Maass form invariants
Level: | \( 5 \) |
Weight: | \( 0 \) |
Character: | 5.1 |
Symmetry: | odd |
Fricke sign: | $+1$ |
Spectral parameter: | \(13.5751469722125384701318658932 \pm 6 \cdot 10^{-9}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -1.77264780 \pm 7.1 \cdot 10^{-6} \) | \(a_{3}= +1.65091832 \pm 7.7 \cdot 10^{-6} \) |
\(a_{4}= +2.14228021 \pm 6.2 \cdot 10^{-6} \) | \(a_{5}= -0.44721360 \pm 1.0 \cdot 10^{-8} \) | \(a_{6}= -2.92649673 \pm 7.3 \cdot 10^{-6} \) |
\(a_{7}= -0.37903577 \pm 2.9 \cdot 10^{-6} \) | \(a_{8}= -2.02486051 \pm 6.6 \cdot 10^{-6} \) | \(a_{9}= +1.72553131 \pm 3.7 \cdot 10^{-6} \) |
\(a_{10}= +0.79275220 \pm 7.1 \cdot 10^{-6} \) | \(a_{11}= -1.17938046 \pm 3.9 \cdot 10^{-6} \) | \(a_{12}= +3.53672966 \pm 6.4 \cdot 10^{-6} \) |
\(a_{13}= -0.12677608 \pm 5.0 \cdot 10^{-6} \) | \(a_{14}= +0.67189693 \pm 3.0 \cdot 10^{-6} \) | \(a_{15}= -0.73831312 \pm 7.7 \cdot 10^{-6} \) |
\(a_{16}= +1.44708430 \pm 3.1 \cdot 10^{-6} \) | \(a_{17}= +0.22158530 \pm 7.9 \cdot 10^{-6} \) | \(a_{18}= -3.05875927 \pm 3.3 \cdot 10^{-6} \) |
\(a_{19}= +0.43589052 \pm 7.3 \cdot 10^{-6} \) | \(a_{20}= -0.95805684 \pm 6.2 \cdot 10^{-6} \) | \(a_{21}= -0.62575710 \pm 3.2 \cdot 10^{-6} \) |
\(a_{22}= +2.09062617 \pm 4.2 \cdot 10^{-6} \) | \(a_{23}= -1.14188714 \pm 3.0 \cdot 10^{-6} \) | \(a_{24}= -3.34287931 \pm 6.9 \cdot 10^{-6} \) |
\(a_{25}= +0.2 \) | \(a_{26}= +0.22472933 \pm 6.0 \cdot 10^{-6} \) | \(a_{27}= +1.19779293 \pm 5.9 \cdot 10^{-6} \) |
\(a_{28}= -0.81200084 \pm 2.4 \cdot 10^{-6} \) | \(a_{29}= -0.34369638 \pm 3.6 \cdot 10^{-6} \) | \(a_{30}= +1.30876912 \pm 1.4 \cdot 10^{-5} \) |
\(a_{31}= -0.32124002 \pm 7.6 \cdot 10^{-6} \) | \(a_{32}= -0.54031030 \pm 7.7 \cdot 10^{-6} \) | \(a_{33}= -1.94706080 \pm 2.8 \cdot 10^{-6} \) |
\(a_{34}= -0.39279269 \pm 7.5 \cdot 10^{-6} \) | \(a_{35}= +0.16950995 \pm 2.9 \cdot 10^{-6} \) | \(a_{36}= +3.69657158 \pm 1.7 \cdot 10^{-6} \) |
\(a_{37}= -1.30109525 \pm 9.4 \cdot 10^{-6} \) | \(a_{38}= -0.77268036 \pm 5.1 \cdot 10^{-6} \) | \(a_{39}= -0.20929695 \pm 4.0 \cdot 10^{-6} \) |
\(a_{40}= +0.90554515 \pm 6.6 \cdot 10^{-6} \) | \(a_{41}= -1.58967132 \pm 8.1 \cdot 10^{-6} \) | \(a_{42}= +1.10924695 \pm 3.0 \cdot 10^{-6} \) |
\(a_{43}= +1.26867000 \pm 8.0 \cdot 10^{-6} \) | \(a_{44}= -2.52656342 \pm 3.0 \cdot 10^{-6} \) | \(a_{45}= -0.77168106 \pm 3.8 \cdot 10^{-6} \) |
\(a_{46}= +2.02416373 \pm 3.7 \cdot 10^{-6} \) | \(a_{47}= -1.49696719 \pm 4.7 \cdot 10^{-6} \) | \(a_{48}= +2.38901799 \pm 3.2 \cdot 10^{-6} \) |
\(a_{49}= -0.85633188 \pm 6.4 \cdot 10^{-6} \) | \(a_{50}= -0.35452956 \pm 7.1 \cdot 10^{-6} \) | \(a_{51}= +0.36581923 \pm 7.7 \cdot 10^{-6} \) |
\(a_{52}= -0.27158988 \pm 4.8 \cdot 10^{-6} \) | \(a_{53}= +0.91226476 \pm 7.5 \cdot 10^{-6} \) | \(a_{54}= -2.12326500 \pm 6.1 \cdot 10^{-6} \) |
\(a_{55}= +0.52743497 \pm 3.9 \cdot 10^{-6} \) | \(a_{56}= +0.76749457 \pm 2.6 \cdot 10^{-6} \) | \(a_{57}= +0.71961964 \pm 8.5 \cdot 10^{-6} \) |
\(a_{58}= +0.60925263 \pm 2.8 \cdot 10^{-6} \) | \(a_{59}= -0.66326051 \pm 6.0 \cdot 10^{-6} \) | \(a_{60}= -1.58167359 \pm 1.3 \cdot 10^{-5} \) |
\(a_{61}= -0.69399853 \pm 4.3 \cdot 10^{-6} \) | \(a_{62}= +0.56944541 \pm 1.0 \cdot 10^{-5} \) | \(a_{63}= -0.65403809 \pm 2.3 \cdot 10^{-6} \) |
\(a_{64}= -0.48930445 \pm 7.1 \cdot 10^{-6} \) | \(a_{65}= +0.05669598 \pm 5.0 \cdot 10^{-6} \) | \(a_{66}= +3.45145305 \pm 3.4 \cdot 10^{-6} \) |
\(a_{67}= +1.89502169 \pm 4.8 \cdot 10^{-6} \) | \(a_{68}= +0.47469780 \pm 6.5 \cdot 10^{-6} \) | \(a_{69}= -1.88516241 \pm 3.5 \cdot 10^{-6} \) |
\(a_{70}= -0.30048144 \pm 1.0 \cdot 10^{-5} \) | \(a_{71}= -1.47012969 \pm 3.7 \cdot 10^{-6} \) | \(a_{72}= -3.49396020 \pm 3.8 \cdot 10^{-6} \) |
\(a_{73}= -0.36904390 \pm 6.3 \cdot 10^{-6} \) | \(a_{74}= +2.30638363 \pm 6.6 \cdot 10^{-6} \) | \(a_{75}= +0.33018366 \pm 7.7 \cdot 10^{-6} \) |
\(a_{76}= +0.93379963 \pm 4.8 \cdot 10^{-6} \) | \(a_{77}= +0.44702738 \pm 1.9 \cdot 10^{-6} \) | \(a_{78}= +0.37100977 \pm 5.5 \cdot 10^{-6} \) |
\(a_{79}= -0.69379252 \pm 9.0 \cdot 10^{-6} \) | \(a_{80}= -0.64715577 \pm 3.1 \cdot 10^{-6} \) | \(a_{81}= +0.25192698 \pm 8.0 \cdot 10^{-6} \) |
\(a_{82}= +2.81792737 \pm 1.0 \cdot 10^{-5} \) | \(a_{83}= -0.10092596 \pm 7.8 \cdot 10^{-6} \) | \(a_{84}= -1.34054706 \pm 2.1 \cdot 10^{-6} \) |
\(a_{85}= -0.09909596 \pm 7.9 \cdot 10^{-6} \) | \(a_{86}= -2.24890509 \pm 4.9 \cdot 10^{-6} \) | \(a_{87}= -0.56741465 \pm 4.1 \cdot 10^{-6} \) |
\(a_{88}= +2.38808091 \pm 3.6 \cdot 10^{-6} \) | \(a_{89}= -1.08748333 \pm 9.1 \cdot 10^{-6} \) | \(a_{90}= +1.36791873 \pm 1.0 \cdot 10^{-5} \) |
\(a_{91}= +0.04805267 \pm 2.1 \cdot 10^{-6} \) | \(a_{92}= -2.44624224 \pm 2.6 \cdot 10^{-6} \) | \(a_{93}= -0.53034103 \pm 7.9 \cdot 10^{-6} \) |
\(a_{94}= +2.65359559 \pm 4.4 \cdot 10^{-6} \) | \(a_{95}= -0.19493617 \pm 7.3 \cdot 10^{-6} \) | \(a_{96}= -0.89200817 \pm 8.0 \cdot 10^{-6} \) |
\(a_{97}= +0.43434346 \pm 5.8 \cdot 10^{-6} \) | \(a_{98}= +1.51797483 \pm 6.1 \cdot 10^{-6} \) | \(a_{99}= -2.03505790 \pm 3.4 \cdot 10^{-6} \) |
\(a_{100}= +0.42845604 \pm 6.2 \cdot 10^{-6} \) | \(a_{101}= +1.19885516 \pm 6.1 \cdot 10^{-6} \) | \(a_{102}= -0.64846865 \pm 7.4 \cdot 10^{-6} \) |
\(a_{103}= -0.23335854 \pm 5.9 \cdot 10^{-6} \) | \(a_{104}= +0.25670387 \pm 4.3 \cdot 10^{-6} \) | \(a_{105}= +0.27984708 \pm 1.0 \cdot 10^{-5} \) |
\(a_{106}= -1.61712412 \pm 6.0 \cdot 10^{-6} \) | \(a_{107}= -0.04657559 \pm 5.9 \cdot 10^{-6} \) | \(a_{108}= +2.56600809 \pm 5.6 \cdot 10^{-6} \) |
\(a_{109}= +1.22000164 \pm 3.7 \cdot 10^{-6} \) | \(a_{110}= -0.93495645 \pm 1.1 \cdot 10^{-5} \) | \(a_{111}= -2.14800199 \pm 1.0 \cdot 10^{-5} \) |
\(a_{112}= -0.54849672 \pm 2.1 \cdot 10^{-6} \) | \(a_{113}= +0.66893933 \pm 5.4 \cdot 10^{-6} \) | \(a_{114}= -1.27563217 \pm 6.0 \cdot 10^{-6} \) |
\(a_{115}= +0.51066746 \pm 3.0 \cdot 10^{-6} \) | \(a_{116}= -0.73629395 \pm 1.9 \cdot 10^{-6} \) | \(a_{117}= -0.21875609 \pm 3.7 \cdot 10^{-6} \) |
\(a_{118}= +1.17572728 \pm 6.1 \cdot 10^{-6} \) | \(a_{119}= -0.08398875 \pm 2.5 \cdot 10^{-6} \) | \(a_{120}= +1.49498108 \pm 1.4 \cdot 10^{-5} \) |
\(a_{121}= +0.39093826 \pm 6.2 \cdot 10^{-6} \) | \(a_{122}= +1.23021497 \pm 3.5 \cdot 10^{-6} \) | \(a_{123}= -2.62441751 \pm 8.1 \cdot 10^{-6} \) |
\(a_{124}= -0.68818614 \pm 9.1 \cdot 10^{-6} \) | \(a_{125}= -0.08944272 \pm 3.1 \cdot 10^{-7} \) | \(a_{126}= +1.15937919 \pm 2.3 \cdot 10^{-6} \) |
\(a_{127}= +0.78825268 \pm 8.4 \cdot 10^{-6} \) | \(a_{128}= +1.40767475 \pm 5.4 \cdot 10^{-6} \) | \(a_{129}= +2.09447055 \pm 8.9 \cdot 10^{-6} \) |
\(a_{130}= -0.10050201 \pm 1.2 \cdot 10^{-5} \) | \(a_{131}= -0.35765834 \pm 7.2 \cdot 10^{-6} \) | \(a_{132}= -4.17114984 \pm 2.7 \cdot 10^{-6} \) |
\(a_{133}= -0.16521810 \pm 3.0 \cdot 10^{-6} \) | \(a_{134}= -3.35920602 \pm 3.4 \cdot 10^{-6} \) | \(a_{135}= -0.53566928 \pm 5.9 \cdot 10^{-6} \) |
\(a_{136}= -0.44867932 \pm 7.2 \cdot 10^{-6} \) | \(a_{137}= +0.84496830 \pm 8.8 \cdot 10^{-6} \) | \(a_{138}= +3.34172899 \pm 3.8 \cdot 10^{-6} \) |
\(a_{139}= +0.66795329 \pm 8.5 \cdot 10^{-6} \) | \(a_{140}= +0.36313781 \pm 9.2 \cdot 10^{-6} \) | \(a_{141}= -2.47137056 \pm 2.5 \cdot 10^{-6} \) |
\(a_{142}= +2.60602215 \pm 3.8 \cdot 10^{-6} \) | \(a_{143}= +0.14951723 \pm 4.4 \cdot 10^{-6} \) | \(a_{144}= +2.49698927 \pm 2.5 \cdot 10^{-6} \) |
\(a_{145}= +0.15370569 \pm 3.6 \cdot 10^{-6} \) | \(a_{146}= +0.65418486 \pm 5.4 \cdot 10^{-6} \) | \(a_{147}= -1.41373399 \pm 6.6 \cdot 10^{-6} \) |
\(a_{148}= -2.78731062 \pm 6.5 \cdot 10^{-6} \) | \(a_{149}= -0.02353702 \pm 2.7 \cdot 10^{-6} \) | \(a_{150}= -0.58529935 \pm 1.4 \cdot 10^{-5} \) |
\(a_{151}= +0.84305958 \pm 4.8 \cdot 10^{-6} \) | \(a_{152}= -0.88261749 \pm 7.2 \cdot 10^{-6} \) | \(a_{153}= +0.38235237 \pm 4.1 \cdot 10^{-6} \) |
\(a_{154}= -0.79242211 \pm 2.2 \cdot 10^{-6} \) | \(a_{155}= +0.14366290 \pm 7.6 \cdot 10^{-6} \) | \(a_{156}= -0.44837271 \pm 4.6 \cdot 10^{-6} \) |
\(a_{157}= +0.37253415 \pm 6.8 \cdot 10^{-6} \) | \(a_{158}= +1.22984979 \pm 6.3 \cdot 10^{-6} \) | \(a_{159}= +1.50607461 \pm 7.9 \cdot 10^{-6} \) |
\(a_{160}= +0.24163411 \pm 7.7 \cdot 10^{-6} \) | \(a_{161}= +0.43281608 \pm 2.2 \cdot 10^{-6} \) | \(a_{162}= -0.44657781 \pm 7.5 \cdot 10^{-6} \) |
\(a_{163}= -0.94621911 \pm 6.2 \cdot 10^{-6} \) | \(a_{164}= -3.40552142 \pm 9.1 \cdot 10^{-6} \) | \(a_{165}= +0.87075206 \pm 1.1 \cdot 10^{-5} \) |
\(a_{166}= +0.17890618 \pm 5.9 \cdot 10^{-6} \) | \(a_{167}= -0.35383502 \pm 6.1 \cdot 10^{-6} \) | \(a_{168}= +1.26707085 \pm 3.1 \cdot 10^{-6} \) |
\(a_{169}= -0.98392783 \pm 6.0 \cdot 10^{-6} \) | \(a_{170}= +0.17566223 \pm 1.5 \cdot 10^{-5} \) | \(a_{171}= +0.75214273 \pm 3.4 \cdot 10^{-6} \) |
\(a_{172}= +2.71784665 \pm 5.3 \cdot 10^{-6} \) | \(a_{173}= -0.92449388 \pm 6.8 \cdot 10^{-6} \) | \(a_{174}= +1.00582632 \pm 3.3 \cdot 10^{-6} \) |
\(a_{175}= -0.07580715 \pm 2.9 \cdot 10^{-6} \) | \(a_{176}= -1.70666294 \pm 2.5 \cdot 10^{-6} \) | \(a_{177}= -1.09498893 \pm 7.1 \cdot 10^{-6} \) |
\(a_{178}= +1.92772493 \pm 8.5 \cdot 10^{-6} \) | \(a_{179}= +0.82332294 \pm 7.4 \cdot 10^{-6} \) | \(a_{180}= -1.65315707 \pm 1.0 \cdot 10^{-5} \) |
\(a_{181}= -0.46589543 \pm 7.7 \cdot 10^{-6} \) | \(a_{182}= -0.08518046 \pm 2.7 \cdot 10^{-6} \) | \(a_{183}= -1.14573489 \pm 4.8 \cdot 10^{-6} \) |
\(a_{184}= +2.31216218 \pm 2.4 \cdot 10^{-6} \) | \(a_{185}= +0.58186749 \pm 9.5 \cdot 10^{-6} \) | \(a_{186}= +0.94010786 \pm 1.0 \cdot 10^{-5} \) |
\(a_{187}= -0.26133337 \pm 4.8 \cdot 10^{-6} \) | \(a_{188}= -3.20692319 \pm 3.1 \cdot 10^{-6} \) | \(a_{189}= -0.45400637 \pm 2.1 \cdot 10^{-6} \) |
\(a_{190}= +0.34555316 \pm 1.4 \cdot 10^{-5} \) | \(a_{191}= -0.62377041 \pm 1.9 \cdot 10^{-6} \) | \(a_{192}= -0.80780168 \pm 7.3 \cdot 10^{-6} \) |
\(a_{193}= +1.29447070 \pm 3.1 \cdot 10^{-6} \) | \(a_{194}= -0.76993798 \pm 5.1 \cdot 10^{-6} \) | \(a_{195}= +0.09360044 \pm 1.2 \cdot 10^{-5} \) |
\(a_{196}= -1.83450285 \pm 5.5 \cdot 10^{-6} \) | \(a_{197}= +1.55431385 \pm 7.2 \cdot 10^{-6} \) | \(a_{198}= +3.60744090 \pm 3.1 \cdot 10^{-6} \) |
\(a_{199}= -0.99953818 \pm 9.9 \cdot 10^{-6} \) | \(a_{200}= -0.40497210 \pm 6.6 \cdot 10^{-6} \) | \(a_{201}= +3.12852602 \pm 5.4 \cdot 10^{-6} \) |
\(a_{202}= -2.12514796 \pm 5.7 \cdot 10^{-6} \) | \(a_{203}= +0.13027322 \pm 1.9 \cdot 10^{-6} \) | \(a_{204}= +0.78368730 \pm 6.7 \cdot 10^{-6} \) |
\(a_{205}= +0.71092263 \pm 8.1 \cdot 10^{-6} \) | \(a_{206}= +0.41366251 \pm 8.8 \cdot 10^{-6} \) | \(a_{207}= -1.97036202 \pm 2.8 \cdot 10^{-6} \) |
\(a_{208}= -0.18345567 \pm 2.8 \cdot 10^{-6} \) | \(a_{209}= -0.51408076 \pm 1.7 \cdot 10^{-6} \) | \(a_{210}= -0.49607032 \pm 1.7 \cdot 10^{-5} \) |
\(a_{211}= +1.25213695 \pm 4.2 \cdot 10^{-6} \) | \(a_{212}= +1.95432674 \pm 5.6 \cdot 10^{-6} \) | \(a_{213}= -2.42706403 \pm 4.5 \cdot 10^{-6} \) |
\(a_{214}= +0.08256211 \pm 6.5 \cdot 10^{-6} \) | \(a_{215}= -0.56736647 \pm 8.0 \cdot 10^{-6} \) | \(a_{216}= -2.42536359 \pm 5.0 \cdot 10^{-6} \) |
\(a_{217}= +0.12176146 \pm 3.1 \cdot 10^{-6} \) | \(a_{218}= -2.16263322 \pm 4.8 \cdot 10^{-6} \) | \(a_{219}= -0.60926134 \pm 6.6 \cdot 10^{-6} \) |
\(a_{220}= +1.12991351 \pm 1.0 \cdot 10^{-5} \) | \(a_{221}= -0.02809171 \pm 6.1 \cdot 10^{-6} \) | \(a_{222}= +3.80765100 \pm 6.8 \cdot 10^{-6} \) |
\(a_{223}= +1.31097824 \pm 7.6 \cdot 10^{-6} \) | \(a_{224}= +0.20479693 \pm 2.7 \cdot 10^{-6} \) | \(a_{225}= +0.34510626 \pm 3.8 \cdot 10^{-6} \) |
\(a_{226}= -1.18579382 \pm 6.6 \cdot 10^{-6} \) | \(a_{227}= -1.67400691 \pm 5.9 \cdot 10^{-6} \) | \(a_{228}= +1.54162692 \pm 5.2 \cdot 10^{-6} \) |
\(a_{229}= +0.33785467 \pm 1.0 \cdot 10^{-5} \) | \(a_{230}= -0.90523354 \pm 1.0 \cdot 10^{-5} \) | \(a_{231}= +0.73800570 \pm 1.6 \cdot 10^{-6} \) |
\(a_{232}= +0.69593722 \pm 3.7 \cdot 10^{-6} \) | \(a_{233}= +0.28610155 \pm 9.8 \cdot 10^{-6} \) | \(a_{234}= +0.38777750 \pm 3.3 \cdot 10^{-6} \) |
\(a_{235}= +0.66946408 \pm 4.7 \cdot 10^{-6} \) | \(a_{236}= -1.42088987 \pm 5.1 \cdot 10^{-6} \) | \(a_{237}= -1.14539479 \pm 1.0 \cdot 10^{-5} \) |
\(a_{238}= +0.14888248 \pm 2.6 \cdot 10^{-6} \) | \(a_{239}= +0.83874337 \pm 7.3 \cdot 10^{-6} \) | \(a_{240}= -1.06840132 \pm 1.0 \cdot 10^{-5} \) |
\(a_{241}= -1.18554516 \pm 4.1 \cdot 10^{-6} \) | \(a_{242}= -0.69299585 \pm 5.5 \cdot 10^{-6} \) | \(a_{243}= -0.78188205 \pm 4.1 \cdot 10^{-6} \) |
\(a_{244}= -1.48673932 \pm 3.0 \cdot 10^{-6} \) | \(a_{245}= +0.38296326 \pm 6.5 \cdot 10^{-6} \) | \(a_{246}= +4.65216792 \pm 1.0 \cdot 10^{-5} \) |
\(a_{247}= -0.05526049 \pm 2.1 \cdot 10^{-6} \) | \(a_{248}= +0.65046623 \pm 5.0 \cdot 10^{-6} \) | \(a_{249}= -0.16662051 \pm 8.7 \cdot 10^{-6} \) |
\(a_{250}= +0.15855044 \pm 7.1 \cdot 10^{-6} \) | \(a_{251}= +1.29772041 \pm 1.0 \cdot 10^{-5} \) | \(a_{252}= -1.40113287 \pm 1.2 \cdot 10^{-6} \) |
\(a_{253}= +1.34671938 \pm 2.5 \cdot 10^{-6} \) | \(a_{254}= -1.39729438 \pm 6.7 \cdot 10^{-6} \) | \(a_{255}= -0.16359933 \pm 1.5 \cdot 10^{-5} \) |
\(a_{256}= -2.00600709 \pm 5.9 \cdot 10^{-6} \) | \(a_{257}= +0.45253977 \pm 5.8 \cdot 10^{-6} \) | \(a_{258}= -3.71275861 \pm 5.4 \cdot 10^{-6} \) |
\(a_{259}= +0.49316165 \pm 3.1 \cdot 10^{-6} \) | \(a_{260}= +0.12145869 \pm 1.1 \cdot 10^{-5} \) | \(a_{261}= -0.59305886 \pm 3.1 \cdot 10^{-6} \) |
\(a_{262}= +0.63400227 \pm 8.9 \cdot 10^{-6} \) | \(a_{263}= -0.59665382 \pm 8.3 \cdot 10^{-6} \) | \(a_{264}= +3.94252652 \pm 2.4 \cdot 10^{-6} \) |
\(a_{265}= -0.40797720 \pm 7.5 \cdot 10^{-6} \) | \(a_{266}= +0.29287350 \pm 2.6 \cdot 10^{-6} \) | \(a_{267}= -1.79534616 \pm 1.0 \cdot 10^{-5} \) |
\(a_{268}= +4.05966747 \pm 3.3 \cdot 10^{-6} \) | \(a_{269}= +0.67925776 \pm 7.2 \cdot 10^{-6} \) | \(a_{270}= +0.94955297 \pm 1.3 \cdot 10^{-5} \) |
\(a_{271}= +0.81618233 \pm 5.7 \cdot 10^{-6} \) | \(a_{272}= +0.32065261 \pm 3.1 \cdot 10^{-6} \) | \(a_{273}= +0.07933103 \pm 1.9 \cdot 10^{-6} \) |
\(a_{274}= -1.49783119 \pm 1.0 \cdot 10^{-5} \) | \(a_{275}= -0.23587609 \pm 3.9 \cdot 10^{-6} \) | \(a_{276}= -4.03854613 \pm 2.5 \cdot 10^{-6} \) |
\(a_{277}= -0.05080521 \pm 7.8 \cdot 10^{-6} \) | \(a_{278}= -1.18404592 \pm 6.0 \cdot 10^{-6} \) | \(a_{279}= -0.55430971 \pm 2.5 \cdot 10^{-6} \) |
\(a_{280}= -0.34323401 \pm 9.6 \cdot 10^{-6} \) | \(a_{281}= +1.18569797 \pm 3.1 \cdot 10^{-6} \) | \(a_{282}= +4.38086958 \pm 3.2 \cdot 10^{-6} \) |
\(a_{283}= +0.04198261 \pm 7.7 \cdot 10^{-6} \) | \(a_{284}= -3.14942974 \pm 2.0 \cdot 10^{-6} \) | \(a_{285}= -0.32182369 \pm 1.5 \cdot 10^{-5} \) |
\(a_{286}= -0.26504138 \pm 4.3 \cdot 10^{-6} \) | \(a_{287}= +0.60254230 \pm 3.2 \cdot 10^{-6} \) | \(a_{288}= -0.93232233 \pm 2.7 \cdot 10^{-6} \) |
\(a_{289}= -0.95089996 \pm 3.3 \cdot 10^{-6} \) | \(a_{290}= -0.27246606 \pm 1.0 \cdot 10^{-5} \) | \(a_{291}= +0.71706558 \pm 6.2 \cdot 10^{-6} \) |
\(a_{292}= -0.79059545 \pm 5.1 \cdot 10^{-6} \) | \(a_{293}= -1.15881913 \pm 9.5 \cdot 10^{-6} \) | \(a_{294}= +2.50605245 \pm 6.2 \cdot 10^{-6} \) |
\(a_{295}= +0.29661912 \pm 6.1 \cdot 10^{-6} \) | \(a_{296}= +2.63453639 \pm 9.0 \cdot 10^{-6} \) | \(a_{297}= -1.41265357 \pm 2.3 \cdot 10^{-6} \) |
\(a_{298}= +0.04172284 \pm 3.1 \cdot 10^{-6} \) | \(a_{299}= +0.14476397 \pm 2.3 \cdot 10^{-6} \) | \(a_{300}= +0.70734593 \pm 1.3 \cdot 10^{-5} \) |
\(a_{301}= -0.48087132 \pm 2.4 \cdot 10^{-6} \) | \(a_{302}= -1.49444770 \pm 5.9 \cdot 10^{-6} \) | \(a_{303}= +1.97921195 \pm 6.2 \cdot 10^{-6} \) |
\(a_{304}= +0.63077032 \pm 2.5 \cdot 10^{-6} \) | \(a_{305}= +0.31036558 \pm 4.3 \cdot 10^{-6} \) | \(a_{306}= -0.67777608 \pm 3.3 \cdot 10^{-6} \) |
\(a_{307}= +0.15522994 \pm 6.6 \cdot 10^{-6} \) | \(a_{308}= +0.95765792 \pm 1.5 \cdot 10^{-6} \) | \(a_{309}= -0.38525589 \pm 6.1 \cdot 10^{-6} \) |
\(a_{310}= -0.25466373 \pm 1.4 \cdot 10^{-5} \) | \(a_{311}= +0.44981091 \pm 7.0 \cdot 10^{-6} \) | \(a_{312}= +0.42379712 \pm 2.8 \cdot 10^{-6} \) |
\(a_{313}= -0.52909446 \pm 6.8 \cdot 10^{-6} \) | \(a_{314}= -0.66037185 \pm 6.1 \cdot 10^{-6} \) | \(a_{315}= +0.29249473 \pm 6.7 \cdot 10^{-6} \) |
\(a_{316}= -1.48629799 \pm 5.9 \cdot 10^{-6} \) | \(a_{317}= -1.21480974 \pm 1.0 \cdot 10^{-5} \) | \(a_{318}= -2.66973983 \pm 6.2 \cdot 10^{-6} \) |
\(a_{319}= +0.40534879 \pm 2.4 \cdot 10^{-6} \) | \(a_{320}= +0.21882360 \pm 7.1 \cdot 10^{-6} \) | \(a_{321}= -0.07689249 \pm 5.8 \cdot 10^{-6} \) |
\(a_{322}= -0.76723047 \pm 2.4 \cdot 10^{-6} \) | \(a_{323}= +0.09658693 \pm 7.4 \cdot 10^{-6} \) | \(a_{324}= +0.53969819 \pm 6.8 \cdot 10^{-6} \) |
\(a_{325}= -0.02535522 \pm 5.0 \cdot 10^{-6} \) | \(a_{326}= +1.67731321 \pm 6.0 \cdot 10^{-6} \) | \(a_{327}= +2.01412306 \pm 3.6 \cdot 10^{-6} \) |
\(a_{328}= +3.21886268 \pm 5.6 \cdot 10^{-6} \) | \(a_{329}= +0.56740412 \pm 1.8 \cdot 10^{-6} \) | \(a_{330}= -1.54353673 \pm 1.8 \cdot 10^{-5} \) |
\(a_{331}= -1.19266907 \pm 5.8 \cdot 10^{-6} \) | \(a_{332}= -0.21621168 \pm 5.7 \cdot 10^{-6} \) | \(a_{333}= -2.24508059 \pm 3.2 \cdot 10^{-6} \) |
\(a_{334}= +0.62722486 \pm 4.1 \cdot 10^{-6} \) | \(a_{335}= -0.84747946 \pm 4.8 \cdot 10^{-6} \) | \(a_{336}= -0.90552328 \pm 2.2 \cdot 10^{-6} \) |
\(a_{337}= +0.36809425 \pm 1.0 \cdot 10^{-5} \) | \(a_{338}= +1.74415749 \pm 4.1 \cdot 10^{-6} \) | \(a_{339}= +1.10436419 \pm 6.3 \cdot 10^{-6} \) |
\(a_{340}= -0.21229131 \pm 1.4 \cdot 10^{-5} \) | \(a_{341}= +0.37886420 \pm 4.1 \cdot 10^{-6} \) | \(a_{342}= -1.33328416 \pm 3.0 \cdot 10^{-6} \) |
\(a_{343}= +0.70361619 \pm 4.6 \cdot 10^{-6} \) | \(a_{344}= -2.56887979 \pm 7.8 \cdot 10^{-6} \) | \(a_{345}= +0.84307026 \pm 1.0 \cdot 10^{-5} \) |
\(a_{346}= +1.63880204 \pm 8.7 \cdot 10^{-6} \) | \(a_{347}= +1.14647979 \pm 5.0 \cdot 10^{-6} \) | \(a_{348}= -1.21556117 \pm 2.0 \cdot 10^{-6} \) |
\(a_{349}= -1.07223773 \pm 7.8 \cdot 10^{-6} \) | \(a_{350}= +0.13437939 \pm 1.0 \cdot 10^{-5} \) | \(a_{351}= -0.15185149 \pm 3.5 \cdot 10^{-6} \) |
\(a_{352}= +0.63723140 \pm 3.8 \cdot 10^{-6} \) | \(a_{353}= +0.44164235 \pm 3.0 \cdot 10^{-6} \) | \(a_{354}= +1.94102972 \pm 6.8 \cdot 10^{-6} \) |
\(a_{355}= +0.65746198 \pm 3.7 \cdot 10^{-6} \) | \(a_{356}= -2.32969402 \pm 7.9 \cdot 10^{-6} \) | \(a_{357}= -0.13865857 \pm 2.7 \cdot 10^{-6} \) |
\(a_{358}= -1.45946160 \pm 1.0 \cdot 10^{-5} \) | \(a_{359}= -0.19441612 \pm 3.5 \cdot 10^{-6} \) | \(a_{360}= +1.56254650 \pm 1.0 \cdot 10^{-5} \) |
\(a_{361}= -0.80999946 \pm 5.5 \cdot 10^{-6} \) | \(a_{362}= +0.82586851 \pm 8.3 \cdot 10^{-6} \) | \(a_{363}= +0.64540714 \pm 6.9 \cdot 10^{-6} \) |
\(a_{364}= +0.10294228 \pm 2.2 \cdot 10^{-6} \) | \(a_{365}= +0.16504145 \pm 6.3 \cdot 10^{-6} \) | \(a_{366}= +2.03098443 \pm 3.7 \cdot 10^{-6} \) |
\(a_{367}= -1.69665706 \pm 6.3 \cdot 10^{-6} \) | \(a_{368}= -1.65240696 \pm 2.4 \cdot 10^{-6} \) | \(a_{369}= -2.74302763 \pm 3.3 \cdot 10^{-6} \) |
\(a_{370}= -1.03144612 \pm 1.6 \cdot 10^{-5} \) | \(a_{371}= -0.34578098 \pm 2.3 \cdot 10^{-6} \) | \(a_{372}= -1.13613910 \pm 9.4 \cdot 10^{-6} \) |
\(a_{373}= +0.02722335 \pm 8.8 \cdot 10^{-6} \) | \(a_{374}= +0.46325202 \pm 4.6 \cdot 10^{-6} \) | \(a_{375}= -0.14766262 \pm 7.7 \cdot 10^{-6} \) |
\(a_{376}= +3.03114974 \pm 4.7 \cdot 10^{-6} \) | \(a_{377}= +0.04357248 \pm 2.6 \cdot 10^{-6} \) | \(a_{378}= +0.80479339 \pm 2.0 \cdot 10^{-6} \) |
\(a_{379}= +0.24084100 \pm 6.0 \cdot 10^{-6} \) | \(a_{380}= -0.41760789 \pm 1.3 \cdot 10^{-5} \) | \(a_{381}= +1.30134079 \pm 8.1 \cdot 10^{-6} \) |
\(a_{382}= +1.10572525 \pm 2.3 \cdot 10^{-6} \) | \(a_{383}= -0.19225084 \pm 8.4 \cdot 10^{-6} \) | \(a_{384}= +2.32395603 \pm 6.0 \cdot 10^{-6} \) |
\(a_{385}= -0.19991672 \pm 6.9 \cdot 10^{-6} \) | \(a_{386}= -2.29464064 \pm 3.1 \cdot 10^{-6} \) | \(a_{387}= +2.18912981 \pm 2.0 \cdot 10^{-6} \) |
\(a_{388}= +0.93048541 \pm 4.1 \cdot 10^{-6} \) | \(a_{389}= -0.37277808 \pm 8.6 \cdot 10^{-6} \) | \(a_{390}= -0.16592061 \pm 1.9 \cdot 10^{-5} \) |
\(a_{391}= -0.25302540 \pm 2.4 \cdot 10^{-6} \) | \(a_{392}= +1.73395261 \pm 5.8 \cdot 10^{-6} \) | \(a_{393}= -0.59046471 \pm 7.7 \cdot 10^{-6} \) |
\(a_{394}= -2.75525103 \pm 8.4 \cdot 10^{-6} \) | \(a_{395}= +0.31027345 \pm 9.0 \cdot 10^{-6} \) | \(a_{396}= -4.35966427 \pm 1.6 \cdot 10^{-6} \) |
\(a_{397}= -0.16235119 \pm 7.5 \cdot 10^{-6} \) | \(a_{398}= +1.77182915 \pm 8.8 \cdot 10^{-6} \) | \(a_{399}= -0.27276159 \pm 3.8 \cdot 10^{-6} \) |
\(a_{400}= +0.28941686 \pm 3.1 \cdot 10^{-6} \) | \(a_{401}= +1.38334806 \pm 1.1 \cdot 10^{-5} \) | \(a_{402}= -5.54577477 \pm 3.8 \cdot 10^{-6} \) |
\(a_{403}= +0.04072555 \pm 6.6 \cdot 10^{-6} \) | \(a_{404}= +2.56828369 \pm 4.6 \cdot 10^{-6} \) | \(a_{405}= -0.11266517 \pm 8.0 \cdot 10^{-6} \) |
\(a_{406}= -0.23092854 \pm 1.7 \cdot 10^{-6} \) | \(a_{407}= +1.53448631 \pm 3.3 \cdot 10^{-6} \) | \(a_{408}= -0.74073291 \pm 6.8 \cdot 10^{-6} \) |
\(a_{409}= -0.31777775 \pm 7.7 \cdot 10^{-6} \) | \(a_{410}= -1.26021543 \pm 1.5 \cdot 10^{-5} \) | \(a_{411}= +1.39497364 \pm 9.3 \cdot 10^{-6} \) |
\(a_{412}= -0.49991939 \pm 7.6 \cdot 10^{-6} \) | \(a_{413}= +0.25139946 \pm 3.1 \cdot 10^{-6} \) | \(a_{414}= +3.49275789 \pm 2.8 \cdot 10^{-6} \) |
\(a_{415}= +0.04513546 \pm 7.8 \cdot 10^{-6} \) | \(a_{416}= +0.06849842 \pm 5.3 \cdot 10^{-6} \) | \(a_{417}= +1.10273632 \pm 9.2 \cdot 10^{-6} \) |
\(a_{418}= +0.91128412 \pm 1.8 \cdot 10^{-6} \) | \(a_{419}= +0.03955928 \pm 3.4 \cdot 10^{-6} \) | \(a_{420}= +0.59951087 \pm 1.6 \cdot 10^{-5} \) |
\(a_{421}= -1.87438169 \pm 5.4 \cdot 10^{-6} \) | \(a_{422}= -2.21959780 \pm 3.9 \cdot 10^{-6} \) | \(a_{423}= -2.58306375 \pm 4.1 \cdot 10^{-6} \) |
\(a_{424}= -1.84720888 \pm 7.1 \cdot 10^{-6} \) | \(a_{425}= +0.04431706 \pm 7.9 \cdot 10^{-6} \) | \(a_{426}= +4.30232971 \pm 4.4 \cdot 10^{-6} \) |
\(a_{427}= +0.26305027 \pm 2.0 \cdot 10^{-6} \) | \(a_{428}= -0.09977796 \pm 4.8 \cdot 10^{-6} \) | \(a_{429}= +0.24684073 \pm 2.3 \cdot 10^{-6} \) |
\(a_{430}= +1.00574093 \pm 1.5 \cdot 10^{-5} \) | \(a_{431}= -0.92910738 \pm 7.2 \cdot 10^{-6} \) | \(a_{432}= +1.73330734 \pm 2.1 \cdot 10^{-6} \) |
\(a_{433}= -0.86248302 \pm 9.1 \cdot 10^{-6} \) | \(a_{434}= -0.21584018 \pm 3.6 \cdot 10^{-6} \) | \(a_{435}= +0.25375554 \pm 1.1 \cdot 10^{-5} \) |
\(a_{436}= +2.61358537 \pm 4.1 \cdot 10^{-6} \) | \(a_{437}= -0.49773778 \pm 2.6 \cdot 10^{-6} \) | \(a_{438}= +1.08000578 \pm 5.4 \cdot 10^{-6} \) |
\(a_{439}= -1.42369065 \pm 4.9 \cdot 10^{-6} \) | \(a_{440}= -1.06798225 \pm 1.0 \cdot 10^{-5} \) | \(a_{441}= -1.47762747 \pm 2.7 \cdot 10^{-6} \) |
\(a_{442}= +0.04979672 \pm 6.7 \cdot 10^{-6} \) | \(a_{443}= +1.03157501 \pm 6.6 \cdot 10^{-6} \) | \(a_{444}= -4.60162217 \pm 7.0 \cdot 10^{-6} \) |
\(a_{445}= +0.48633733 \pm 9.1 \cdot 10^{-6} \) | \(a_{446}= -2.32390270 \pm 7.7 \cdot 10^{-6} \) | \(a_{447}= -0.03885769 \pm 3.5 \cdot 10^{-6} \) |
\(a_{448}= +0.18546389 \pm 3.0 \cdot 10^{-6} \) | \(a_{449}= +1.29992074 \pm 8.2 \cdot 10^{-6} \) | \(a_{450}= -0.61175185 \pm 1.0 \cdot 10^{-5} \) |
\(a_{451}= +1.87482729 \pm 4.8 \cdot 10^{-6} \) | \(a_{452}= +1.43305548 \pm 5.5 \cdot 10^{-6} \) | \(a_{453}= +1.39182250 \pm 4.8 \cdot 10^{-6} \) |
\(a_{454}= +2.96742467 \pm 6.4 \cdot 10^{-6} \) | \(a_{455}= -0.02148981 \pm 8.0 \cdot 10^{-6} \) | \(a_{456}= -1.45712939 \pm 8.3 \cdot 10^{-6} \) |
\(a_{457}= -0.63148173 \pm 7.4 \cdot 10^{-6} \) | \(a_{458}= -0.59889734 \pm 8.4 \cdot 10^{-6} \) | \(a_{459}= +0.26541330 \pm 6.2 \cdot 10^{-6} \) |
\(a_{460}= +1.09399279 \pm 9.3 \cdot 10^{-6} \) | \(a_{461}= -1.79693407 \pm 1.0 \cdot 10^{-5} \) | \(a_{462}= -1.30822418 \pm 1.5 \cdot 10^{-6} \) |
\(a_{463}= -0.50028401 \pm 6.1 \cdot 10^{-6} \) | \(a_{464}= -0.49735763 \pm 1.8 \cdot 10^{-6} \) | \(a_{465}= +0.23717572 \pm 1.5 \cdot 10^{-5} \) |
\(a_{466}= -0.50715729 \pm 7.0 \cdot 10^{-6} \) | \(a_{467}= +1.84023410 \pm 3.6 \cdot 10^{-6} \) | \(a_{468}= -0.46863684 \pm 1.8 \cdot 10^{-6} \) |
\(a_{469}= -0.71828101 \pm 2.1 \cdot 10^{-6} \) | \(a_{470}= -1.18672403 \pm 1.1 \cdot 10^{-5} \) | \(a_{471}= +0.61502346 \pm 7.3 \cdot 10^{-6} \) |
\(a_{472}= +1.34301001 \pm 5.4 \cdot 10^{-6} \) | \(a_{473}= -1.49624461 \pm 1.3 \cdot 10^{-6} \) | \(a_{474}= +2.03038154 \pm 7.0 \cdot 10^{-6} \) |
\(a_{475}= +0.08717810 \pm 7.3 \cdot 10^{-6} \) | \(a_{476}= -0.17992745 \pm 2.1 \cdot 10^{-6} \) | \(a_{477}= +1.57414140 \pm 3.1 \cdot 10^{-6} \) |
\(a_{478}= -1.48679659 \pm 6.4 \cdot 10^{-6} \) | \(a_{479}= -0.34925696 \pm 6.6 \cdot 10^{-6} \) | \(a_{480}= +0.39891818 \pm 1.5 \cdot 10^{-5} \) |
\(a_{481}= +0.16494775 \pm 3.5 \cdot 10^{-6} \) | \(a_{482}= +2.10155401 \pm 5.1 \cdot 10^{-6} \) | \(a_{483}= +0.71454399 \pm 2.5 \cdot 10^{-6} \) |
\(a_{484}= +0.83749930 \pm 5.1 \cdot 10^{-6} \) | \(a_{485}= -0.19424430 \pm 5.9 \cdot 10^{-6} \) | \(a_{486}= +1.38600150 \pm 3.4 \cdot 10^{-6} \) |
\(a_{487}= -1.73670493 \pm 9.5 \cdot 10^{-6} \) | \(a_{488}= +1.40525022 \pm 4.2 \cdot 10^{-6} \) | \(a_{489}= -1.56213046 \pm 5.5 \cdot 10^{-6} \) |
\(a_{490}= -0.67885898 \pm 1.3 \cdot 10^{-5} \) | \(a_{491}= +1.89277824 \pm 4.9 \cdot 10^{-6} \) | \(a_{492}= -5.62223771 \pm 9.4 \cdot 10^{-6} \) |
\(a_{493}= -0.07615806 \pm 3.5 \cdot 10^{-6} \) | \(a_{494}= +0.09795738 \pm 2.5 \cdot 10^{-6} \) | \(a_{495}= +0.91010556 \pm 7.7 \cdot 10^{-6} \) |
\(a_{496}= -0.46486139 \pm 4.0 \cdot 10^{-6} \) | \(a_{497}= +0.55723174 \pm 2.8 \cdot 10^{-6} \) | \(a_{498}= +0.29535949 \pm 6.4 \cdot 10^{-6} \) |
\(a_{499}= -0.93519694 \pm 9.2 \cdot 10^{-6} \) | \(a_{500}= -0.19161137 \pm 6.2 \cdot 10^{-6} \) | \(a_{501}= -0.58415271 \pm 6.9 \cdot 10^{-6} \) |
\(a_{502}= -2.30040123 \pm 6.9 \cdot 10^{-6} \) | \(a_{503}= +0.84500263 \pm 9.5 \cdot 10^{-6} \) | \(a_{504}= +1.32433591 \pm 2.2 \cdot 10^{-6} \) |
\(a_{505}= -0.53614433 \pm 6.1 \cdot 10^{-6} \) | \(a_{506}= -2.38725914 \pm 3.0 \cdot 10^{-6} \) | \(a_{507}= -1.62438448 \pm 6.3 \cdot 10^{-6} \) |
\(a_{508}= +1.68865812 \pm 5.4 \cdot 10^{-6} \) | \(a_{509}= +1.14992743 \pm 5.3 \cdot 10^{-6} \) | \(a_{510}= +0.29000400 \pm 2.2 \cdot 10^{-5} \) |
\(a_{511}= +0.13988084 \pm 2.3 \cdot 10^{-6} \) | \(a_{512}= +2.14826931 \pm 5.0 \cdot 10^{-6} \) | \(a_{513}= +0.52210658 \pm 5.9 \cdot 10^{-6} \) |
\(a_{514}= -0.80219363 \pm 8.5 \cdot 10^{-6} \) | \(a_{515}= +0.10436111 \pm 5.9 \cdot 10^{-6} \) | \(a_{516}= +4.48694283 \pm 5.8 \cdot 10^{-6} \) |
\(a_{517}= +1.76549385 \pm 5.0 \cdot 10^{-6} \) | \(a_{518}= -0.87420190 \pm 2.6 \cdot 10^{-6} \) | \(a_{519}= -1.52626389 \pm 7.1 \cdot 10^{-6} \) |
\(a_{520}= -0.11480146 \pm 1.1 \cdot 10^{-5} \) | \(a_{521}= -0.70609787 \pm 6.8 \cdot 10^{-6} \) | \(a_{522}= +1.05128448 \pm 2.7 \cdot 10^{-6} \) |
\(a_{523}= +0.24870914 \pm 9.9 \cdot 10^{-6} \) | \(a_{524}= -0.76620439 \pm 7.7 \cdot 10^{-6} \) | \(a_{525}= -0.12515142 \pm 1.0 \cdot 10^{-5} \) |
\(a_{526}= +1.05765709 \pm 9.5 \cdot 10^{-6} \) | \(a_{527}= -0.07118207 \pm 8.1 \cdot 10^{-6} \) | \(a_{528}= -2.81756113 \pm 1.7 \cdot 10^{-6} \) |
\(a_{529}= +0.30390625 \pm 6.6 \cdot 10^{-6} \) | \(a_{530}= +0.72319989 \pm 1.4 \cdot 10^{-5} \) | \(a_{531}= -1.14447678 \pm 3.5 \cdot 10^{-6} \) |
\(a_{532}= -0.35394346 \pm 1.9 \cdot 10^{-6} \) | \(a_{533}= +0.20153229 \pm 6.8 \cdot 10^{-6} \) | \(a_{534}= +3.18251641 \pm 9.0 \cdot 10^{-6} \) |
\(a_{535}= +0.02082924 \pm 6.0 \cdot 10^{-6} \) | \(a_{536}= -3.83715457 \pm 4.6 \cdot 10^{-6} \) | \(a_{537}= +1.35923893 \pm 7.7 \cdot 10^{-6} \) |
\(a_{538}= -1.20408477 \pm 6.6 \cdot 10^{-6} \) | \(a_{539}= +1.00994109 \pm 3.3 \cdot 10^{-6} \) | \(a_{540}= -1.14755370 \pm 1.2 \cdot 10^{-5} \) |
\(a_{541}= -0.18417189 \pm 6.5 \cdot 10^{-6} \) | \(a_{542}= -1.44680381 \pm 5.6 \cdot 10^{-6} \) | \(a_{543}= -0.76915531 \pm 8.0 \cdot 10^{-6} \) |
\(a_{544}= -0.11972482 \pm 8.2 \cdot 10^{-6} \) | \(a_{545}= -0.54560132 \pm 3.7 \cdot 10^{-6} \) | \(a_{546}= -0.14062598 \pm 2.2 \cdot 10^{-6} \) |
\(a_{547}= -1.00703778 \pm 5.5 \cdot 10^{-6} \) | \(a_{548}= +1.81015886 \pm 9.4 \cdot 10^{-6} \) | \(a_{549}= -1.19751619 \pm 2.6 \cdot 10^{-6} \) |
\(a_{550}= +0.41812523 \pm 1.1 \cdot 10^{-5} \) | \(a_{551}= -0.14981399 \pm 3.7 \cdot 10^{-6} \) | \(a_{552}= +3.81719091 \pm 3.3 \cdot 10^{-6} \) |
\(a_{553}= +0.26297219 \pm 3.3 \cdot 10^{-6} \) | \(a_{554}= +0.09005975 \pm 1.0 \cdot 10^{-5} \) | \(a_{555}= +0.96061569 \pm 1.7 \cdot 10^{-5} \) |
\(a_{556}= +1.43094311 \pm 5.3 \cdot 10^{-6} \) | \(a_{557}= +1.03732056 \pm 5.8 \cdot 10^{-6} \) | \(a_{558}= +0.98259589 \pm 2.3 \cdot 10^{-6} \) |
\(a_{559}= -0.16083700 \pm 1.0 \cdot 10^{-6} \) | \(a_{560}= +0.24529519 \pm 6.1 \cdot 10^{-6} \) | \(a_{561}= -0.43144005 \pm 2.5 \cdot 10^{-6} \) |
\(a_{562}= -2.10182490 \pm 3.3 \cdot 10^{-6} \) | \(a_{563}= -1.67660358 \pm 2.6 \cdot 10^{-6} \) | \(a_{564}= -5.29436826 \pm 2.7 \cdot 10^{-6} \) |
\(a_{565}= -0.29915876 \pm 5.4 \cdot 10^{-6} \) | \(a_{566}= -0.07442038 \pm 1.0 \cdot 10^{-5} \) | \(a_{567}= -0.09548934 \pm 2.8 \cdot 10^{-6} \) |
\(a_{568}= +2.97680754 \pm 3.7 \cdot 10^{-6} \) | \(a_{569}= +0.93774343 \pm 4.5 \cdot 10^{-6} \) | \(a_{570}= +0.57048005 \pm 2.2 \cdot 10^{-5} \) |
\(a_{571}= +1.32712408 \pm 6.2 \cdot 10^{-6} \) | \(a_{572}= +0.32030779 \pm 2.8 \cdot 10^{-6} \) | \(a_{573}= -1.02979401 \pm 2.1 \cdot 10^{-6} \) |
\(a_{574}= -1.06809528 \pm 4.1 \cdot 10^{-6} \) | \(a_{575}= -0.22837743 \pm 3.0 \cdot 10^{-6} \) | \(a_{576}= -0.84431014 \pm 3.7 \cdot 10^{-6} \) |
\(a_{577}= +1.34939397 \pm 6.6 \cdot 10^{-6} \) | \(a_{578}= +1.68561071 \pm 2.8 \cdot 10^{-6} \) | \(a_{579}= +2.13706540 \pm 2.9 \cdot 10^{-6} \) |
\(a_{580}= +0.32928066 \pm 9.8 \cdot 10^{-6} \) | \(a_{581}= +0.03825455 \pm 3.1 \cdot 10^{-6} \) | \(a_{582}= -1.27110472 \pm 5.4 \cdot 10^{-6} \) |
\(a_{583}= -1.07590723 \pm 3.4 \cdot 10^{-6} \) | \(a_{584}= +0.74726242 \pm 5.8 \cdot 10^{-6} \) | \(a_{585}= +0.09783070 \pm 8.8 \cdot 10^{-6} \) |
\(a_{586}= +2.05417818 \pm 6.1 \cdot 10^{-6} \) | \(a_{587}= -0.76297766 \pm 6.4 \cdot 10^{-6} \) | \(a_{588}= -3.02861437 \pm 5.8 \cdot 10^{-6} \) |
\(a_{589}= -0.14002548 \pm 4.8 \cdot 10^{-6} \) | \(a_{590}= -0.52580123 \pm 1.3 \cdot 10^{-5} \) | \(a_{591}= +2.56604522 \pm 7.5 \cdot 10^{-6} \) |
\(a_{592}= -1.88279452 \pm 2.3 \cdot 10^{-6} \) | \(a_{593}= -1.09866181 \pm 8.7 \cdot 10^{-6} \) | \(a_{594}= +2.50413724 \pm 2.9 \cdot 10^{-6} \) |
\(a_{595}= +0.03756091 \pm 1.0 \cdot 10^{-5} \) | \(a_{596}= -0.05042289 \pm 2.1 \cdot 10^{-6} \) | \(a_{597}= -1.65015589 \pm 1.0 \cdot 10^{-5} \) |
\(a_{598}= -0.25661553 \pm 3.1 \cdot 10^{-6} \) | \(a_{599}= -1.96604695 \pm 9.0 \cdot 10^{-6} \) | \(a_{600}= -0.66857586 \pm 1.4 \cdot 10^{-5} \) |
\(a_{601}= -0.95727822 \pm 9.1 \cdot 10^{-6} \) | \(a_{602}= +0.85241548 \pm 1.5 \cdot 10^{-6} \) | \(a_{603}= +3.26991925 \pm 2.1 \cdot 10^{-6} \) |
\(a_{604}= +1.80606985 \pm 4.9 \cdot 10^{-6} \) | \(a_{605}= -0.17483290 \pm 6.3 \cdot 10^{-6} \) | \(a_{606}= -3.50844571 \pm 5.7 \cdot 10^{-6} \) |
\(a_{607}= +0.25402885 \pm 5.1 \cdot 10^{-6} \) | \(a_{608}= -0.23551613 \pm 7.1 \cdot 10^{-6} \) | \(a_{609}= +0.21507045 \pm 2.6 \cdot 10^{-6} \) |
\(a_{610}= -0.55016886 \pm 1.1 \cdot 10^{-5} \) | \(a_{611}= +0.18977963 \pm 5.9 \cdot 10^{-6} \) | \(a_{612}= +0.81910591 \pm 1.7 \cdot 10^{-6} \) |
\(a_{613}= -0.94065204 \pm 8.0 \cdot 10^{-6} \) | \(a_{614}= -0.27516801 \pm 4.6 \cdot 10^{-6} \) | \(a_{615}= +1.17367519 \pm 1.5 \cdot 10^{-5} \) |
\(a_{616}= -0.90516809 \pm 1.4 \cdot 10^{-6} \) | \(a_{617}= +1.49585719 \pm 1.0 \cdot 10^{-5} \) | \(a_{618}= +0.68292301 \pm 9.1 \cdot 10^{-6} \) |
\(a_{619}= +0.37625174 \pm 1.0 \cdot 10^{-5} \) | \(a_{620}= +0.30776620 \pm 1.3 \cdot 10^{-5} \) | \(a_{621}= -1.36774435 \pm 2.0 \cdot 10^{-6} \) |
\(a_{622}= -0.79735631 \pm 6.7 \cdot 10^{-6} \) | \(a_{623}= +0.41219509 \pm 3.1 \cdot 10^{-6} \) | \(a_{624}= -0.30287033 \pm 2.4 \cdot 10^{-6} \) |
\(a_{625}= +0.04 \) | \(a_{626}= +0.93789813 \pm 6.4 \cdot 10^{-6} \) | \(a_{627}= -0.84870534 \pm 2.2 \cdot 10^{-6} \) |
\(a_{628}= +0.79807255 \pm 4.6 \cdot 10^{-6} \) | \(a_{629}= -0.28830358 \pm 1.0 \cdot 10^{-5} \) | \(a_{630}= -0.51849013 \pm 1.3 \cdot 10^{-5} \) |
\(a_{631}= -1.16697820 \pm 8.5 \cdot 10^{-6} \) | \(a_{632}= +1.40483308 \pm 8.8 \cdot 10^{-6} \) | \(a_{633}= +2.06717583 \pm 2.7 \cdot 10^{-6} \) |
\(a_{634}= +2.15342981 \pm 7.3 \cdot 10^{-6} \) | \(a_{635}= -0.35251731 \pm 8.4 \cdot 10^{-6} \) | \(a_{636}= +3.22643383 \pm 6.0 \cdot 10^{-6} \) |
\(a_{637}= +0.10856240 \pm 4.4 \cdot 10^{-6} \) | \(a_{638}= -0.71854064 \pm 2.0 \cdot 10^{-6} \) | \(a_{639}= -2.53675480 \pm 3.9 \cdot 10^{-6} \) |
\(a_{640}= -0.62953128 \pm 5.4 \cdot 10^{-6} \) | \(a_{641}= +0.07703163 \pm 5.5 \cdot 10^{-6} \) | \(a_{642}= +0.13630330 \pm 6.5 \cdot 10^{-6} \) |
\(a_{643}= -0.62637782 \pm 4.4 \cdot 10^{-6} \) | \(a_{644}= +0.92721332 \pm 1.5 \cdot 10^{-6} \) | \(a_{645}= -0.93667571 \pm 1.5 \cdot 10^{-5} \) |
\(a_{646}= -0.17121461 \pm 5.0 \cdot 10^{-6} \) | \(a_{647}= -0.01061073 \pm 9.0 \cdot 10^{-6} \) | \(a_{648}= -0.51011700 \pm 7.1 \cdot 10^{-6} \) |
\(a_{649}= +0.78223648 \pm 2.3 \cdot 10^{-6} \) | \(a_{650}= +0.04494587 \pm 1.2 \cdot 10^{-5} \) | \(a_{651}= +0.20101822 \pm 3.1 \cdot 10^{-6} \) |
\(a_{652}= -2.02706647 \pm 4.7 \cdot 10^{-6} \) | \(a_{653}= -1.23793523 \pm 5.1 \cdot 10^{-6} \) | \(a_{654}= -3.57033080 \pm 4.9 \cdot 10^{-6} \) |
\(a_{655}= +0.15994967 \pm 7.2 \cdot 10^{-6} \) | \(a_{656}= -2.30038842 \pm 4.3 \cdot 10^{-6} \) | \(a_{657}= -0.63679681 \pm 2.4 \cdot 10^{-6} \) |
\(a_{658}= -1.00580766 \pm 1.5 \cdot 10^{-6} \) | \(a_{659}= -1.20307834 \pm 9.8 \cdot 10^{-6} \) | \(a_{660}= +1.86539492 \pm 1.7 \cdot 10^{-5} \) |
\(a_{661}= +1.19668883 \pm 7.0 \cdot 10^{-6} \) | \(a_{662}= +2.11418220 \pm 7.1 \cdot 10^{-6} \) | \(a_{663}= -0.04637713 \pm 4.0 \cdot 10^{-6} \) |
\(a_{664}= +0.20436099 \pm 7.4 \cdot 10^{-6} \) | \(a_{665}= +0.07388778 \pm 1.0 \cdot 10^{-5} \) | \(a_{666}= +3.97973716 \pm 2.7 \cdot 10^{-6} \) |
\(a_{667}= +0.39246247 \pm 2.5 \cdot 10^{-6} \) | \(a_{668}= -0.75801375 \pm 3.7 \cdot 10^{-6} \) | \(a_{669}= +2.16431800 \pm 8.7 \cdot 10^{-6} \) |
\(a_{670}= +1.50228260 \pm 1.1 \cdot 10^{-5} \) | \(a_{671}= +0.81848830 \pm 2.1 \cdot 10^{-6} \) | \(a_{672}= +0.33810301 \pm 2.5 \cdot 10^{-6} \) |
\(a_{673}= +0.78143850 \pm 6.1 \cdot 10^{-6} \) | \(a_{674}= -0.65250146 \pm 6.8 \cdot 10^{-6} \) | \(a_{675}= +0.23955859 \pm 5.9 \cdot 10^{-6} \) |
\(a_{676}= -2.10784912 \pm 3.9 \cdot 10^{-6} \) | \(a_{677}= +0.91802154 \pm 7.1 \cdot 10^{-6} \) | \(a_{678}= -1.95764875 \pm 7.3 \cdot 10^{-6} \) |
\(a_{679}= -0.16463171 \pm 2.9 \cdot 10^{-6} \) | \(a_{680}= +0.20065549 \pm 1.4 \cdot 10^{-5} \) | \(a_{681}= -2.76364869 \pm 6.1 \cdot 10^{-6} \) |
\(a_{682}= -0.67159279 \pm 5.4 \cdot 10^{-6} \) | \(a_{683}= +0.96768774 \pm 9.9 \cdot 10^{-6} \) | \(a_{684}= +1.61130049 \pm 1.4 \cdot 10^{-6} \) |
\(a_{685}= -0.37788131 \pm 8.9 \cdot 10^{-6} \) | \(a_{686}= -1.24726369 \pm 4.6 \cdot 10^{-6} \) | \(a_{687}= +0.55777047 \pm 1.1 \cdot 10^{-5} \) |
\(a_{688}= +1.83587245 \pm 9.2 \cdot 10^{-7} \) | \(a_{689}= -0.11565335 \pm 4.2 \cdot 10^{-6} \) | \(a_{690}= -1.49446664 \pm 1.7 \cdot 10^{-5} \) |
\(a_{691}= +1.65740655 \pm 4.9 \cdot 10^{-6} \) | \(a_{692}= -1.98052495 \pm 7.5 \cdot 10^{-6} \) | \(a_{693}= +0.77135975 \pm 1.8 \cdot 10^{-6} \) |
\(a_{694}= -2.03230488 \pm 4.1 \cdot 10^{-6} \) | \(a_{695}= -0.29871779 \pm 8.5 \cdot 10^{-6} \) | \(a_{696}= +1.14893551 \pm 4.3 \cdot 10^{-6} \) |
\(a_{697}= -0.35224779 \pm 8.6 \cdot 10^{-6} \) | \(a_{698}= +1.90069985 \pm 9.4 \cdot 10^{-6} \) | \(a_{699}= +0.47233030 \pm 1.0 \cdot 10^{-5} \) |
\(a_{700}= -0.16240017 \pm 9.2 \cdot 10^{-6} \) | \(a_{701}= -0.66431917 \pm 4.0 \cdot 10^{-6} \) | \(a_{702}= +0.26917920 \pm 5.0 \cdot 10^{-6} \) |
\(a_{703}= -0.56713508 \pm 1.1 \cdot 10^{-5} \) | \(a_{704}= +0.57707610 \pm 4.3 \cdot 10^{-6} \) | \(a_{705}= +1.10523051 \pm 1.2 \cdot 10^{-5} \) |
\(a_{706}= -0.78287635 \pm 2.6 \cdot 10^{-6} \) | \(a_{707}= -0.45440899 \pm 2.6 \cdot 10^{-6} \) | \(a_{708}= -2.34577312 \pm 5.3 \cdot 10^{-6} \) |
\(a_{709}= +0.01938744 \pm 9.2 \cdot 10^{-6} \) | \(a_{710}= -1.16544854 \pm 1.0 \cdot 10^{-5} \) | \(a_{711}= -1.19716072 \pm 4.3 \cdot 10^{-6} \) |
\(a_{712}= +2.20200205 \pm 8.1 \cdot 10^{-6} \) | \(a_{713}= +0.36681985 \pm 3.5 \cdot 10^{-6} \) | \(a_{714}= +0.24579282 \pm 2.7 \cdot 10^{-6} \) |
\(a_{715}= -0.06686614 \pm 9.0 \cdot 10^{-6} \) | \(a_{716}= +1.76378845 \pm 9.2 \cdot 10^{-6} \) | \(a_{717}= +1.38469680 \pm 6.0 \cdot 10^{-6} \) |
\(a_{718}= +0.34463130 \pm 4.2 \cdot 10^{-6} \) | \(a_{719}= +0.91702978 \pm 2.9 \cdot 10^{-6} \) | \(a_{720}= -1.11668755 \pm 6.9 \cdot 10^{-6} \) |
\(a_{721}= +0.08845124 \pm 2.4 \cdot 10^{-6} \) | \(a_{722}= +1.43584375 \pm 6.0 \cdot 10^{-6} \) | \(a_{723}= -1.95723822 \pm 4.4 \cdot 10^{-6} \) |
\(a_{724}= -0.99807857 \pm 7.3 \cdot 10^{-6} \) | \(a_{725}= -0.06873928 \pm 3.6 \cdot 10^{-6} \) | \(a_{726}= -1.14407954 \pm 5.8 \cdot 10^{-6} \) |
\(a_{727}= -1.13884790 \pm 8.1 \cdot 10^{-6} \) | \(a_{728}= -0.09729995 \pm 1.6 \cdot 10^{-6} \) | \(a_{729}= -1.54275039 \pm 5.9 \cdot 10^{-6} \) |
\(a_{730}= -0.29256036 \pm 1.3 \cdot 10^{-5} \) | \(a_{731}= +0.28111862 \pm 8.3 \cdot 10^{-6} \) | \(a_{732}= -2.45448519 \pm 3.0 \cdot 10^{-6} \) |
\(a_{733}= -0.23138400 \pm 5.2 \cdot 10^{-6} \) | \(a_{734}= +3.00757540 \pm 9.5 \cdot 10^{-6} \) | \(a_{735}= +0.63224106 \pm 1.4 \cdot 10^{-5} \) |
\(a_{736}= +0.61697338 \pm 3.0 \cdot 10^{-6} \) | \(a_{737}= -2.23495154 \pm 1.6 \cdot 10^{-6} \) | \(a_{738}= +4.86242189 \pm 3.3 \cdot 10^{-6} \) |
\(a_{739}= -0.33752283 \pm 6.2 \cdot 10^{-6} \) | \(a_{740}= +1.24652320 \pm 1.5 \cdot 10^{-5} \) | \(a_{741}= -0.09123055 \pm 2.7 \cdot 10^{-6} \) |
\(a_{742}= +0.61294789 \pm 2.0 \cdot 10^{-6} \) | \(a_{743}= -1.59179746 \pm 1.0 \cdot 10^{-5} \) | \(a_{744}= +1.07386661 \pm 5.2 \cdot 10^{-6} \) |
\(a_{745}= +0.01052607 \pm 2.7 \cdot 10^{-6} \) | \(a_{746}= -0.04825742 \pm 1.0 \cdot 10^{-5} \) | \(a_{747}= -0.17415090 \pm 3.2 \cdot 10^{-6} \) |
\(a_{748}= -0.55984931 \pm 3.2 \cdot 10^{-6} \) | \(a_{749}= +0.01765381 \pm 3.6 \cdot 10^{-6} \) | \(a_{750}= +0.26175382 \pm 1.4 \cdot 10^{-5} \) |
\(a_{751}= +1.64846629 \pm 7.0 \cdot 10^{-6} \) | \(a_{752}= -2.16623772 \pm 2.4 \cdot 10^{-6} \) | \(a_{753}= +2.14243041 \pm 1.1 \cdot 10^{-5} \) |
\(a_{754}= -0.07723866 \pm 2.2 \cdot 10^{-6} \) | \(a_{755}= -0.37702770 \pm 4.9 \cdot 10^{-6} \) | \(a_{756}= -0.97260886 \pm 2.1 \cdot 10^{-6} \) |
\(a_{757}= +1.45316781 \pm 5.7 \cdot 10^{-6} \) | \(a_{758}= -0.42692626 \pm 6.0 \cdot 10^{-6} \) | \(a_{759}= +2.22332370 \pm 2.2 \cdot 10^{-6} \) |
\(a_{760}= +0.39471854 \pm 1.4 \cdot 10^{-5} \) | \(a_{761}= -0.35039599 \pm 7.1 \cdot 10^{-6} \) | \(a_{762}= -2.30681889 \pm 6.4 \cdot 10^{-6} \) |
\(a_{763}= -0.46242426 \pm 1.7 \cdot 10^{-6} \) | \(a_{764}= -1.33629102 \pm 1.8 \cdot 10^{-6} \) | \(a_{765}= -0.17099318 \pm 1.1 \cdot 10^{-5} \) |
\(a_{766}= +0.34079302 \pm 8.2 \cdot 10^{-6} \) | \(a_{767}= +0.08408556 \pm 3.5 \cdot 10^{-6} \) | \(a_{768}= -3.31175386 \pm 5.9 \cdot 10^{-6} \) |
\(a_{769}= +0.25700258 \pm 5.2 \cdot 10^{-6} \) | \(a_{770}= +0.35438194 \pm 1.4 \cdot 10^{-5} \) | \(a_{771}= +0.74710620 \pm 5.7 \cdot 10^{-6} \) |
\(a_{772}= +2.77311898 \pm 2.0 \cdot 10^{-6} \) | \(a_{773}= -1.69888633 \pm 4.0 \cdot 10^{-6} \) | \(a_{774}= -3.88055614 \pm 1.3 \cdot 10^{-6} \) |
\(a_{775}= -0.06424800 \pm 7.6 \cdot 10^{-6} \) | \(a_{776}= -0.87948492 \pm 5.7 \cdot 10^{-6} \) | \(a_{777}= +0.81416960 \pm 3.0 \cdot 10^{-6} \) |
\(a_{778}= +0.66080424 \pm 5.8 \cdot 10^{-6} \) | \(a_{779}= -0.69292265 \pm 5.3 \cdot 10^{-6} \) | \(a_{780}= +0.20051837 \pm 1.9 \cdot 10^{-5} \) |
\(a_{781}= +1.73384222 \pm 2.8 \cdot 10^{-6} \) | \(a_{782}= +0.44852492 \pm 3.2 \cdot 10^{-6} \) | \(a_{783}= -0.41167709 \pm 2.4 \cdot 10^{-6} \) |
\(a_{784}= -1.23918443 \pm 2.3 \cdot 10^{-6} \) | \(a_{785}= -0.16660234 \pm 6.8 \cdot 10^{-6} \) | \(a_{786}= +1.04668596 \pm 9.2 \cdot 10^{-6} \) |
\(a_{787}= -0.44604483 \pm 4.9 \cdot 10^{-6} \) | \(a_{788}= +3.32977582 \pm 7.4 \cdot 10^{-6} \) | \(a_{789}= -0.98502673 \pm 8.3 \cdot 10^{-6} \) |
\(a_{790}= -0.55000554 \pm 1.6 \cdot 10^{-5} \) | \(a_{791}= -0.25355194 \pm 2.7 \cdot 10^{-6} \) | \(a_{792}= +4.12070837 \pm 3.4 \cdot 10^{-6} \) |
\(a_{793}= +0.08798241 \pm 2.5 \cdot 10^{-6} \) | \(a_{794}= +0.28779148 \pm 8.9 \cdot 10^{-6} \) | \(a_{795}= -0.67353704 \pm 1.5 \cdot 10^{-5} \) |
\(a_{796}= -2.14129086 \pm 7.9 \cdot 10^{-6} \) | \(a_{797}= +0.20353127 \pm 6.3 \cdot 10^{-6} \) | \(a_{798}= +0.48351023 \pm 3.2 \cdot 10^{-6} \) |
\(a_{799}= -0.33170592 \pm 6.5 \cdot 10^{-6} \) | \(a_{800}= -0.10806206 \pm 7.7 \cdot 10^{-6} \) | \(a_{801}= -1.87648653 \pm 3.0 \cdot 10^{-6} \) |
\(a_{802}= -2.45218888 \pm 1.0 \cdot 10^{-5} \) | \(a_{803}= +0.43524317 \pm 2.7 \cdot 10^{-6} \) | \(a_{804}= +6.70217940 \pm 3.5 \cdot 10^{-6} \) |
\(a_{805}= -0.19356123 \pm 6.0 \cdot 10^{-6} \) | \(a_{806}= -0.07219205 \pm 9.4 \cdot 10^{-6} \) | \(a_{807}= +1.12139908 \pm 7.6 \cdot 10^{-6} \) |
\(a_{808}= -2.42751447 \pm 5.7 \cdot 10^{-6} \) | \(a_{809}= -0.17792364 \pm 5.8 \cdot 10^{-6} \) | \(a_{810}= +0.19971567 \pm 1.5 \cdot 10^{-5} \) |
\(a_{811}= -0.08997239 \pm 4.7 \cdot 10^{-6} \) | \(a_{812}= +0.27908175 \pm 1.0 \cdot 10^{-6} \) | \(a_{813}= +1.34745036 \pm 5.8 \cdot 10^{-6} \) |
\(a_{814}= -2.72010378 \pm 3.5 \cdot 10^{-6} \) | \(a_{815}= +0.42316205 \pm 6.2 \cdot 10^{-6} \) | \(a_{816}= +0.52937126 \pm 2.8 \cdot 10^{-6} \) |
\(a_{817}= +0.55300122 \pm 9.9 \cdot 10^{-6} \) | \(a_{818}= +0.56330802 \pm 8.3 \cdot 10^{-6} \) | \(a_{819}= +0.08291638 \pm 1.9 \cdot 10^{-6} \) |
\(a_{820}= +1.52299548 \pm 1.4 \cdot 10^{-5} \) | \(a_{821}= -0.67563559 \pm 5.2 \cdot 10^{-6} \) | \(a_{822}= -2.47279695 \pm 1.1 \cdot 10^{-5} \) |
\(a_{823}= +1.25970359 \pm 8.4 \cdot 10^{-6} \) | \(a_{824}= +0.47251850 \pm 3.4 \cdot 10^{-6} \) | \(a_{825}= -0.38941216 \pm 1.1 \cdot 10^{-5} \) |
\(a_{826}= -0.44564270 \pm 3.2 \cdot 10^{-6} \) | \(a_{827}= -0.04851417 \pm 5.4 \cdot 10^{-6} \) | \(a_{828}= -4.22106756 \pm 1.2 \cdot 10^{-6} \) |
\(a_{829}= -0.62755673 \pm 1.0 \cdot 10^{-5} \) | \(a_{830}= -0.08000928 \pm 1.5 \cdot 10^{-5} \) | \(a_{831}= -0.08387526 \pm 7.1 \cdot 10^{-6} \) |
\(a_{832}= +0.06203210 \pm 6.4 \cdot 10^{-6} \) | \(a_{833}= -0.18975056 \pm 7.1 \cdot 10^{-6} \) | \(a_{834}= -1.95476311 \pm 6.4 \cdot 10^{-6} \) |
\(a_{835}= +0.15823983 \pm 6.1 \cdot 10^{-6} \) | \(a_{836}= -1.10130503 \pm 1.3 \cdot 10^{-6} \) | \(a_{837}= -0.38477902 \pm 6.9 \cdot 10^{-6} \) |
\(a_{838}= -0.07012466 \pm 3.3 \cdot 10^{-6} \) | \(a_{839}= +0.05329813 \pm 4.1 \cdot 10^{-6} \) | \(a_{840}= -0.56665131 \pm 1.7 \cdot 10^{-5} \) |
\(a_{841}= -0.88187280 \pm 6.2 \cdot 10^{-6} \) | \(a_{842}= +3.32261858 \pm 4.0 \cdot 10^{-6} \) | \(a_{843}= +1.95749050 \pm 2.9 \cdot 10^{-6} \) |
\(a_{844}= +2.68242821 \pm 2.5 \cdot 10^{-6} \) | \(a_{845}= +0.44002590 \pm 6.0 \cdot 10^{-6} \) | \(a_{846}= +4.57886227 \pm 3.3 \cdot 10^{-6} \) |
\(a_{847}= -0.14817959 \pm 2.3 \cdot 10^{-6} \) | \(a_{848}= +1.32012401 \pm 2.1 \cdot 10^{-6} \) | \(a_{849}= +0.06930986 \pm 8.4 \cdot 10^{-6} \) |
\(a_{850}= -0.07855854 \pm 1.5 \cdot 10^{-5} \) | \(a_{851}= +1.48570394 \pm 2.5 \cdot 10^{-6} \) | \(a_{852}= -5.19945126 \pm 1.6 \cdot 10^{-6} \) |
\(a_{853}= -1.20940187 \pm 6.2 \cdot 10^{-6} \) | \(a_{854}= -0.46629548 \pm 2.1 \cdot 10^{-6} \) | \(a_{855}= -0.33636846 \pm 1.1 \cdot 10^{-5} \) |
\(a_{856}= +0.09430906 \pm 5.3 \cdot 10^{-6} \) | \(a_{857}= -1.27693368 \pm 6.7 \cdot 10^{-6} \) | \(a_{858}= -0.43756167 \pm 2.9 \cdot 10^{-6} \) |
\(a_{859}= +0.71977859 \pm 6.4 \cdot 10^{-6} \) | \(a_{860}= -1.21545797 \pm 1.4 \cdot 10^{-5} \) | \(a_{861}= +0.99474812 \pm 2.9 \cdot 10^{-6} \) |
\(a_{862}= +1.64698015 \pm 5.0 \cdot 10^{-6} \) | \(a_{863}= -1.32538144 \pm 9.9 \cdot 10^{-6} \) | \(a_{864}= -0.64717985 \pm 6.7 \cdot 10^{-6} \) |
\(a_{865}= +0.41344623 \pm 6.8 \cdot 10^{-6} \) | \(a_{866}= +1.52887863 \pm 5.9 \cdot 10^{-6} \) | \(a_{867}= -1.56985816 \pm 2.1 \cdot 10^{-6} \) |
\(a_{868}= +0.26084716 \pm 3.4 \cdot 10^{-6} \) | \(a_{869}= +0.81824534 \pm 3.4 \cdot 10^{-6} \) | \(a_{870}= -0.44981921 \pm 1.8 \cdot 10^{-5} \) |
\(a_{871}= -0.24024341 \pm 1.7 \cdot 10^{-6} \) | \(a_{872}= -2.47033313 \pm 2.8 \cdot 10^{-6} \) | \(a_{873}= +0.74947324 \pm 4.0 \cdot 10^{-6} \) |
\(a_{874}= +0.88231377 \pm 2.5 \cdot 10^{-6} \) | \(a_{875}= +0.03390199 \pm 2.9 \cdot 10^{-6} \) | \(a_{876}= -1.30520852 \pm 5.3 \cdot 10^{-6} \) |
\(a_{877}= +0.82150685 \pm 6.0 \cdot 10^{-6} \) | \(a_{878}= +2.52370210 \pm 6.6 \cdot 10^{-6} \) | \(a_{879}= -1.91311573 \pm 1.0 \cdot 10^{-5} \) |
\(a_{880}= +0.76324287 \pm 7.1 \cdot 10^{-6} \) | \(a_{881}= -1.41099272 \pm 5.4 \cdot 10^{-6} \) | \(a_{882}= +2.61931308 \pm 2.1 \cdot 10^{-6} \) |
\(a_{883}= -0.66985947 \pm 5.7 \cdot 10^{-6} \) | \(a_{884}= -0.06018032 \pm 5.1 \cdot 10^{-6} \) | \(a_{885}= +0.48969394 \pm 1.3 \cdot 10^{-5} \) |
\(a_{886}= -1.82861918 \pm 7.8 \cdot 10^{-6} \) | \(a_{887}= +0.70958784 \pm 9.4 \cdot 10^{-6} \) | \(a_{888}= +4.34940440 \pm 9.8 \cdot 10^{-6} \) |
\(a_{889}= -0.29877596 \pm 3.1 \cdot 10^{-6} \) | \(a_{890}= -0.86210480 \pm 1.6 \cdot 10^{-5} \) | \(a_{891}= -0.29711776 \pm 3.6 \cdot 10^{-6} \) |
\(a_{892}= +2.80848275 \pm 6.8 \cdot 10^{-6} \) | \(a_{893}= -0.65251380 \pm 1.1 \cdot 10^{-6} \) | \(a_{894}= +0.06888100 \pm 3.7 \cdot 10^{-6} \) |
\(a_{895}= -0.36820121 \pm 7.4 \cdot 10^{-6} \) | \(a_{896}= -0.53355909 \pm 2.2 \cdot 10^{-6} \) | \(a_{897}= +0.23899349 \pm 2.5 \cdot 10^{-6} \) |
\(a_{898}= -2.30430164 \pm 7.2 \cdot 10^{-6} \) | \(a_{899}= +0.11040903 \pm 2.1 \cdot 10^{-6} \) | \(a_{900}= +0.73931432 \pm 1.0 \cdot 10^{-5} \) |
\(a_{901}= +0.20214446 \pm 8.2 \cdot 10^{-6} \) | \(a_{902}= -3.32340846 \pm 6.3 \cdot 10^{-6} \) | \(a_{903}= -0.79387927 \pm 2.6 \cdot 10^{-6} \) |
\(a_{904}= -1.35450882 \pm 4.3 \cdot 10^{-6} \) | \(a_{905}= +0.20835477 \pm 7.7 \cdot 10^{-6} \) | \(a_{906}= -2.46721109 \pm 6.0 \cdot 10^{-6} \) |
\(a_{907}= -0.09262613 \pm 9.6 \cdot 10^{-6} \) | \(a_{908}= -3.58619189 \pm 5.4 \cdot 10^{-6} \) | \(a_{909}= +2.06866211 \pm 4.2 \cdot 10^{-6} \) |
\(a_{910}= +0.03809386 \pm 1.5 \cdot 10^{-5} \) | \(a_{911}= +0.49827273 \pm 9.9 \cdot 10^{-6} \) | \(a_{912}= +1.04135029 \pm 3.3 \cdot 10^{-6} \) |
\(a_{913}= +0.11903010 \pm 2.8 \cdot 10^{-6} \) | \(a_{914}= +1.11939469 \pm 7.6 \cdot 10^{-6} \) | \(a_{915}= +0.51238822 \pm 1.2 \cdot 10^{-5} \) |
\(a_{916}= +0.72377938 \pm 7.7 \cdot 10^{-6} \) | \(a_{917}= +0.13556531 \pm 3.2 \cdot 10^{-6} \) | \(a_{918}= -0.47048431 \pm 6.4 \cdot 10^{-6} \) |
\(a_{919}= -0.00110585 \pm 7.0 \cdot 10^{-6} \) | \(a_{920}= -1.03403036 \pm 9.7 \cdot 10^{-6} \) | \(a_{921}= +0.25627195 \pm 6.5 \cdot 10^{-6} \) |
\(a_{922}= +3.18533122 \pm 7.2 \cdot 10^{-6} \) | \(a_{923}= +0.18637727 \pm 3.1 \cdot 10^{-6} \) | \(a_{924}= +1.58101500 \pm 1.0 \cdot 10^{-6} \) |
\(a_{925}= -0.26021905 \pm 9.5 \cdot 10^{-6} \) | \(a_{926}= +0.88682736 \pm 5.4 \cdot 10^{-6} \) | \(a_{927}= -0.40266747 \pm 2.0 \cdot 10^{-6} \) |
\(a_{928}= +0.18570269 \pm 2.9 \cdot 10^{-6} \) | \(a_{929}= +1.02829519 \pm 3.6 \cdot 10^{-6} \) | \(a_{930}= -0.42042902 \pm 2.2 \cdot 10^{-5} \) |
\(a_{931}= -0.37326695 \pm 6.3 \cdot 10^{-6} \) | \(a_{932}= +0.61290970 \pm 6.7 \cdot 10^{-6} \) | \(a_{933}= +0.74260107 \pm 5.8 \cdot 10^{-6} \) |
\(a_{934}= -3.26208692 \pm 4.2 \cdot 10^{-6} \) | \(a_{935}= +0.11687184 \pm 1.1 \cdot 10^{-5} \) | \(a_{936}= +0.44295056 \pm 3.8 \cdot 10^{-6} \) |
\(a_{937}= -1.05065152 \pm 1.1 \cdot 10^{-5} \) | \(a_{938}= +1.27325925 \pm 1.7 \cdot 10^{-6} \) | \(a_{939}= -0.87349174 \pm 6.1 \cdot 10^{-6} \) |
\(a_{940}= +1.43417965 \pm 1.1 \cdot 10^{-5} \) | \(a_{941}= +1.29832394 \pm 8.1 \cdot 10^{-6} \) | \(a_{942}= -1.09021998 \pm 6.5 \cdot 10^{-6} \) |
\(a_{943}= +1.81522524 \pm 4.2 \cdot 10^{-6} \) | \(a_{944}= -0.95979387 \pm 3.1 \cdot 10^{-6} \) | \(a_{945}= +0.20303782 \pm 8.9 \cdot 10^{-6} \) |
\(a_{946}= +2.65231471 \pm 1.0 \cdot 10^{-6} \) | \(a_{947}= +0.03107875 \pm 9.3 \cdot 10^{-6} \) | \(a_{948}= -2.45375659 \pm 6.4 \cdot 10^{-6} \) |
\(a_{949}= +0.04678594 \pm 3.5 \cdot 10^{-6} \) | \(a_{950}= -0.15453607 \pm 1.4 \cdot 10^{-5} \) | \(a_{951}= -2.00555165 \pm 1.1 \cdot 10^{-5} \) |
\(a_{952}= +0.17006551 \pm 2.3 \cdot 10^{-6} \) | \(a_{953}= -0.00943585 \pm 1.0 \cdot 10^{-5} \) | \(a_{954}= -2.79039829 \pm 2.4 \cdot 10^{-6} \) |
\(a_{955}= +0.27895861 \pm 2.0 \cdot 10^{-6} \) | \(a_{956}= +1.79682333 \pm 5.1 \cdot 10^{-6} \) | \(a_{957}= +0.66919775 \pm 2.4 \cdot 10^{-6} \) |
\(a_{958}= +0.61910959 \pm 8.6 \cdot 10^{-6} \) | \(a_{959}= -0.32027321 \pm 3.2 \cdot 10^{-6} \) | \(a_{960}= +0.36125989 \pm 1.4 \cdot 10^{-5} \) |
\(a_{961}= -0.89680485 \pm 9.5 \cdot 10^{-6} \) | \(a_{962}= -0.29239427 \pm 3.9 \cdot 10^{-6} \) | \(a_{963}= -0.08036763 \pm 4.9 \cdot 10^{-6} \) |
\(a_{964}= -2.53976993 \pm 4.4 \cdot 10^{-6} \) | \(a_{965}= -0.57890490 \pm 3.2 \cdot 10^{-6} \) | \(a_{966}= -1.26663483 \pm 2.3 \cdot 10^{-6} \) |
\(a_{967}= +0.68045514 \pm 4.7 \cdot 10^{-6} \) | \(a_{968}= -0.79159544 \pm 5.6 \cdot 10^{-6} \) | \(a_{969}= +0.15945713 \pm 8.4 \cdot 10^{-6} \) |
\(a_{970}= +0.34432673 \pm 1.3 \cdot 10^{-5} \) | \(a_{971}= -1.52544493 \pm 5.6 \cdot 10^{-6} \) | \(a_{972}= -1.67501045 \pm 2.1 \cdot 10^{-6} \) |
\(a_{973}= -0.25317819 \pm 3.4 \cdot 10^{-6} \) | \(a_{974}= +3.07856617 \pm 6.8 \cdot 10^{-6} \) | \(a_{975}= -0.04185939 \pm 1.2 \cdot 10^{-5} \) |
\(a_{976}= -1.00427438 \pm 1.9 \cdot 10^{-6} \) | \(a_{977}= -0.20693949 \pm 4.8 \cdot 10^{-6} \) | \(a_{978}= +2.76910712 \pm 5.7 \cdot 10^{-6} \) |
\(a_{979}= +1.28255659 \pm 3.3 \cdot 10^{-6} \) | \(a_{980}= +0.82041461 \pm 1.2 \cdot 10^{-5} \) | \(a_{981}= +2.10515102 \pm 2.0 \cdot 10^{-6} \) |
\(a_{982}= -3.35522918 \pm 3.7 \cdot 10^{-6} \) | \(a_{983}= -0.21569739 \pm 7.3 \cdot 10^{-6} \) | \(a_{984}= +5.31407937 \pm 5.7 \cdot 10^{-6} \) |
\(a_{985}= -0.69511029 \pm 7.3 \cdot 10^{-6} \) | \(a_{986}= +0.13500142 \pm 2.6 \cdot 10^{-6} \) | \(a_{987}= +0.93673785 \pm 1.4 \cdot 10^{-6} \) |
\(a_{988}= -0.11838345 \pm 1.8 \cdot 10^{-6} \) | \(a_{989}= -1.44867797 \pm 1.2 \cdot 10^{-6} \) | \(a_{990}= -1.61329662 \pm 1.4 \cdot 10^{-5} \) |
\(a_{991}= +1.56394182 \pm 7.2 \cdot 10^{-6} \) | \(a_{992}= +0.17356929 \pm 9.5 \cdot 10^{-6} \) | \(a_{993}= -1.96899922 \pm 5.2 \cdot 10^{-6} \) |
\(a_{994}= -0.98777562 \pm 2.9 \cdot 10^{-6} \) | \(a_{995}= +0.44700706 \pm 9.9 \cdot 10^{-6} \) | \(a_{996}= -0.35694783 \pm 6.1 \cdot 10^{-6} \) |
\(a_{997}= -0.46380719 \pm 1.0 \cdot 10^{-5} \) | \(a_{998}= +1.65777479 \pm 7.8 \cdot 10^{-6} \) | \(a_{999}= -1.55844269 \pm 7.8 \cdot 10^{-6} \) |
\(a_{1000}= +0.18110903 \pm 6.6 \cdot 10^{-6} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000