-2} \) | \(a_{480}= +0.55864569 \pm 8.5 \cdot 10^{-2} \) |
\(a_{481}= +0.10057512 \pm 2.0 \cdot 10^{-2} \) | \(a_{482}= -0.53679953 \pm 2.7 \cdot 10^{-2} \) | \(a_{483}= -0.45962396 \pm 1.1 \cdot 10^{-1} \) |
\(a_{484}= -0.72673572 \pm 3.2 \cdot 10^{-2} \) | \(a_{485}= -0.08407361 \pm 3.8 \cdot 10^{-2} \) | \(a_{486}= -0.05074602 \pm 2.8 \cdot 10^{-2} \) |
\(a_{487}= +0.41127721 \pm 3.3 \cdot 10^{-2} \) | \(a_{488}= -1.62586707 \pm 2.2 \cdot 10^{-2} \) | \(a_{489}= -0.06202696 \pm 9.7 \cdot 10^{-3} \) |
\(a_{490}= +0.27784156 \pm 1.9 \cdot 10^{-2} \) | \(a_{491}= -0.39594146 \pm 3.1 \cdot 10^{-2} \) | \(a_{492}= -0.06744569 \pm 1.2 \cdot 10^{-1} \) |
\(a_{493}= -0.44676429 \pm 3.0 \cdot 10^{-2} \) | \(a_{494}= -0.30286990 \pm 6.1 \cdot 10^{-3} \) | \(a_{495}= +0.78707444 \pm 7.4 \cdot 10^{-2} \) |
\(a_{496}= -0.30502395 \pm 2.3 \cdot 10^{-2} \) | \(a_{497}= +0.23794915 \pm 3.8 \cdot 10^{-2} \) | \(a_{498}= +0.47352700 \pm 9.0 \cdot 10^{-2} \) |
\(a_{499}= +0.34015623 \pm 8.7 \cdot 10^{-2} \) | \(a_{500}= -0.05401715 \pm 5.3 \cdot 10^{-2} \) | \(a_{501}= -0.39290097 \pm 3.6 \cdot 10^{-2} \) |
\(a_{502}= -0.91379758 \pm 2.3 \cdot 10^{-2} \) | \(a_{503}= +0.45517566 \pm 8.2 \cdot 10^{-2} \) | \(a_{504}= -0.40596685 \pm 6.6 \cdot 10^{-2} \) |
\(a_{505}= +0.36227468 \pm 2.3 \cdot 10^{-2} \) | \(a_{506}= +0.96413608 \pm 1.4 \cdot 10^{-2} \) | \(a_{507}= -0.46183802 \pm 3.7 \cdot 10^{-2} \) |
\(a_{508}= +0.36893536 \pm 5.3 \cdot 10^{-2} \) | \(a_{509}= -0.39924363 \pm 1.9 \cdot 10^{-2} \) | \(a_{510}= -0.26999938 \pm 9.3 \cdot 10^{-2} \) |
\(a_{511}= +1.71524867 \pm 8.9 \cdot 10^{-3} \) | \(a_{512}= +0.86940414 \pm 5.3 \cdot 10^{-2} \) | \(a_{513}= -0.16473078 \pm 2.1 \cdot 10^{-2} \) |
\(a_{514}= -1.18878356 \pm 2.5 \cdot 10^{-2} \) | \(a_{515}= +0.76337378 \pm 3.1 \cdot 10^{-2} \) | \(a_{516}= -0.06076275 \pm 1.0 \cdot 10^{-1} \) |
\(a_{517}= -1.26738995 \pm 3.9 \cdot 10^{-2} \) | \(a_{518}= -0.19927215 \pm 2.1 \cdot 10^{-2} \) | \(a_{519}= +0.19855174 \pm 3.2 \cdot 10^{-2} \) |
\(a_{520}= +0.66939559 \pm 1.3 \cdot 10^{-2} \) | \(a_{521}= -0.22021335 \pm 7.4 \cdot 10^{-2} \) | \(a_{522}= -0.27432539 \pm 1.0 \cdot 10^{-1} \) |
\(a_{523}= +0.33216275 \pm 3.0 \cdot 10^{-2} \) | \(a_{524}= +0.44936929 \pm 2.9 \cdot 10^{-2} \) | \(a_{525}= -0.57900321 \pm 6.4 \cdot 10^{-2} \) |
\(a_{526}= +1.26480528 \pm 3.3 \cdot 10^{-2} \) | \(a_{527}= -0.26968241 \pm 1.3 \cdot 10^{-2} \) | \(a_{528}= +0.48098570 \pm 7.7 \cdot 10^{-2} \) |
\(a_{529}= -0.49506426 \pm 7.1 \cdot 10^{-2} \) | \(a_{530}= -0.05326147 \pm 1.6 \cdot 10^{-2} \) | \(a_{531}= +0.47952132 \pm 5.0 \cdot 10^{-2} \) |
\(a_{532}= -0.35887890 \pm 5.3 \cdot 10^{-3} \) | \(a_{533}= -0.13962497 \pm 4.7 \cdot 10^{-2} \) | \(a_{534}= -0.39671225 \pm 5.4 \cdot 10^{-2} \) |
\(a_{535}= -2.72087752 \pm 2.0 \cdot 10^{-2} \) | \(a_{536}= -0.51650746 \pm 4.8 \cdot 10^{-2} \) | \(a_{537}= +0.53103132 \pm 4.8 \cdot 10^{-2} \) |
\(a_{538}= -0.67084919 \pm 1.6 \cdot 10^{-2} \) | \(a_{539}= -0.43760802 \pm 3.4 \cdot 10^{-2} \) | \(a_{540}= +0.09914849 \pm 9.0 \cdot 10^{-2} \) |
\(a_{541}= +0.40586928 \pm 2.4 \cdot 10^{-2} \) | \(a_{542}= +0.97308632 \pm 3.7 \cdot 10^{-2} \) | \(a_{543}= +0.54411310 \pm 5.8 \cdot 10^{-2} \) |
\(a_{544}= +0.30183631 \pm 3.1 \cdot 10^{-2} \) | \(a_{545}= -0.78103463 \pm 4.0 \cdot 10^{-2} \) | \(a_{546}= -0.22886747 \pm 9.5 \cdot 10^{-2} \) |
\(a_{547}= +1.57143399 \pm 3.9 \cdot 10^{-2} \) | \(a_{548}= +0.23443786 \pm 6.0 \cdot 10^{-2} \) | \(a_{549}= -0.49853676 \pm 4.1 \cdot 10^{-2} \) |
\(a_{550}= +1.21455350 \pm 1.1 \cdot 10^{-2} \) | \(a_{551}= -0.89050993 \pm 2.7 \cdot 10^{-2} \) | \(a_{552}= +0.44598887 \pm 1.1 \cdot 10^{-1} \) |
\(a_{553}= +2.12918626 \pm 2.9 \cdot 10^{-2} \) | \(a_{554}= -0.03142586 \pm 2.1 \cdot 10^{-2} \) | \(a_{555}= +0.17871357 \pm 7.8 \cdot 10^{-2} \) |
\(a_{556}= -0.52235611 \pm 3.8 \cdot 10^{-2} \) | \(a_{557}= -0.39368970 \pm 4.4 \cdot 10^{-2} \) | \(a_{558}= -0.16559231 \pm 6.1 \cdot 10^{-2} \) |
\(a_{559}= -0.12579005 \pm 2.4 \cdot 10^{-2} \) | \(a_{560}= -0.74910864 \pm 8.2 \cdot 10^{-3} \) | \(a_{561}= +0.42525638 \pm 6.1 \cdot 10^{-2} \) |
\(a_{562}= -1.20612298 \pm 2.0 \cdot 10^{-2} \) | \(a_{563}= +1.89709526 \pm 7.8 \cdot 10^{-2} \) | \(a_{564}= -0.15965427 \pm 1.1 \cdot 10^{-1} \) |
\(a_{565}= -0.10112863 \pm 2.0 \cdot 10^{-2} \) | \(a_{566}= -0.41030957 \pm 2.4 \cdot 10^{-2} \) | \(a_{567}= -0.12448090 \pm 3.2 \cdot 10^{-2} \) |
\(a_{568}= -0.23089021 \pm 3.7 \cdot 10^{-2} \) | \(a_{569}= -0.74739243 \pm 4.3 \cdot 10^{-2} \) | \(a_{570}= -0.53817446 \pm 8.8 \cdot 10^{-2} \) |
\(a_{571}= -1.58459413 \pm 5.1 \cdot 10^{-2} \) | \(a_{572}= -0.28711476 \pm 1.9 \cdot 10^{-2} \) | \(a_{573}= -0.28320870 \pm 4.0 \cdot 10^{-2} \) |
\(a_{574}= +0.27664265 \pm 2.0 \cdot 10^{-2} \) | \(a_{575}= +0.63608393 \pm 4.0 \cdot 10^{-2} \) | \(a_{576}= +0.34723924 \pm 3.8 \cdot 10^{-2} \) |
\(a_{577}= -0.21329315 \pm 5.5 \cdot 10^{-2} \) | \(a_{578}= +0.64517151 \pm 3.5 \cdot 10^{-2} \) | \(a_{579}= -0.33331826 \pm 6.8 \cdot 10^{-2} \) |
\(a_{580}= +0.53598186 \pm 4.7 \cdot 10^{-2} \) | \(a_{581}= +1.16157020 \pm 4.1 \cdot 10^{-2} \) | \(a_{582}= -0.02789217 \pm 8.7 \cdot 10^{-2} \) |
\(a_{583}= +0.08388827 \pm 1.9 \cdot 10^{-2} \) | \(a_{584}= -1.66436455 \pm 1.2 \cdot 10^{-2} \) | \(a_{585}= +0.20525559 \pm 7.3 \cdot 10^{-2} \) |
\(a_{586}= +0.08268437 \pm 2.5 \cdot 10^{-2} \) | \(a_{587}= +0.86101541 \pm 5.6 \cdot 10^{-2} \) | \(a_{588}= -0.05512588 \pm 1.0 \cdot 10^{-1} \) |
\(a_{589}= -0.53754266 \pm 1.1 \cdot 10^{-2} \) | \(a_{590}= +1.56659321 \pm 1.9 \cdot 10^{-2} \) | \(a_{591}= -0.63030334 \pm 1.0 \cdot 10^{-1} \) |
\(a_{592}= +0.10921289 \pm 2.8 \cdot 10^{-2} \) | \(a_{593}= +1.00513914 \pm 5.6 \cdot 10^{-2} \) | \(a_{594}= +0.26111895 \pm 6.4 \cdot 10^{-2} \) |
\(a_{595}= -0.66231331 \pm 9.8 \cdot 10^{-3} \) | \(a_{596}= -0.17281583 \pm 3.8 \cdot 10^{-2} \) | \(a_{597}= +0.33481512 \pm 3.8 \cdot 10^{-2} \) |
\(a_{598}= +0.25143025 \pm 1.4 \cdot 10^{-2} \) | \(a_{599}= -0.93456557 \pm 2.2 \cdot 10^{-2} \) | \(a_{600}= +0.56182665 \pm 6.7 \cdot 10^{-2} \) |
\(a_{601}= +0.81231057 \pm 3.4 \cdot 10^{-2} \) | \(a_{602}= +0.24923117 \pm 3.3 \cdot 10^{-2} \) | \(a_{603}= -0.15837577 \pm 8.8 \cdot 10^{-2} \) |
\(a_{604}= -0.03553424 \pm 6.7 \cdot 10^{-2} \) | \(a_{605}= -2.67332882 \pm 2.3 \cdot 10^{-2} \) | \(a_{606}= +0.12018785 \pm 6.1 \cdot 10^{-2} \) |
\(a_{607}= +1.31981954 \pm 8.5 \cdot 10^{-2} \) | \(a_{608}= +0.60163321 \pm 1.6 \cdot 10^{-2} \) | \(a_{609}= -0.67292509 \pm 1.0 \cdot 10^{-1} \) |
\(a_{610}= -1.62871654 \pm 1.9 \cdot 10^{-2} \) | \(a_{611}= -0.33051369 \pm 3.8 \cdot 10^{-2} \) | \(a_{612}= +0.05356994 \pm 7.7 \cdot 10^{-2} \) |
\(a_{613}= +0.35711115 \pm 4.7 \cdot 10^{-2} \) | \(a_{614}= -1.47456371 \pm 2.0 \cdot 10^{-2} \) | \(a_{615}= -0.24810188 \pm 1.1 \cdot 10^{-1} \) |
\(a_{616}= +2.08894480 \pm 2.1 \cdot 10^{-2} \) | \(a_{617}= +1.12299510 \pm 8.8 \cdot 10^{-2} \) | \(a_{618}= +0.25325605 \pm 7.0 \cdot 10^{-2} \) |
\(a_{619}= -0.82505215 \pm 3.6 \cdot 10^{-2} \) | \(a_{620}= +0.32353723 \pm 2.0 \cdot 10^{-2} \) | \(a_{621}= +0.13675278 \pm 7.8 \cdot 10^{-2} \) |
\(a_{622}= -0.15396296 \pm 3.4 \cdot 10^{-2} \) | \(a_{623}= -0.97314225 \pm 2.9 \cdot 10^{-2} \) | \(a_{624}= +0.12543287 \pm 7.6 \cdot 10^{-2} \) |
\(a_{625}= -1.09385558 \pm 2.1 \cdot 10^{-2} \) | \(a_{626}= +0.48231903 \pm 3.5 \cdot 10^{-2} \) | \(a_{627}= +0.84763945 \pm 5.6 \cdot 10^{-2} \) |
\(a_{628}= -0.43079572 \pm 7.1 \cdot 10^{-2} \) | \(a_{629}= +0.09655896 \pm 4.1 \cdot 10^{-2} \) | \(a_{630}= -0.40667834 \pm 9.9 \cdot 10^{-2} \) |
\(a_{631}= +0.90326716 \pm 5.2 \cdot 10^{-2} \) | \(a_{632}= -2.06602237 \pm 2.8 \cdot 10^{-2} \) | \(a_{633}= +0.92368865 \pm 2.2 \cdot 10^{-2} \) |
\(a_{634}= -0.11756012 \pm 1.4 \cdot 10^{-2} \) | \(a_{635}= +1.35714470 \pm 3.8 \cdot 10^{-2} \) | \(a_{636}= +0.01056748 \pm 8.2 \cdot 10^{-2} \) |
\(a_{637}= -0.11412071 \pm 3.2 \cdot 10^{-2} \) | \(a_{638}= +1.41156993 \pm 1.8 \cdot 10^{-2} \) | \(a_{639}= -0.07079746 \pm 5.8 \cdot 10^{-2} \) |
\(a_{640}= +0.16682576 \pm 3.4 \cdot 10^{-2} \) | \(a_{641}= +1.91797433 \pm 2.1 \cdot 10^{-2} \) | \(a_{642}= -0.90267534 \pm 5.7 \cdot 10^{-2} \) |
\(a_{643}= +1.00237864 \pm 5.4 \cdot 10^{-2} \) | \(a_{644}= +0.29792664 \pm 1.7 \cdot 10^{-2} \) | \(a_{645}= -0.22351840 \pm 8.9 \cdot 10^{-2} \) |
\(a_{646}= -0.29077571 \pm 8.0 \cdot 10^{-3} \) | \(a_{647}= -1.66047786 \pm 4.3 \cdot 10^{-2} \) | \(a_{648}= +0.12078808 \pm 3.4 \cdot 10^{-2} \) |
\(a_{649}= -2.46742700 \pm 3.2 \cdot 10^{-2} \) | \(a_{650}= +0.31673484 \pm 6.5 \cdot 10^{-3} \) | \(a_{651}= -0.40620091 \pm 6.5 \cdot 10^{-2} \) |
\(a_{652}= +0.04020566 \pm 1.0 \cdot 10^{-2} \) | \(a_{653}= +0.17468225 \pm 3.9 \cdot 10^{-2} \) | \(a_{654}= -0.25911519 \pm 8.6 \cdot 10^{-2} \) |
\(a_{655}= +1.65302439 \pm 2.2 \cdot 10^{-2} \) | \(a_{656}= -0.15161648 \pm 5.7 \cdot 10^{-2} \) | \(a_{657}= -0.51034117 \pm 2.4 \cdot 10^{-2} \) |
\(a_{658}= +0.65485552 \pm 1.9 \cdot 10^{-2} \) | \(a_{659}= -0.87840973 \pm 5.1 \cdot 10^{-2} \) | \(a_{660}= -0.51017889 \pm 1.2 \cdot 10^{-1} \) |
\(a_{661}= -1.37504716 \pm 5.6 \cdot 10^{-2} \) | \(a_{662}= +0.58637792 \pm 2.4 \cdot 10^{-2} \) | \(a_{663}= +0.11089961 \pm 6.1 \cdot 10^{-2} \) |
\(a_{664}= -1.12711136 \pm 4.0 \cdot 10^{-2} \) | \(a_{665}= -1.32015159 \pm 4.6 \cdot 10^{-3} \) | \(a_{666}= +0.05928982 \pm 6.8 \cdot 10^{-2} \) |
\(a_{667}= +0.73926505 \pm 1.0 \cdot 10^{-1} \) | \(a_{668}= +0.25467703 \pm 3.5 \cdot 10^{-2} \) | \(a_{669}= +0.90153455 \pm 2.0 \cdot 10^{-2} \) |
\(a_{670}= -0.51741268 \pm 2.1 \cdot 10^{-2} \) | \(a_{671}= +2.56527294 \pm 2.6 \cdot 10^{-2} \) | \(a_{672}= +0.45463175 \pm 7.8 \cdot 10^{-2} \) |
\(a_{673}= +1.41697389 \pm 4.2 \cdot 10^{-2} \) | \(a_{674}= -0.38429415 \pm 2.8 \cdot 10^{-2} \) | \(a_{675}= +0.17227192 \pm 3.2 \cdot 10^{-2} \) |
\(a_{676}= +0.29936179 \pm 3.3 \cdot 10^{-2} \) | \(a_{677}= -0.69048631 \pm 3.9 \cdot 10^{-2} \) | \(a_{678}= -0.03355032 \pm 6.1 \cdot 10^{-2} \) |
\(a_{679}= -0.06841999 \pm 3.8 \cdot 10^{-2} \) | \(a_{680}= +0.64266530 \pm 9.6 \cdot 10^{-3} \) | \(a_{681}= -0.50997940 \pm 7.6 \cdot 10^{-2} \) |
\(a_{682}= +0.85207253 \pm 1.0 \cdot 10^{-2} \) | \(a_{683}= -1.10433723 \pm 9.0 \cdot 10^{-2} \) | \(a_{684}= +0.10677792 \pm 7.2 \cdot 10^{-2} \) |
\(a_{685}= +0.86238984 \pm 4.5 \cdot 10^{-2} \) | \(a_{686}= -0.66012762 \pm 1.8 \cdot 10^{-2} \) | \(a_{687}= -0.17174426 \pm 3.3 \cdot 10^{-2} \) |
\(a_{688}= -0.13659337 \pm 3.1 \cdot 10^{-2} \) | \(a_{689}= +0.02187663 \pm 1.8 \cdot 10^{-2} \) | \(a_{690}= +0.44677051 \pm 1.4 \cdot 10^{-1} \) |
\(a_{691}= -1.51669490 \pm 7.2 \cdot 10^{-2} \) | \(a_{692}= -0.12870054 \pm 3.0 \cdot 10^{-2} \) | \(a_{693}= +0.64052947 \pm 6.7 \cdot 10^{-2} \) |
\(a_{694}= -1.31255121 \pm 2.2 \cdot 10^{-2} \) | \(a_{695}= -1.92150958 \pm 2.8 \cdot 10^{-2} \) | \(a_{696}= +0.65296227 \pm 1.0 \cdot 10^{-1} \) |
\(a_{697}= -0.13404947 \pm 2.1 \cdot 10^{-2} \) | \(a_{698}= +1.39525990 \pm 3.2 \cdot 10^{-2} \) | \(a_{699}= -0.10743231 \pm 5.5 \cdot 10^{-2} \) |
\(a_{700}= +0.37530785 \pm 1.5 \cdot 10^{-2} \) | \(a_{701}= +1.17340767 \pm 5.1 \cdot 10^{-2} \) | \(a_{702}= +0.06809537 \pm 6.3 \cdot 10^{-2} \) |
\(a_{703}= +0.19246550 \pm 1.3 \cdot 10^{-2} \) | \(a_{704}= -1.78675577 \pm 2.3 \cdot 10^{-2} \) | \(a_{705}= -0.58729516 \pm 1.0 \cdot 10^{-1} \) |
\(a_{706}= +0.67773679 \pm 3.8 \cdot 10^{-2} \) | \(a_{707}= +0.29482295 \pm 3.0 \cdot 10^{-2} \) | \(a_{708}= -0.31082404 \pm 1.0 \cdot 10^{-1} \) |
\(a_{709}= -0.10995186 \pm 2.4 \cdot 10^{-2} \) | \(a_{710}= -0.23129486 \pm 1.9 \cdot 10^{-2} \) | \(a_{711}= -0.63350080 \pm 4.3 \cdot 10^{-2} \) |
\(a_{712}= +0.94427326 \pm 2.2 \cdot 10^{-2} \) | \(a_{713}= +0.44624600 \pm 4.5 \cdot 10^{-2} \) | \(a_{714}= -0.21972834 \pm 8.6 \cdot 10^{-2} \) |
\(a_{715}= -1.05616408 \pm 1.5 \cdot 10^{-2} \) | \(a_{716}= -0.34421264 \pm 4.6 \cdot 10^{-2} \) | \(a_{717}= -0.02356127 \pm 4.7 \cdot 10^{-2} \) |
\(a_{718}= +1.02534814 \pm 3.4 \cdot 10^{-2} \) | \(a_{719}= +0.76297130 \pm 2.3 \cdot 10^{-2} \) | \(a_{720}= +0.22288371 \pm 8.0 \cdot 10^{-2} \) |
\(a_{721}= +0.62124162 \pm 2.4 \cdot 10^{-2} \) | \(a_{722}= +0.21146546 \pm 2.5 \cdot 10^{-2} \) | \(a_{723}= +0.39178370 \pm 4.6 \cdot 10^{-2} \) |
\(a_{724}= -0.35269221 \pm 5.3 \cdot 10^{-2} \) | \(a_{725}= +0.93127616 \pm 3.9 \cdot 10^{-2} \) | \(a_{726}= -0.88690064 \pm 6.3 \cdot 10^{-2} \) |
\(a_{727}= +0.73487125 \pm 2.3 \cdot 10^{-2} \) | \(a_{728}= +0.54476118 \pm 1.1 \cdot 10^{-2} \) | \(a_{729}= +0.03703704 \pm 1.3 \cdot 10^{-6} \) |
\(a_{730}= -1.66728149 \pm 1.7 \cdot 10^{-2} \) | \(a_{731}= -0.12076701 \pm 3.2 \cdot 10^{-2} \) | \(a_{732}= +0.32314978 \pm 9.2 \cdot 10^{-2} \) |
\(a_{733}= -0.81194811 \pm 9.9 \cdot 10^{-2} \) | \(a_{734}= +0.48077026 \pm 2.1 \cdot 10^{-2} \) | \(a_{735}= -0.20278295 \pm 9.3 \cdot 10^{-2} \) |
\(a_{736}= -0.49945137 \pm 5.8 \cdot 10^{-2} \) | \(a_{737}= +0.81493908 \pm 5.4 \cdot 10^{-2} \) | \(a_{738}= -0.08231001 \pm 1.0 \cdot 10^{-1} \) |
\(a_{739}= +0.13584903 \pm 5.9 \cdot 10^{-2} \) | \(a_{740}= -0.11584151 \pm 3.3 \cdot 10^{-2} \) | \(a_{741}= +0.22104991 \pm 5.6 \cdot 10^{-2} \) |
\(a_{742}= -0.04334474 \pm 1.3 \cdot 10^{-2} \) | \(a_{743}= +1.17529709 \pm 8.2 \cdot 10^{-2} \) | \(a_{744}= +0.39415066 \pm 6.7 \cdot 10^{-2} \) |
\(a_{745}= -0.63571051 \pm 2.8 \cdot 10^{-2} \) | \(a_{746}= -1.52881781 \pm 1.9 \cdot 10^{-2} \) | \(a_{747}= -0.34560417 \pm 6.2 \cdot 10^{-2} \) |
\(a_{748}= -0.27564970 \pm 1.6 \cdot 10^{-2} \) | \(a_{749}= -2.21427877 \pm 1.4 \cdot 10^{-2} \) | \(a_{750}= -0.06592197 \pm 8.5 \cdot 10^{-2} \) |
\(a_{751}= +0.92166058 \pm 4.6 \cdot 10^{-2} \) | \(a_{752}= -0.35889943 \pm 4.7 \cdot 10^{-2} \) | \(a_{753}= +0.66693612 \pm 6.7 \cdot 10^{-2} \) |
\(a_{754}= +0.36811336 \pm 1.4 \cdot 10^{-2} \) | \(a_{755}= -0.13071424 \pm 5.0 \cdot 10^{-2} \) | \(a_{756}= +0.08068808 \pm 8.3 \cdot 10^{-2} \) |
\(a_{757}= -0.08889944 \pm 1.5 \cdot 10^{-2} \) | \(a_{758}= -0.73292245 \pm 1.5 \cdot 10^{-2} \) | \(a_{759}= -0.70367572 \pm 1.1 \cdot 10^{-1} \) |
\(a_{760}= +1.28098832 \pm 1.0 \cdot 10^{-2} \) | \(a_{761}= +1.06368954 \pm 8.9 \cdot 10^{-2} \) | \(a_{762}= +0.45024484 \pm 9.2 \cdot 10^{-2} \) |
\(a_{763}= -0.63561421 \pm 2.2 \cdot 10^{-2} \) | \(a_{764}= +0.18357489 \pm 3.3 \cdot 10^{-2} \) | \(a_{765}= +0.19705933 \pm 6.5 \cdot 10^{-2} \) |
\(a_{766}= +0.13547931 \pm 1.7 \cdot 10^{-2} \) | \(a_{767}= -0.64346288 \pm 2.5 \cdot 10^{-2} \) | \(a_{768}= -0.54609008 \pm 2.8 \cdot 10^{-2} \) |
\(a_{769}= +0.39442604 \pm 4.8 \cdot 10^{-2} \) | \(a_{770}= +2.09260585 \pm 7.0 \cdot 10^{-3} \) | \(a_{771}= +0.86763492 \pm 6.2 \cdot 10^{-2} \) |
\(a_{772}= +0.21605573 \pm 6.3 \cdot 10^{-2} \) | \(a_{773}= -1.44535863 \pm 4.2 \cdot 10^{-2} \) | \(a_{774}= -0.07415422 \pm 7.8 \cdot 10^{-2} \) |
\(a_{775}= +0.56215057 \pm 1.9 \cdot 10^{-2} \) | \(a_{776}= +0.06639026 \pm 3.8 \cdot 10^{-2} \) | \(a_{777}= +0.14543899 \pm 7.1 \cdot 10^{-2} \) |
\(a_{778}= +1.07705224 \pm 1.4 \cdot 10^{-2} \) | \(a_{779}= -0.26719321 \pm 2.8 \cdot 10^{-2} \) | \(a_{780}= -0.13304596 \pm 1.2 \cdot 10^{-1} \) |
\(a_{781}= +0.36429571 \pm 3.7 \cdot 10^{-2} \) | \(a_{782}= +0.24139014 \pm 1.0 \cdot 10^{-2} \) | \(a_{783}= +0.20021667 \pm 7.4 \cdot 10^{-2} \) |
\(a_{784}= -0.12392182 \pm 3.9 \cdot 10^{-2} \) | \(a_{785}= -1.58470072 \pm 5.5 \cdot 10^{-2} \) | \(a_{786}= +0.54840556 \pm 6.5 \cdot 10^{-2} \) |
\(a_{787}= -1.51254000 \pm 8.6 \cdot 10^{-2} \) | \(a_{788}= +0.40856041 \pm 9.2 \cdot 10^{-2} \) | \(a_{789}= -0.92311945 \pm 4.4 \cdot 10^{-2} \) |
\(a_{790}= -2.06964325 \pm 1.8 \cdot 10^{-2} \) | \(a_{791}= -0.08229954 \pm 3.8 \cdot 10^{-2} \) | \(a_{792}= -0.62152769 \pm 7.0 \cdot 10^{-2} \) |
\(a_{793}= +0.66897944 \pm 2.6 \cdot 10^{-2} \) | \(a_{794}= +0.44282254 \pm 2.6 \cdot 10^{-2} \) | \(a_{795}= +0.03887294 \pm 7.0 \cdot 10^{-2} \) |
\(a_{796}= -0.21702599 \pm 3.7 \cdot 10^{-2} \) | \(a_{797}= +0.15712622 \pm 2.0 \cdot 10^{-2} \) | \(a_{798}= -0.43797205 \pm 8.1 \cdot 10^{-2} \) |
\(a_{799}= -0.31731562 \pm 1.9 \cdot 10^{-2} \) | \(a_{800}= -0.62917510 \pm 2.6 \cdot 10^{-2} \) | \(a_{801}= +0.28954085 \pm 2.5 \cdot 10^{-2} \) |
\(a_{802}= -0.45403006 \pm 2.3 \cdot 10^{-2} \) | \(a_{803}= +2.62601378 \pm 1.5 \cdot 10^{-2} \) | \(a_{804}= +0.10265862 \pm 1.3 \cdot 10^{-1} \) |
\(a_{805}= +1.09593605 \pm 1.3 \cdot 10^{-2} \) | \(a_{806}= +0.22220599 \pm 6.7 \cdot 10^{-3} \) | \(a_{807}= +0.48961998 \pm 3.8 \cdot 10^{-2} \) |
\(a_{808}= -0.28607681 \pm 2.5 \cdot 10^{-2} \) | \(a_{809}= +0.20077594 \pm 5.0 \cdot 10^{-2} \) | \(a_{810}= +0.12099977 \pm 6.7 \cdot 10^{-2} \) |
\(a_{811}= -0.61978530 \pm 2.1 \cdot 10^{-2} \) | \(a_{812}= +0.43618768 \pm 2.3 \cdot 10^{-2} \) | \(a_{813}= -0.71020807 \pm 5.2 \cdot 10^{-2} \) |
\(a_{814}= -0.30508196 \pm 2.2 \cdot 10^{-2} \) | \(a_{815}= +0.14789824 \pm 9.2 \cdot 10^{-3} \) | \(a_{816}= +0.12042409 \pm 6.7 \cdot 10^{-2} \) |
\(a_{817}= -0.24071803 \pm 1.5 \cdot 10^{-2} \) | \(a_{818}= +0.57216266 \pm 2.8 \cdot 10^{-2} \) | \(a_{819}= +0.16703916 \pm 6.7 \cdot 10^{-2} \) |
\(a_{820}= +0.16081877 \pm 4.7 \cdot 10^{-2} \) | \(a_{821}= -0.71973341 \pm 6.2 \cdot 10^{-2} \) | \(a_{822}= +0.28610551 \pm 9.3 \cdot 10^{-2} \) |
\(a_{823}= +0.89374750 \pm 2.7 \cdot 10^{-2} \) | \(a_{824}= -0.60281203 \pm 2.5 \cdot 10^{-2} \) | \(a_{825}= -0.88644313 \pm 6.8 \cdot 10^{-2} \) |
\(a_{826}= +1.27491005 \pm 3.8 \cdot 10^{-2} \) | \(a_{827}= +0.40071659 \pm 4.0 \cdot 10^{-2} \) | \(a_{828}= -0.08864267 \pm 1.2 \cdot 10^{-1} \) |
\(a_{829}= +0.71880833 \pm 6.2 \cdot 10^{-2} \) | \(a_{830}= -1.12908672 \pm 1.2 \cdot 10^{-2} \) | \(a_{831}= +0.02293620 \pm 2.8 \cdot 10^{-2} \) |
\(a_{832}= -0.46595544 \pm 2.0 \cdot 10^{-2} \) | \(a_{833}= -0.10956364 \pm 2.2 \cdot 10^{-2} \) | \(a_{834}= -0.63747791 \pm 7.1 \cdot 10^{-2} \) |
\(a_{835}= +0.93684049 \pm 2.6 \cdot 10^{-2} \) | \(a_{836}= -0.54943692 \pm 1.2 \cdot 10^{-2} \) | \(a_{837}= +0.12085772 \pm 3.3 \cdot 10^{-2} \) |
\(a_{838}= -0.65097001 \pm 1.3 \cdot 10^{-2} \) | \(a_{839}= -1.76304063 \pm 2.8 \cdot 10^{-2} \) | \(a_{840}= +0.96799502 \pm 1.0 \cdot 10^{-1} \) |
\(a_{841}= +0.08234131 \pm 4.6 \cdot 10^{-2} \) | \(a_{842}= +0.53699383 \pm 4.0 \cdot 10^{-2} \) | \(a_{843}= +0.88029011 \pm 6.0 \cdot 10^{-2} \) |
\(a_{844}= -0.59873174 \pm 2.3 \cdot 10^{-2} \) | \(a_{845}= +1.10121531 \pm 2.5 \cdot 10^{-2} \) | \(a_{846}= -0.19484040 \pm 9.0 \cdot 10^{-2} \) |
\(a_{847}= -2.17558314 \pm 1.7 \cdot 10^{-2} \) | \(a_{848}= +0.02375548 \pm 2.2 \cdot 10^{-2} \) | \(a_{849}= +0.29946487 \pm 8.3 \cdot 10^{-2} \) |
\(a_{850}= +0.30408699 \pm 8.8 \cdot 10^{-3} \) | \(a_{851}= -0.15977701 \pm 4.4 \cdot 10^{-2} \) | \(a_{852}= +0.04589066 \pm 1.1 \cdot 10^{-1} \) |
\(a_{853}= -0.12968104 \pm 6.8 \cdot 10^{-2} \) | \(a_{854}= -1.32546667 \pm 4.9 \cdot 10^{-3} \) | \(a_{855}= +0.39278719 \pm 6.0 \cdot 10^{-2} \) |
\(a_{856}= +2.14859055 \pm 1.6 \cdot 10^{-2} \) | \(a_{857}= -0.11046011 \pm 3.8 \cdot 10^{-2} \) | \(a_{858}= -0.35039184 \pm 9.8 \cdot 10^{-2} \) |
\(a_{859}= -1.33088414 \pm 4.3 \cdot 10^{-2} \) | \(a_{860}= +0.14488384 \pm 3.0 \cdot 10^{-2} \) | \(a_{861}= -0.20190793 \pm 1.0 \cdot 10^{-1} \) |
\(a_{862}= +1.30071886 \pm 2.6 \cdot 10^{-2} \) | \(a_{863}= -0.74372876 \pm 6.4 \cdot 10^{-2} \) | \(a_{864}= -0.13526744 \pm 4.6 \cdot 10^{-2} \) |
\(a_{865}= -0.47343052 \pm 2.4 \cdot 10^{-2} \) | \(a_{866}= +0.31887689 \pm 3.5 \cdot 10^{-2} \) | \(a_{867}= -0.47087910 \pm 5.4 \cdot 10^{-2} \) |
\(a_{868}= +0.26329800 \pm 1.3 \cdot 10^{-2} \) | \(a_{869}= +3.25974452 \pm 2.8 \cdot 10^{-2} \) | \(a_{870}= +0.65410664 \pm 1.4 \cdot 10^{-1} \) |
\(a_{871}= +0.21252221 \pm 5.6 \cdot 10^{-2} \) | \(a_{872}= +0.61675824 \pm 3.1 \cdot 10^{-2} \) | \(a_{873}= +0.02035713 \pm 5.9 \cdot 10^{-2} \) |
\(a_{874}= +0.48114929 \pm 9.4 \cdot 10^{-3} \) | \(a_{875}= -0.16170776 \pm 2.3 \cdot 10^{-2} \) | \(a_{876}= +0.33080136 \pm 7.6 \cdot 10^{-2} \) |
\(a_{877}= -0.40063869 \pm 3.4 \cdot 10^{-2} \) | \(a_{878}= -1.09270464 \pm 2.4 \cdot 10^{-2} \) | \(a_{879}= -0.06034727 \pm 8.9 \cdot 10^{-2} \) |
\(a_{880}= -1.14687139 \pm 2.0 \cdot 10^{-2} \) | \(a_{881}= -1.47917001 \pm 8.5 \cdot 10^{-2} \) | \(a_{882}= -0.06727505 \pm 8.2 \cdot 10^{-2} \) |
\(a_{883}= +1.24970787 \pm 1.4 \cdot 10^{-2} \) | \(a_{884}= -0.07188474 \pm 1.1 \cdot 10^{-2} \) | \(a_{885}= -1.14337969 \pm 8.9 \cdot 10^{-2} \) |
\(a_{886}= -1.43631051 \pm 4.3 \cdot 10^{-2} \) | \(a_{887}= +1.06863645 \pm 7.1 \cdot 10^{-2} \) | \(a_{888}= -0.14112443 \pm 7.4 \cdot 10^{-2} \) |
\(a_{889}= +1.10445864 \pm 5.5 \cdot 10^{-2} \) | \(a_{890}= +0.94592818 \pm 1.4 \cdot 10^{-2} \) | \(a_{891}= -0.19057794 \pm 3.5 \cdot 10^{-2} \) |
\(a_{892}= -0.58437154 \pm 2.0 \cdot 10^{-2} \) | \(a_{893}= -0.63248724 \pm 2.4 \cdot 10^{-2} \) | \(a_{894}= -0.21090262 \pm 7.6 \cdot 10^{-2} \) |
\(a_{895}= -1.26620111 \pm 3.4 \cdot 10^{-2} \) | \(a_{896}= +0.13576456 \pm 1.7 \cdot 10^{-2} \) | \(a_{897}= -0.18350663 \pm 1.1 \cdot 10^{-1} \) |
\(a_{898}= -0.28903336 \pm 3.7 \cdot 10^{-2} \) | \(a_{899}= +0.65333873 \pm 4.2 \cdot 10^{-2} \) | \(a_{900}= -0.11166605 \pm 8.3 \cdot 10^{-2} \) |
\(a_{901}= +0.02100305 \pm 1.8 \cdot 10^{-2} \) | \(a_{902}= +0.42353475 \pm 1.5 \cdot 10^{-2} \) | \(a_{903}= -0.18190163 \pm 8.2 \cdot 10^{-2} \) |
\(a_{904}= +0.07985807 \pm 2.9 \cdot 10^{-2} \) | \(a_{905}= -1.29739356 \pm 4.2 \cdot 10^{-2} \) | \(a_{906}= -0.04336561 \pm 1.0 \cdot 10^{-1} \) |
\(a_{907}= +0.31908214 \pm 1.0 \cdot 10^{-1} \) | \(a_{908}= +0.33056686 \pm 7.3 \cdot 10^{-2} \) | \(a_{909}= -0.08771923 \pm 3.2 \cdot 10^{-2} \) |
\(a_{910}= +0.54571592 \pm 4.1 \cdot 10^{-3} \) | \(a_{911}= -0.45970948 \pm 7.1 \cdot 10^{-2} \) | \(a_{912}= +0.24003450 \pm 6.3 \cdot 10^{-2} \) |
\(a_{913}= +1.77834235 \pm 3.9 \cdot 10^{-2} \) | \(a_{914}= +0.13771432 \pm 3.2 \cdot 10^{-2} \) | \(a_{915}= +1.18872046 \pm 8.0 \cdot 10^{-2} \) |
\(a_{916}= +0.11132403 \pm 2.6 \cdot 10^{-2} \) | \(a_{917}= +1.34524866 \pm 3.6 \cdot 10^{-2} \) | \(a_{918}= +0.06537619 \pm 5.4 \cdot 10^{-2} \) |
\(a_{919}= -0.67374395 \pm 3.8 \cdot 10^{-2} \) | \(a_{920}= -1.06342429 \pm 2.8 \cdot 10^{-2} \) | \(a_{921}= +1.07621186 \pm 2.5 \cdot 10^{-2} \) |
\(a_{922}= -0.15565786 \pm 1.3 \cdot 10^{-2} \) | \(a_{923}= +0.09500211 \pm 3.5 \cdot 10^{-2} \) | \(a_{924}= -0.41518896 \pm 1.1 \cdot 10^{-1} \) |
\(a_{925}= -0.20127629 \pm 1.8 \cdot 10^{-2} \) | \(a_{926}= +0.50010486 \pm 3.1 \cdot 10^{-2} \) | \(a_{927}= -0.18483919 \pm 4.2 \cdot 10^{-2} \) |
\(a_{928}= -0.73123551 \pm 5.8 \cdot 10^{-2} \) | \(a_{929}= -0.18348015 \pm 5.3 \cdot 10^{-2} \) | \(a_{930}= +0.39484144 \pm 1.0 \cdot 10^{-1} \) |
\(a_{931}= -0.21838700 \pm 1.9 \cdot 10^{-2} \) | \(a_{932}= +0.06963725 \pm 5.1 \cdot 10^{-2} \) | \(a_{933}= +0.11237003 \pm 8.3 \cdot 10^{-2} \) |
\(a_{934}= -0.09952421 \pm 3.1 \cdot 10^{-2} \) | \(a_{935}= -1.01398935 \pm 1.2 \cdot 10^{-2} \) | \(a_{936}= -0.16208382 \pm 6.9 \cdot 10^{-2} \) |
\(a_{937}= -0.04680437 \pm 3.8 \cdot 10^{-2} \) | \(a_{938}= -0.42107589 \pm 1.6 \cdot 10^{-2} \) | \(a_{939}= -0.35202104 \pm 3.5 \cdot 10^{-2} \) |
\(a_{940}= +0.38068266 \pm 3.8 \cdot 10^{-2} \) | \(a_{941}= -1.79220609 \pm 4.2 \cdot 10^{-2} \) | \(a_{942}= -0.52573857 \pm 1.0 \cdot 10^{-1} \) |
\(a_{943}= +0.22181291 \pm 1.1 \cdot 10^{-1} \) | \(a_{944}= -0.69872588 \pm 2.5 \cdot 10^{-2} \) | \(a_{945}= +0.29681461 \pm 7.1 \cdot 10^{-2} \) |
\(a_{946}= +0.38156827 \pm 2.4 \cdot 10^{-2} \) | \(a_{947}= +1.07105360 \pm 2.7 \cdot 10^{-2} \) | \(a_{948}= +0.41063300 \pm 9.5 \cdot 10^{-2} \) |
\(a_{949}= +0.68481961 \pm 1.4 \cdot 10^{-2} \) | \(a_{950}= +0.60611936 \pm 5.9 \cdot 10^{-3} \) | \(a_{951}= +0.08580138 \pm 3.5 \cdot 10^{-2} \) |
\(a_{952}= +0.52300779 \pm 1.0 \cdot 10^{-2} \) | \(a_{953}= -1.03446462 \pm 9.7 \cdot 10^{-2} \) | \(a_{954}= +0.01289644 \pm 5.9 \cdot 10^{-2} \) |
\(a_{955}= +0.67528817 \pm 2.3 \cdot 10^{-2} \) | \(a_{956}= +0.01527233 \pm 4.1 \cdot 10^{-2} \) | \(a_{957}= -1.03023578 \pm 1.0 \cdot 10^{-1} \) |
\(a_{958}= -0.78544734 \pm 2.8 \cdot 10^{-2} \) | \(a_{959}= +0.70182193 \pm 3.1 \cdot 10^{-2} \) | \(a_{960}= -0.82796381 \pm 7.7 \cdot 10^{-2} \) |
\(a_{961}= -0.60562210 \pm 3.7 \cdot 10^{-2} \) | \(a_{962}= -0.07956017 \pm 1.2 \cdot 10^{-2} \) | \(a_{963}= +0.65881854 \pm 2.8 \cdot 10^{-2} \) |
\(a_{964}= -0.25395282 \pm 3.9 \cdot 10^{-2} \) | \(a_{965}= +0.79477035 \pm 4.9 \cdot 10^{-2} \) | \(a_{966}= +0.36358654 \pm 1.3 \cdot 10^{-1} \) |
\(a_{967}= +0.28517152 \pm 9.8 \cdot 10^{-2} \) | \(a_{968}= +2.11104286 \pm 2.0 \cdot 10^{-2} \) | \(a_{969}= +0.21222295 \pm 4.7 \cdot 10^{-2} \) |
\(a_{970}= +0.06650662 \pm 1.2 \cdot 10^{-2} \) | \(a_{971}= -0.10610810 \pm 8.9 \cdot 10^{-2} \) | \(a_{972}= -0.02400728 \pm 5.1 \cdot 10^{-2} \) |
\(a_{973}= -1.56374472 \pm 4.3 \cdot 10^{-2} \) | \(a_{974}= -0.32534174 \pm 1.6 \cdot 10^{-2} \) | \(a_{975}= -0.23116925 \pm 6.7 \cdot 10^{-2} \) |
\(a_{976}= +0.72643388 \pm 3.3 \cdot 10^{-2} \) | \(a_{977}= -0.55268880 \pm 5.4 \cdot 10^{-2} \) | \(a_{978}= +0.04906656 \pm 3.8 \cdot 10^{-2} \) |
\(a_{979}= -1.48986266 \pm 1.7 \cdot 10^{-2} \) | \(a_{980}= +0.13144320 \pm 3.3 \cdot 10^{-2} \) | \(a_{981}= +0.18911549 \pm 5.7 \cdot 10^{-2} \) |
\(a_{982}= +0.31321036 \pm 1.7 \cdot 10^{-2} \) | \(a_{983}= +1.63998231 \pm 2.4 \cdot 10^{-2} \) | \(a_{984}= +0.19591818 \pm 1.1 \cdot 10^{-1} \) |
\(a_{985}= +1.50290718 \pm 6.9 \cdot 10^{-2} \) | \(a_{986}= +0.35341387 \pm 3.3 \cdot 10^{-2} \) | \(a_{987}= -0.47794698 \pm 9.4 \cdot 10^{-2} \) |
\(a_{988}= -0.14328378 \pm 1.3 \cdot 10^{-2} \) | \(a_{989}= +0.19983430 \pm 5.1 \cdot 10^{-2} \) | \(a_{990}= -0.62261697 \pm 1.0 \cdot 10^{-1} \) |
\(a_{991}= +0.47287345 \pm 6.5 \cdot 10^{-2} \) | \(a_{992}= -0.44139910 \pm 2.6 \cdot 10^{-2} \) | \(a_{993}= -0.42796854 \pm 3.3 \cdot 10^{-2} \) |
\(a_{994}= -0.18823019 \pm 2.5 \cdot 10^{-2} \) | \(a_{995}= -0.79833950 \pm 2.8 \cdot 10^{-2} \) | \(a_{996}= +0.22401941 \pm 1.1 \cdot 10^{-1} \) |
\(a_{997}= -1.91067788 \pm 8.0 \cdot 10^{-2} \) | \(a_{998}= -0.26908133 \pm 3.3 \cdot 10^{-2} \) | \(a_{999}= -0.04327274 \pm 3.9 \cdot 10^{-2} \) |
\(a_{1000}= +0.15691058 \pm 3.1 \cdot 10^{-2} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000