Maass form invariants
Level: | \( 6 = 2 \cdot 3 \) |
Weight: | \( 0 \) |
Character: | 6.1 |
Symmetry: | even |
Fricke sign: | $+1$ |
Spectral parameter: | \(12.3544320764145925864501458165 \pm 7 \cdot 10^{-10}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -0.70710678 \pm 1.0 \cdot 10^{-8} \) | \(a_{3}= -0.57735027 \pm 1.0 \cdot 10^{-8} \) |
\(a_{4}= +0.5 \) | \(a_{5}= +0.15375910 \pm 1 \cdot 10^{-8} \) | \(a_{6}= +0.40824829 \pm 1.0 \cdot 10^{-8} \) |
\(a_{7}= -0.63080242 \pm 1 \cdot 10^{-8} \) | \(a_{8}= -0.35355339 \pm 4.2 \cdot 10^{-8} \) | \(a_{9}= +0.33333333 \pm 4.2 \cdot 10^{-8} \) |
\(a_{10}= -0.10872411 \pm 1.1 \cdot 10^{-8} \) | \(a_{11}= -1.39010958 \pm 1 \cdot 10^{-8} \) | \(a_{12}= -0.28867513 \pm 5.2 \cdot 10^{-8} \) |
\(a_{13}= -1.19311603 \pm 1 \cdot 10^{-8} \) | \(a_{14}= +0.44604467 \pm 1.0 \cdot 10^{-8} \) | \(a_{15}= -0.08877286 \pm 1.1 \cdot 10^{-8} \) |
\(a_{16}= +0.25 \) | \(a_{17}= +0.59084470 \pm 1 \cdot 10^{-8} \) | \(a_{18}= -0.23570226 \pm 7.3 \cdot 10^{-8} \) |
\(a_{19}= +1.39361270 \pm 1 \cdot 10^{-8} \) | \(a_{20}= +0.07687955 \pm 1.1 \cdot 10^{-8} \) | \(a_{21}= +0.36419395 \pm 1.0 \cdot 10^{-8} \) |
\(a_{22}= +0.98295591 \pm 1.1 \cdot 10^{-8} \) | \(a_{23}= +1.17196879 \pm 1 \cdot 10^{-8} \) | \(a_{24}= +0.20412415 \pm 9.4 \cdot 10^{-8} \) |
\(a_{25}= -0.97635814 \pm 1 \cdot 10^{-8} \) | \(a_{26}= +0.84366043 \pm 1.1 \cdot 10^{-8} \) | \(a_{27}= -0.19245009 \pm 9.4 \cdot 10^{-8} \) |
\(a_{28}= -0.31540121 \pm 1.0 \cdot 10^{-8} \) | \(a_{29}= +0.77742728 \pm 1 \cdot 10^{-8} \) | \(a_{30}= +0.06277189 \pm 1.1 \cdot 10^{-8} \) |
\(a_{31}= +0.54113220 \pm 1 \cdot 10^{-8} \) | \(a_{32}= -0.17677670 \pm 1.1 \cdot 10^{-7} \) | \(a_{33}= +0.80258014 \pm 1.1 \cdot 10^{-8} \) |
\(a_{34}= -0.41779030 \pm 1.0 \cdot 10^{-8} \) | \(a_{35}= -0.09699162 \pm 1 \cdot 10^{-8} \) | \(a_{36}= +0.16666667 \pm 1.0 \cdot 10^{-7} \) |
\(a_{37}= -0.94225178 \pm 1 \cdot 10^{-8} \) | \(a_{38}= -0.98543299 \pm 1.0 \cdot 10^{-8} \) | \(a_{39}= +0.68884586 \pm 1.1 \cdot 10^{-8} \) |
\(a_{40}= -0.05436205 \pm 1.1 \cdot 10^{-8} \) | \(a_{41}= +1.05991310 \pm 1 \cdot 10^{-8} \) | \(a_{42}= -0.25752401 \pm 1.0 \cdot 10^{-8} \) |
\(a_{43}= +1.78298098 \pm 1 \cdot 10^{-8} \) | \(a_{44}= -0.69505479 \pm 1.1 \cdot 10^{-8} \) | \(a_{45}= +0.05125303 \pm 1.1 \cdot 10^{-8} \) |
\(a_{46}= -0.82870708 \pm 1.0 \cdot 10^{-8} \) | \(a_{47}= -0.47895242 \pm 1 \cdot 10^{-8} \) | \(a_{48}= -0.14433757 \pm 1.5 \cdot 10^{-7} \) |
\(a_{49}= -0.60208830 \pm 1 \cdot 10^{-8} \) | \(a_{50}= +0.69038946 \pm 1.0 \cdot 10^{-8} \) | \(a_{51}= -0.34112435 \pm 1.0 \cdot 10^{-8} \) |
\(a_{52}= -0.59655801 \pm 1.1 \cdot 10^{-8} \) | \(a_{53}= +1.64402471 \pm 1 \cdot 10^{-8} \) | \(a_{54}= +0.13608276 \pm 1.6 \cdot 10^{-7} \) |
\(a_{55}= -0.21374200 \pm 1 \cdot 10^{-8} \) | \(a_{56}= +0.22302234 \pm 1.0 \cdot 10^{-8} \) | \(a_{57}= -0.80460267 \pm 1.0 \cdot 10^{-8} \) |
\(a_{58}= -0.54972410 \pm 1.1 \cdot 10^{-8} \) | \(a_{59}= +1.76826089 \pm 1 \cdot 10^{-8} \) | \(a_{60}= -0.04438643 \pm 1.1 \cdot 10^{-8} \) |
\(a_{61}= -0.28504031 \pm 1 \cdot 10^{-8} \) | \(a_{62}= -0.38263825 \pm 1.0 \cdot 10^{-8} \) | \(a_{63}= -0.21026747 \pm 1.0 \cdot 10^{-8} \) |
\(a_{64}= +0.125 \) | \(a_{65}= -0.18345245 \pm 1 \cdot 10^{-8} \) | \(a_{66}= -0.56750986 \pm 1.1 \cdot 10^{-8} \) |
\(a_{67}= -0.05269024 \pm 1 \cdot 10^{-8} \) | \(a_{68}= +0.29542235 \pm 1.0 \cdot 10^{-8} \) | \(a_{69}= -0.67663650 \pm 1.0 \cdot 10^{-8} \) |
\(a_{70}= +0.06858343 \pm 1.1 \cdot 10^{-8} \) | \(a_{71}= +1.22605243 \pm 1 \cdot 10^{-8} \) | \(a_{72}= -0.11785113 \pm 1.9 \cdot 10^{-7} \) |
\(a_{73}= -1.01673994 \pm 1 \cdot 10^{-8} \) | \(a_{74}= +0.66627262 \pm 1.1 \cdot 10^{-8} \) | \(a_{75}= +0.56370063 \pm 1.0 \cdot 10^{-8} \) |
\(a_{76}= +0.69680635 \pm 1.0 \cdot 10^{-8} \) | \(a_{77}= +0.87688449 \pm 1 \cdot 10^{-8} \) | \(a_{78}= -0.48708758 \pm 1.1 \cdot 10^{-8} \) |
\(a_{79}= -1.16302487 \pm 1 \cdot 10^{-8} \) | \(a_{80}= +0.03843978 \pm 1.1 \cdot 10^{-8} \) | \(a_{81}= +0.11111111 \pm 2.3 \cdot 10^{-7} \) |
\(a_{82}= -0.74947174 \pm 1.1 \cdot 10^{-8} \) | \(a_{83}= -0.07341848 \pm 1 \cdot 10^{-8} \) | \(a_{84}= +0.18209697 \pm 1.0 \cdot 10^{-8} \) |
\(a_{85}= +0.09084775 \pm 1 \cdot 10^{-8} \) | \(a_{86}= -1.26075794 \pm 1.1 \cdot 10^{-8} \) | \(a_{87}= -0.44884785 \pm 1.1 \cdot 10^{-8} \) |
\(a_{88}= +0.49147795 \pm 1.1 \cdot 10^{-8} \) | \(a_{89}= +0.64971770 \pm 1 \cdot 10^{-8} \) | \(a_{90}= -0.03624137 \pm 1.1 \cdot 10^{-8} \) |
\(a_{91}= +0.75262048 \pm 1 \cdot 10^{-8} \) | \(a_{92}= +0.58598440 \pm 1.0 \cdot 10^{-8} \) | \(a_{93}= -0.31242282 \pm 1.0 \cdot 10^{-8} \) |
\(a_{94}= +0.33867051 \pm 1.0 \cdot 10^{-8} \) | \(a_{95}= +0.21428064 \pm 1 \cdot 10^{-8} \) | \(a_{96}= +0.10206207 \pm 2.5 \cdot 10^{-7} \) |
\(a_{97}= +0.17891630 \pm 1 \cdot 10^{-8} \) | \(a_{98}= +0.42574072 \pm 1.1 \cdot 10^{-8} \) | \(a_{99}= -0.46336986 \pm 1.1 \cdot 10^{-8} \) |
\(a_{100}= -0.48817907 \pm 1.0 \cdot 10^{-8} \) | \(a_{101}= -0.67720515 \pm 1 \cdot 10^{-8} \) | \(a_{102}= +0.24121134 \pm 1.0 \cdot 10^{-8} \) |
\(a_{103}= -0.76776351 \pm 1 \cdot 10^{-8} \) | \(a_{104}= +0.42183022 \pm 1.1 \cdot 10^{-8} \) | \(a_{105}= +0.05599814 \pm 1.1 \cdot 10^{-8} \) |
\(a_{106}= -1.16250102 \pm 1.1 \cdot 10^{-8} \) | \(a_{107}= -0.79254276 \pm 1 \cdot 10^{-8} \) | \(a_{108}= -0.09622504 \pm 2.8 \cdot 10^{-7} \) |
\(a_{109}= +1.32706634 \pm 1 \cdot 10^{-8} \) | \(a_{110}= +0.15113842 \pm 1.2 \cdot 10^{-8} \) | \(a_{111}= +0.54400932 \pm 1.1 \cdot 10^{-8} \) |
\(a_{112}= -0.15770061 \pm 1.0 \cdot 10^{-8} \) | \(a_{113}= +0.73028657 \pm 1 \cdot 10^{-8} \) | \(a_{114}= +0.56894000 \pm 1.0 \cdot 10^{-8} \) |
\(a_{115}= +0.18020087 \pm 1 \cdot 10^{-8} \) | \(a_{116}= +0.38871364 \pm 1.1 \cdot 10^{-8} \) | \(a_{117}= -0.39770534 \pm 1.1 \cdot 10^{-8} \) |
\(a_{118}= -1.25034926 \pm 1.0 \cdot 10^{-8} \) | \(a_{119}= -0.37270627 \pm 1 \cdot 10^{-8} \) | \(a_{120}= +0.03138595 \pm 1.1 \cdot 10^{-8} \) |
\(a_{121}= +0.93240464 \pm 1 \cdot 10^{-8} \) | \(a_{122}= +0.20155394 \pm 1.1 \cdot 10^{-8} \) | \(a_{123}= -0.61194112 \pm 1.1 \cdot 10^{-8} \) |
\(a_{124}= +0.27056610 \pm 1.0 \cdot 10^{-8} \) | \(a_{125}= -0.30388306 \pm 1 \cdot 10^{-8} \) | \(a_{126}= +0.14868156 \pm 1.0 \cdot 10^{-8} \) |
\(a_{127}= +0.60432424 \pm 1 \cdot 10^{-8} \) | \(a_{128}= -0.08838835 \pm 3.2 \cdot 10^{-7} \) | \(a_{129}= -1.02940455 \pm 1.1 \cdot 10^{-8} \) |
\(a_{130}= +0.12972047 \pm 1.2 \cdot 10^{-8} \) | \(a_{131}= -0.34488651 \pm 1 \cdot 10^{-8} \) | \(a_{132}= +0.40129007 \pm 1.1 \cdot 10^{-8} \) |
\(a_{133}= -0.87909427 \pm 1 \cdot 10^{-8} \) | \(a_{134}= +0.03725763 \pm 1.1 \cdot 10^{-8} \) | \(a_{135}= -0.02959095 \pm 1.1 \cdot 10^{-8} \) |
\(a_{136}= -0.20889515 \pm 1.0 \cdot 10^{-8} \) | \(a_{137}= -0.78801088 \pm 1 \cdot 10^{-8} \) | \(a_{138}= +0.47845426 \pm 1.0 \cdot 10^{-8} \) |
\(a_{139}= +1.49717268 \pm 1 \cdot 10^{-8} \) | \(a_{140}= -0.04849581 \pm 1.1 \cdot 10^{-8} \) | \(a_{141}= +0.27652331 \pm 1.0 \cdot 10^{-8} \) |
\(a_{142}= -0.86694999 \pm 1.1 \cdot 10^{-8} \) | \(a_{143}= +1.65856202 \pm 1 \cdot 10^{-8} \) | \(a_{144}= +0.08333333 \pm 3.4 \cdot 10^{-7} \) |
\(a_{145}= +0.11953652 \pm 1 \cdot 10^{-8} \) | \(a_{146}= +0.71894371 \pm 1.0 \cdot 10^{-8} \) | \(a_{147}= +0.34761584 \pm 1.1 \cdot 10^{-8} \) |
\(a_{148}= -0.47112589 \pm 1.1 \cdot 10^{-8} \) | \(a_{149}= -1.01203066 \pm 1 \cdot 10^{-8} \) | \(a_{150}= -0.39859654 \pm 1.0 \cdot 10^{-8} \) |
\(a_{151}= +0.19140065 \pm 1 \cdot 10^{-8} \) | \(a_{152}= -0.49271650 \pm 1.0 \cdot 10^{-8} \) | \(a_{153}= +0.19694823 \pm 1.0 \cdot 10^{-8} \) |
\(a_{154}= -0.62005097 \pm 1.1 \cdot 10^{-8} \) | \(a_{155}= +0.08320400 \pm 1 \cdot 10^{-8} \) | \(a_{156}= +0.34442293 \pm 1.1 \cdot 10^{-8} \) |
\(a_{157}= -1.53008086 \pm 1 \cdot 10^{-8} \) | \(a_{158}= +0.82238278 \pm 1.1 \cdot 10^{-8} \) | \(a_{159}= -0.94917811 \pm 1.1 \cdot 10^{-8} \) |
\(a_{160}= -0.02718103 \pm 1.1 \cdot 10^{-8} \) | \(a_{161}= -0.73928076 \pm 1 \cdot 10^{-8} \) | \(a_{162}= -0.07856742 \pm 3.8 \cdot 10^{-7} \) |
\(a_{163}= +1.76923945 \pm 1 \cdot 10^{-8} \) | \(a_{164}= +0.52995655 \pm 1.1 \cdot 10^{-8} \) | \(a_{165}= +0.12340400 \pm 1.2 \cdot 10^{-8} \) |
\(a_{166}= +0.05191471 \pm 1.1 \cdot 10^{-8} \) | \(a_{167}= -0.25493545 \pm 1 \cdot 10^{-8} \) | \(a_{168}= -0.12876201 \pm 1.0 \cdot 10^{-8} \) |
\(a_{169}= +0.42352585 \pm 1 \cdot 10^{-8} \) | \(a_{170}= -0.06423906 \pm 1.1 \cdot 10^{-8} \) | \(a_{171}= +0.46453757 \pm 1.0 \cdot 10^{-8} \) |
\(a_{172}= +0.89149049 \pm 1.1 \cdot 10^{-8} \) | \(a_{173}= +0.00139831 \pm 1 \cdot 10^{-8} \) | \(a_{174}= +0.31738336 \pm 1.1 \cdot 10^{-8} \) |
\(a_{175}= +0.61588908 \pm 1 \cdot 10^{-8} \) | \(a_{176}= -0.34752739 \pm 1.1 \cdot 10^{-8} \) | \(a_{177}= -1.02090590 \pm 1.0 \cdot 10^{-8} \) |
\(a_{178}= -0.45941979 \pm 1.1 \cdot 10^{-8} \) | \(a_{179}= -0.24545364 \pm 1 \cdot 10^{-8} \) | \(a_{180}= +0.02562652 \pm 1.1 \cdot 10^{-8} \) |
\(a_{181}= -0.08867011 \pm 1 \cdot 10^{-8} \) | \(a_{182}= -0.53218305 \pm 1.1 \cdot 10^{-8} \) | \(a_{183}= +0.16456810 \pm 1.1 \cdot 10^{-8} \) |
\(a_{184}= -0.41435354 \pm 1.0 \cdot 10^{-8} \) | \(a_{185}= -0.14487979 \pm 1 \cdot 10^{-8} \) | \(a_{186}= +0.22091629 \pm 1.0 \cdot 10^{-8} \) |
\(a_{187}= -0.82133888 \pm 1 \cdot 10^{-8} \) | \(a_{188}= -0.23947621 \pm 1.0 \cdot 10^{-8} \) | \(a_{189}= +0.12139798 \pm 1.0 \cdot 10^{-8} \) |
\(a_{190}= -0.15151929 \pm 1.1 \cdot 10^{-8} \) | \(a_{191}= +1.87244253 \pm 1 \cdot 10^{-8} \) | \(a_{192}= -0.07216878 \pm 4.5 \cdot 10^{-7} \) |
\(a_{193}= -0.96582186 \pm 1 \cdot 10^{-8} \) | \(a_{194}= -0.12651293 \pm 1.1 \cdot 10^{-8} \) | \(a_{195}= +0.10591632 \pm 1.2 \cdot 10^{-8} \) |
\(a_{196}= -0.30104415 \pm 1.1 \cdot 10^{-8} \) | \(a_{197}= +0.59727869 \pm 1 \cdot 10^{-8} \) | \(a_{198}= +0.32765197 \pm 1.1 \cdot 10^{-8} \) |
\(a_{199}= +0.43517748 \pm 1 \cdot 10^{-8} \) | \(a_{200}= +0.34519473 \pm 1.0 \cdot 10^{-8} \) | \(a_{201}= +0.03042073 \pm 1.1 \cdot 10^{-8} \) |
\(a_{202}= +0.47885636 \pm 1.0 \cdot 10^{-8} \) | \(a_{203}= -0.49040301 \pm 1 \cdot 10^{-8} \) | \(a_{204}= -0.17056217 \pm 1.0 \cdot 10^{-8} \) |
\(a_{205}= +0.16297129 \pm 1 \cdot 10^{-8} \) | \(a_{206}= +0.54289078 \pm 1.0 \cdot 10^{-8} \) | \(a_{207}= +0.39065626 \pm 1.0 \cdot 10^{-8} \) |
\(a_{208}= -0.29827901 \pm 1.1 \cdot 10^{-8} \) | \(a_{209}= -1.93727436 \pm 1 \cdot 10^{-8} \) | \(a_{210}= -0.03959666 \pm 1.1 \cdot 10^{-8} \) |
\(a_{211}= +0.74799473 \pm 1 \cdot 10^{-8} \) | \(a_{212}= +0.82201235 \pm 1.1 \cdot 10^{-8} \) | \(a_{213}= -0.70786170 \pm 1.1 \cdot 10^{-8} \) |
\(a_{214}= +0.56041236 \pm 1.1 \cdot 10^{-8} \) | \(a_{215}= +0.27414956 \pm 1 \cdot 10^{-8} \) | \(a_{216}= +0.06804138 \pm 4.8 \cdot 10^{-7} \) |
\(a_{217}= -0.34134750 \pm 1 \cdot 10^{-8} \) | \(a_{218}= -0.93837761 \pm 1.1 \cdot 10^{-8} \) | \(a_{219}= +0.58701508 \pm 1.0 \cdot 10^{-8} \) |
\(a_{220}= -0.10687100 \pm 1.2 \cdot 10^{-8} \) | \(a_{221}= -0.70494629 \pm 1 \cdot 10^{-8} \) | \(a_{222}= -0.38467268 \pm 1.1 \cdot 10^{-8} \) |
\(a_{223}= -0.16770956 \pm 1 \cdot 10^{-8} \) | \(a_{224}= +0.11151117 \pm 1.0 \cdot 10^{-8} \) | \(a_{225}= -0.32545271 \pm 1.0 \cdot 10^{-8} \) |
\(a_{226}= -0.51639059 \pm 1.1 \cdot 10^{-8} \) | \(a_{227}= -0.01463184 \pm 1 \cdot 10^{-8} \) | \(a_{228}= -0.40230133 \pm 1.0 \cdot 10^{-8} \) |
\(a_{229}= +1.61155881 \pm 1 \cdot 10^{-8} \) | \(a_{230}= -0.12742126 \pm 1.1 \cdot 10^{-8} \) | \(a_{231}= -0.50626950 \pm 1.1 \cdot 10^{-8} \) |
\(a_{232}= -0.27486205 \pm 1.1 \cdot 10^{-8} \) | \(a_{233}= +0.15846276 \pm 1 \cdot 10^{-8} \) | \(a_{234}= +0.28122014 \pm 1.1 \cdot 10^{-8} \) |
\(a_{235}= -0.07364330 \pm 1 \cdot 10^{-8} \) | \(a_{236}= +0.88413044 \pm 1.0 \cdot 10^{-8} \) | \(a_{237}= +0.67147272 \pm 1.1 \cdot 10^{-8} \) |
\(a_{238}= +0.26354313 \pm 1.1 \cdot 10^{-8} \) | \(a_{239}= +1.86431325 \pm 1 \cdot 10^{-8} \) | \(a_{240}= -0.02219322 \pm 1.1 \cdot 10^{-8} \) |
\(a_{241}= +0.29538581 \pm 1 \cdot 10^{-8} \) | \(a_{242}= -0.65930964 \pm 1.1 \cdot 10^{-8} \) | \(a_{243}= -0.06415003 \pm 5.5 \cdot 10^{-7} \) |
\(a_{244}= -0.14252016 \pm 1.1 \cdot 10^{-8} \) | \(a_{245}= -0.09257656 \pm 1 \cdot 10^{-8} \) | \(a_{246}= +0.43270771 \pm 1.1 \cdot 10^{-8} \) |
\(a_{247}= -1.66274165 \pm 1 \cdot 10^{-8} \) | \(a_{248}= -0.19131912 \pm 1.0 \cdot 10^{-8} \) | \(a_{249}= +0.04238818 \pm 1.1 \cdot 10^{-8} \) |
\(a_{250}= +0.21487777 \pm 1.1 \cdot 10^{-8} \) | \(a_{251}= -0.93416599 \pm 1 \cdot 10^{-8} \) | \(a_{252}= -0.10513374 \pm 1.0 \cdot 10^{-8} \) |
\(a_{253}= -1.62916504 \pm 1 \cdot 10^{-8} \) | \(a_{254}= -0.42732177 \pm 1.1 \cdot 10^{-8} \) | \(a_{255}= -0.05245097 \pm 1.1 \cdot 10^{-8} \) |
\(a_{256}= +0.0625 \) | \(a_{257}= +0.52183867 \pm 1 \cdot 10^{-8} \) | \(a_{258}= +0.72789894 \pm 1.1 \cdot 10^{-8} \) |
\(a_{259}= +0.59437471 \pm 1 \cdot 10^{-8} \) | \(a_{260}= -0.09172623 \pm 1.2 \cdot 10^{-8} \) | \(a_{261}= +0.25914243 \pm 1.1 \cdot 10^{-8} \) |
\(a_{262}= +0.24387159 \pm 1.0 \cdot 10^{-8} \) | \(a_{263}= -1.00795816 \pm 1 \cdot 10^{-8} \) | \(a_{264}= -0.28375493 \pm 1.1 \cdot 10^{-8} \) |
\(a_{265}= +0.25278377 \pm 1 \cdot 10^{-8} \) | \(a_{266}= +0.62161352 \pm 1.1 \cdot 10^{-8} \) | \(a_{267}= -0.37511469 \pm 1.1 \cdot 10^{-8} \) |
\(a_{268}= -0.02634512 \pm 1.1 \cdot 10^{-8} \) | \(a_{269}= +0.65282744 \pm 1 \cdot 10^{-8} \) | \(a_{270}= +0.02092396 \pm 1.1 \cdot 10^{-8} \) |
\(a_{271}= +0.69155272 \pm 1 \cdot 10^{-8} \) | \(a_{272}= +0.14771118 \pm 1.0 \cdot 10^{-8} \) | \(a_{273}= -0.43452564 \pm 1.1 \cdot 10^{-8} \) |
\(a_{274}= +0.55720783 \pm 1.1 \cdot 10^{-8} \) | \(a_{275}= +1.35724480 \pm 1 \cdot 10^{-8} \) | \(a_{276}= -0.33831825 \pm 1.0 \cdot 10^{-8} \) |
\(a_{277}= +0.01720861 \pm 1 \cdot 10^{-8} \) | \(a_{278}= -1.05866096 \pm 1.0 \cdot 10^{-8} \) | \(a_{279}= +0.18037740 \pm 1.0 \cdot 10^{-8} \) |
\(a_{280}= +0.03429171 \pm 1.1 \cdot 10^{-8} \) | \(a_{281}= -0.84678187 \pm 1 \cdot 10^{-8} \) | \(a_{282}= -0.19553151 \pm 1.0 \cdot 10^{-8} \) |
\(a_{283}= +1.66383461 \pm 1 \cdot 10^{-8} \) | \(a_{284}= +0.61302621 \pm 1.1 \cdot 10^{-8} \) | \(a_{285}= -0.12371499 \pm 1.1 \cdot 10^{-8} \) |
\(a_{286}= -1.17278045 \pm 1.2 \cdot 10^{-8} \) | \(a_{287}= -0.66859576 \pm 1 \cdot 10^{-8} \) | \(a_{288}= -0.05892557 \pm 6.3 \cdot 10^{-7} \) |
\(a_{289}= -0.65090254 \pm 1 \cdot 10^{-8} \) | \(a_{290}= -0.08452509 \pm 1.2 \cdot 10^{-8} \) | \(a_{291}= -0.10329737 \pm 1.1 \cdot 10^{-8} \) |
\(a_{292}= -0.50836997 \pm 1.0 \cdot 10^{-8} \) | \(a_{293}= +0.38098374 \pm 1 \cdot 10^{-8} \) | \(a_{294}= -0.24580152 \pm 1.1 \cdot 10^{-8} \) |
\(a_{295}= +0.27188621 \pm 1 \cdot 10^{-8} \) | \(a_{296}= +0.33313631 \pm 1.1 \cdot 10^{-8} \) | \(a_{297}= +0.26752671 \pm 1.1 \cdot 10^{-8} \) |
\(a_{298}= +0.71561374 \pm 1.1 \cdot 10^{-8} \) | \(a_{299}= -1.39829475 \pm 1 \cdot 10^{-8} \) | \(a_{300}= +0.28185032 \pm 1.0 \cdot 10^{-8} \) |
\(a_{301}= -1.12470873 \pm 1 \cdot 10^{-8} \) | \(a_{302}= -0.13534069 \pm 1.1 \cdot 10^{-8} \) | \(a_{303}= +0.39098458 \pm 1.0 \cdot 10^{-8} \) |
\(a_{304}= +0.34840318 \pm 1.0 \cdot 10^{-8} \) | \(a_{305}= -0.04382754 \pm 1 \cdot 10^{-8} \) | \(a_{306}= -0.13926343 \pm 1.0 \cdot 10^{-8} \) |
\(a_{307}= +1.08382706 \pm 1 \cdot 10^{-8} \) | \(a_{308}= +0.43844225 \pm 1.1 \cdot 10^{-8} \) | \(a_{309}= +0.44326847 \pm 1.0 \cdot 10^{-8} \) |
\(a_{310}= -0.05883411 \pm 1.1 \cdot 10^{-8} \) | \(a_{311}= -0.21288308 \pm 1 \cdot 10^{-8} \) | \(a_{312}= -0.24354379 \pm 1.1 \cdot 10^{-8} \) |
\(a_{313}= -1.12408849 \pm 1 \cdot 10^{-8} \) | \(a_{314}= +1.08193055 \pm 1.1 \cdot 10^{-8} \) | \(a_{315}= -0.03233054 \pm 1.1 \cdot 10^{-8} \) |
\(a_{316}= -0.58151244 \pm 1.1 \cdot 10^{-8} \) | \(a_{317}= +0.99738029 \pm 1 \cdot 10^{-8} \) | \(a_{318}= +0.67117028 \pm 1.1 \cdot 10^{-8} \) |
\(a_{319}= -1.08070911 \pm 1 \cdot 10^{-8} \) | \(a_{320}= +0.01921989 \pm 1.1 \cdot 10^{-8} \) | \(a_{321}= +0.45757478 \pm 1.1 \cdot 10^{-8} \) |
\(a_{322}= +0.52275044 \pm 1.1 \cdot 10^{-8} \) | \(a_{323}= +0.82340868 \pm 1 \cdot 10^{-8} \) | \(a_{324}= +0.05555556 \pm 6.8 \cdot 10^{-7} \) |
\(a_{325}= +1.16490854 \pm 1 \cdot 10^{-8} \) | \(a_{326}= -1.25104121 \pm 1.1 \cdot 10^{-8} \) | \(a_{327}= -0.76618211 \pm 1.1 \cdot 10^{-8} \) |
\(a_{328}= -0.37473587 \pm 1.1 \cdot 10^{-8} \) | \(a_{329}= +0.30212435 \pm 1 \cdot 10^{-8} \) | \(a_{330}= -0.08725981 \pm 1.2 \cdot 10^{-8} \) |
\(a_{331}= -0.60394870 \pm 1 \cdot 10^{-8} \) | \(a_{332}= -0.03670924 \pm 1.1 \cdot 10^{-8} \) | \(a_{333}= -0.31408393 \pm 1.1 \cdot 10^{-8} \) |
\(a_{334}= +0.18026658 \pm 1.0 \cdot 10^{-8} \) | \(a_{335}= -0.00810160 \pm 1 \cdot 10^{-8} \) | \(a_{336}= +0.09104849 \pm 1.0 \cdot 10^{-8} \) |
\(a_{337}= -0.81209924 \pm 1 \cdot 10^{-8} \) | \(a_{338}= -0.29947800 \pm 1.0 \cdot 10^{-8} \) | \(a_{339}= -0.42163115 \pm 1.1 \cdot 10^{-8} \) |
\(a_{340}= +0.04542388 \pm 1.1 \cdot 10^{-8} \) | \(a_{341}= -0.75223305 \pm 1 \cdot 10^{-8} \) | \(a_{342}= -0.32847766 \pm 1.0 \cdot 10^{-8} \) |
\(a_{343}= +1.01060118 \pm 1 \cdot 10^{-8} \) | \(a_{344}= -0.63037897 \pm 1.1 \cdot 10^{-8} \) | \(a_{345}= -0.10403902 \pm 1.1 \cdot 10^{-8} \) |
\(a_{346}= -0.00098875 \pm 1.0 \cdot 10^{-8} \) | \(a_{347}= -0.12586766 \pm 1 \cdot 10^{-8} \) | \(a_{348}= -0.22442393 \pm 1.1 \cdot 10^{-8} \) |
\(a_{349}= +1.28383109 \pm 1 \cdot 10^{-8} \) | \(a_{350}= -0.43549935 \pm 1.1 \cdot 10^{-8} \) | \(a_{351}= +0.22961529 \pm 1.1 \cdot 10^{-8} \) |
\(a_{352}= +0.24573898 \pm 1.1 \cdot 10^{-8} \) | \(a_{353}= +0.48926019 \pm 1 \cdot 10^{-8} \) | \(a_{354}= +0.72188948 \pm 1.0 \cdot 10^{-8} \) |
\(a_{355}= +0.18851672 \pm 1 \cdot 10^{-8} \) | \(a_{356}= +0.32485885 \pm 1.1 \cdot 10^{-8} \) | \(a_{357}= +0.21518207 \pm 1.1 \cdot 10^{-8} \) |
\(a_{358}= +0.17356193 \pm 1.1 \cdot 10^{-8} \) | \(a_{359}= +0.52312558 \pm 1 \cdot 10^{-8} \) | \(a_{360}= -0.01812068 \pm 1.1 \cdot 10^{-8} \) |
\(a_{361}= +0.94215636 \pm 1 \cdot 10^{-8} \) | \(a_{362}= +0.06269923 \pm 1.1 \cdot 10^{-8} \) | \(a_{363}= -0.53832407 \pm 1.1 \cdot 10^{-8} \) |
\(a_{364}= +0.37631024 \pm 1.1 \cdot 10^{-8} \) | \(a_{365}= -0.15633302 \pm 1 \cdot 10^{-8} \) | \(a_{366}= -0.11636722 \pm 1.1 \cdot 10^{-8} \) |
\(a_{367}= -0.81560690 \pm 1 \cdot 10^{-8} \) | \(a_{368}= +0.29299220 \pm 1.0 \cdot 10^{-8} \) | \(a_{369}= +0.35330437 \pm 1.1 \cdot 10^{-8} \) |
\(a_{370}= +0.10244548 \pm 1.2 \cdot 10^{-8} \) | \(a_{371}= -1.03705477 \pm 1 \cdot 10^{-8} \) | \(a_{372}= -0.15621141 \pm 1.0 \cdot 10^{-8} \) |
\(a_{373}= -1.79599346 \pm 1 \cdot 10^{-8} \) | \(a_{374}= +0.58077429 \pm 1.1 \cdot 10^{-8} \) | \(a_{375}= +0.17544697 \pm 1.1 \cdot 10^{-8} \) |
\(a_{376}= +0.16933525 \pm 1.0 \cdot 10^{-8} \) | \(a_{377}= -0.92756095 \pm 1 \cdot 10^{-8} \) | \(a_{378}= -0.08584134 \pm 1.0 \cdot 10^{-8} \) |
\(a_{379}= -0.67561119 \pm 1 \cdot 10^{-8} \) | \(a_{380}= +0.10714032 \pm 1.1 \cdot 10^{-8} \) | \(a_{381}= -0.34890676 \pm 1.1 \cdot 10^{-8} \) |
\(a_{382}= -1.32401681 \pm 1.1 \cdot 10^{-8} \) | \(a_{383}= +1.39082271 \pm 1 \cdot 10^{-8} \) | \(a_{384}= +0.05103104 \pm 7.9 \cdot 10^{-7} \) |
\(a_{385}= +0.13482897 \pm 1 \cdot 10^{-8} \) | \(a_{386}= +0.68293919 \pm 1.1 \cdot 10^{-8} \) | \(a_{387}= +0.59432699 \pm 1.1 \cdot 10^{-8} \) |
\(a_{388}= +0.08945815 \pm 1.1 \cdot 10^{-8} \) | \(a_{389}= -0.30579371 \pm 1 \cdot 10^{-8} \) | \(a_{390}= -0.07489415 \pm 1.2 \cdot 10^{-8} \) |
\(a_{391}= +0.69245155 \pm 1 \cdot 10^{-8} \) | \(a_{392}= +0.21287036 \pm 1.1 \cdot 10^{-8} \) | \(a_{393}= +0.19912032 \pm 1.0 \cdot 10^{-8} \) |
\(a_{394}= -0.42233982 \pm 1.0 \cdot 10^{-8} \) | \(a_{395}= -0.17882566 \pm 1 \cdot 10^{-8} \) | \(a_{396}= -0.23168493 \pm 1.1 \cdot 10^{-8} \) |
\(a_{397}= +0.34674949 \pm 1 \cdot 10^{-8} \) | \(a_{398}= -0.30771695 \pm 1.0 \cdot 10^{-8} \) | \(a_{399}= +0.50754531 \pm 1.1 \cdot 10^{-8} \) |
\(a_{400}= -0.24408953 \pm 1.0 \cdot 10^{-8} \) | \(a_{401}= +0.18335683 \pm 1 \cdot 10^{-8} \) | \(a_{402}= -0.02151070 \pm 1.1 \cdot 10^{-8} \) |
\(a_{403}= -0.64563350 \pm 1 \cdot 10^{-8} \) | \(a_{404}= -0.33860258 \pm 1.0 \cdot 10^{-8} \) | \(a_{405}= +0.01708434 \pm 1.1 \cdot 10^{-8} \) |
\(a_{406}= +0.34676730 \pm 1.1 \cdot 10^{-8} \) | \(a_{407}= +1.30983322 \pm 1 \cdot 10^{-8} \) | \(a_{408}= +0.12060567 \pm 1.0 \cdot 10^{-8} \) |
\(a_{409}= +1.24980696 \pm 1 \cdot 10^{-8} \) | \(a_{410}= -0.11523810 \pm 1.2 \cdot 10^{-8} \) | \(a_{411}= +0.45495829 \pm 1.1 \cdot 10^{-8} \) |
\(a_{412}= -0.38388175 \pm 1.0 \cdot 10^{-8} \) | \(a_{413}= -1.11542325 \pm 1 \cdot 10^{-8} \) | \(a_{414}= -0.27623569 \pm 1.0 \cdot 10^{-8} \) |
\(a_{415}= -0.01128876 \pm 1 \cdot 10^{-8} \) | \(a_{416}= +0.21091511 \pm 1.1 \cdot 10^{-8} \) | \(a_{417}= -0.86439305 \pm 1.0 \cdot 10^{-8} \) |
\(a_{418}= +1.36985984 \pm 1.1 \cdot 10^{-8} \) | \(a_{419}= -0.58848121 \pm 1 \cdot 10^{-8} \) | \(a_{420}= +0.02799907 \pm 1.1 \cdot 10^{-8} \) |
\(a_{421}= +0.95572929 \pm 1 \cdot 10^{-8} \) | \(a_{422}= -0.52891215 \pm 1.1 \cdot 10^{-8} \) | \(a_{423}= -0.15965081 \pm 1.0 \cdot 10^{-8} \) |
\(a_{424}= -0.58125051 \pm 1.1 \cdot 10^{-8} \) | \(a_{425}= -0.57687603 \pm 1 \cdot 10^{-8} \) | \(a_{426}= +0.50053381 \pm 1.1 \cdot 10^{-8} \) |
\(a_{427}= +0.17980412 \pm 1 \cdot 10^{-8} \) | \(a_{428}= -0.39627138 \pm 1.1 \cdot 10^{-8} \) | \(a_{429}= -0.95757123 \pm 1.2 \cdot 10^{-8} \) |
\(a_{430}= -0.19385301 \pm 1.2 \cdot 10^{-8} \) | \(a_{431}= -0.44730309 \pm 1 \cdot 10^{-8} \) | \(a_{432}= -0.04811252 \pm 8.6 \cdot 10^{-7} \) |
\(a_{433}= -1.18188440 \pm 1 \cdot 10^{-8} \) | \(a_{434}= +0.24136913 \pm 1.1 \cdot 10^{-8} \) | \(a_{435}= -0.06901444 \pm 1.2 \cdot 10^{-8} \) |
\(a_{436}= +0.66353317 \pm 1.1 \cdot 10^{-8} \) | \(a_{437}= +1.63327059 \pm 1 \cdot 10^{-8} \) | \(a_{438}= -0.41508234 \pm 1.0 \cdot 10^{-8} \) |
\(a_{439}= -0.46442438 \pm 1 \cdot 10^{-8} \) | \(a_{440}= +0.07556921 \pm 1.2 \cdot 10^{-8} \) | \(a_{441}= -0.20069610 \pm 1.1 \cdot 10^{-8} \) |
\(a_{442}= +0.49847230 \pm 1.1 \cdot 10^{-8} \) | \(a_{443}= -0.98112467 \pm 1 \cdot 10^{-8} \) | \(a_{444}= +0.27200466 \pm 1.1 \cdot 10^{-8} \) |
\(a_{445}= +0.09990001 \pm 1 \cdot 10^{-8} \) | \(a_{446}= +0.11858857 \pm 1.0 \cdot 10^{-8} \) | \(a_{447}= +0.58429617 \pm 1.1 \cdot 10^{-8} \) |
\(a_{448}= -0.07885030 \pm 1.0 \cdot 10^{-8} \) | \(a_{449}= +1.44832555 \pm 1 \cdot 10^{-8} \) | \(a_{450}= +0.23012982 \pm 1.0 \cdot 10^{-8} \) |
\(a_{451}= -1.47339536 \pm 1 \cdot 10^{-8} \) | \(a_{452}= +0.36514329 \pm 1.1 \cdot 10^{-8} \) | \(a_{453}= -0.11050521 \pm 1.1 \cdot 10^{-8} \) |
\(a_{454}= +0.01034627 \pm 1.0 \cdot 10^{-8} \) | \(a_{455}= +0.11572225 \pm 1 \cdot 10^{-8} \) | \(a_{456}= +0.28447000 \pm 1.0 \cdot 10^{-8} \) |
\(a_{457}= +1.79145480 \pm 1 \cdot 10^{-8} \) | \(a_{458}= -1.13954416 \pm 1.1 \cdot 10^{-8} \) | \(a_{459}= -0.11370812 \pm 1.0 \cdot 10^{-8} \) |
\(a_{460}= +0.09010044 \pm 1.1 \cdot 10^{-8} \) | \(a_{461}= +0.43657310 \pm 1 \cdot 10^{-8} \) | \(a_{462}= +0.35798660 \pm 1.1 \cdot 10^{-8} \) |
\(a_{463}= -0.34096509 \pm 1 \cdot 10^{-8} \) | \(a_{464}= +0.19435682 \pm 1.1 \cdot 10^{-8} \) | \(a_{465}= -0.04803785 \pm 1.1 \cdot 10^{-8} \) |
\(a_{466}= -0.11205009 \pm 1.0 \cdot 10^{-8} \) | \(a_{467}= +1.71287426 \pm 1 \cdot 10^{-8} \) | \(a_{468}= -0.19885267 \pm 1.1 \cdot 10^{-8} \) |
\(a_{469}= +0.03323713 \pm 1 \cdot 10^{-8} \) | \(a_{470}= +0.05207367 \pm 1.1 \cdot 10^{-8} \) | \(a_{471}= +0.88339260 \pm 1.1 \cdot 10^{-8} \) |
\(a_{472}= -0.62517463 \pm 1.0 \cdot 10^{-8} \) | \(a_{473}= -2.47853894 \pm 1 \cdot 10^{-8} \) | \(a_{474}= -0.47480292 \pm 1.1 \cdot 10^{-8} \) |
\(a_{475}= -1.36066510 \pm 1 \cdot 10^{-8} \) | \(a_{476}= -0.18635314 \pm 1.1 \cdot 10^{-8} \) | \(a_{477}= +0.54800824 \pm 1.1 \cdot 10^{-8} \) |
\(a_{478}= -1.31826854 \pm 1.1 \cdot 10^{-8} \) | \(a_{479}= -0.68489547 \pm 1 \cdot 10^{-8} \) | \(a_{480}= +0.01569297 \pm 1.1 \cdot 10^{-8} \) |
\(a_{481}= +1.12421570 \pm 1 \cdot 10^{-8} \) | \(a_{482}= -0.20886931 \pm 1.1 \cdot 10^{-8} \) | \(a_{483}= +0.42682394 \pm 1.1 \cdot 10^{-8} \) |
\(a_{484}= +0.46620232 \pm 1.1 \cdot 10^{-8} \) | \(a_{485}= +0.02751001 \pm 1 \cdot 10^{-8} \) | \(a_{486}= +0.04536092 \pm 9.6 \cdot 10^{-7} \) |
\(a_{487}= -1.34528222 \pm 1 \cdot 10^{-8} \) | \(a_{488}= +0.10077697 \pm 1.1 \cdot 10^{-8} \) | \(a_{489}= -1.02147087 \pm 1.1 \cdot 10^{-8} \) |
\(a_{490}= +0.06546151 \pm 1.2 \cdot 10^{-8} \) | \(a_{491}= +1.13338686 \pm 1 \cdot 10^{-8} \) | \(a_{492}= -0.30597056 \pm 1.1 \cdot 10^{-8} \) |
\(a_{493}= +0.45933879 \pm 1 \cdot 10^{-8} \) | \(a_{494}= +1.17573590 \pm 1.1 \cdot 10^{-8} \) | \(a_{495}= -0.07124733 \pm 1.2 \cdot 10^{-8} \) |
\(a_{496}= +0.13528305 \pm 1.0 \cdot 10^{-8} \) | \(a_{497}= -0.77339684 \pm 1 \cdot 10^{-8} \) | \(a_{498}= -0.02997297 \pm 1.1 \cdot 10^{-8} \) |
\(a_{499}= +1.64587087 \pm 1 \cdot 10^{-8} \) | \(a_{500}= -0.15194153 \pm 1.1 \cdot 10^{-8} \) | \(a_{501}= +0.14718705 \pm 1.0 \cdot 10^{-8} \) |
\(a_{502}= +0.66055510 \pm 1.1 \cdot 10^{-8} \) | \(a_{503}= +0.19963977 \pm 1 \cdot 10^{-8} \) | \(a_{504}= +0.07434078 \pm 1.0 \cdot 10^{-8} \) |
\(a_{505}= -0.10412646 \pm 1 \cdot 10^{-8} \) | \(a_{506}= +1.15199365 \pm 1.1 \cdot 10^{-8} \) | \(a_{507}= -0.24452277 \pm 1.0 \cdot 10^{-8} \) |
\(a_{508}= +0.30216212 \pm 1.1 \cdot 10^{-8} \) | \(a_{509}= -0.87083621 \pm 1 \cdot 10^{-8} \) | \(a_{510}= +0.03708844 \pm 1.1 \cdot 10^{-8} \) |
\(a_{511}= +0.64136202 \pm 1 \cdot 10^{-8} \) | \(a_{512}= -0.04419417 \pm 1.0 \cdot 10^{-6} \) | \(a_{513}= -0.26820089 \pm 1.0 \cdot 10^{-8} \) |
\(a_{514}= -0.36899566 \pm 1.1 \cdot 10^{-8} \) | \(a_{515}= -0.11805063 \pm 1 \cdot 10^{-8} \) | \(a_{516}= -0.51470227 \pm 1.1 \cdot 10^{-8} \) |
\(a_{517}= +0.66579635 \pm 1 \cdot 10^{-8} \) | \(a_{518}= -0.42028639 \pm 1.2 \cdot 10^{-8} \) | \(a_{519}= -0.00080731 \pm 1.0 \cdot 10^{-8} \) |
\(a_{520}= +0.06486024 \pm 1.2 \cdot 10^{-8} \) | \(a_{521}= -0.42276275 \pm 1 \cdot 10^{-8} \) | \(a_{522}= -0.18324137 \pm 1.1 \cdot 10^{-8} \) |
\(a_{523}= -1.49815247 \pm 1 \cdot 10^{-8} \) | \(a_{524}= -0.17244326 \pm 1.0 \cdot 10^{-8} \) | \(a_{525}= -0.35558373 \pm 1.1 \cdot 10^{-8} \) |
\(a_{526}= +0.71273405 \pm 1.1 \cdot 10^{-8} \) | \(a_{527}= +0.31972509 \pm 1 \cdot 10^{-8} \) | \(a_{528}= +0.20064503 \pm 1.1 \cdot 10^{-8} \) |
\(a_{529}= +0.37351085 \pm 1 \cdot 10^{-8} \) | \(a_{530}= -0.17874512 \pm 1.1 \cdot 10^{-8} \) | \(a_{531}= +0.58942030 \pm 1.0 \cdot 10^{-8} \) |
\(a_{532}= -0.43954714 \pm 1.1 \cdot 10^{-8} \) | \(a_{533}= -1.26459931 \pm 1 \cdot 10^{-8} \) | \(a_{534}= +0.26524614 \pm 1.1 \cdot 10^{-8} \) |
\(a_{535}= -0.12186067 \pm 1 \cdot 10^{-8} \) | \(a_{536}= +0.01862881 \pm 1.1 \cdot 10^{-8} \) | \(a_{537}= +0.14171272 \pm 1.1 \cdot 10^{-8} \) |
\(a_{538}= -0.46161871 \pm 1.1 \cdot 10^{-8} \) | \(a_{539}= +0.83696871 \pm 1 \cdot 10^{-8} \) | \(a_{540}= -0.01479548 \pm 1.1 \cdot 10^{-8} \) |
\(a_{541}= +0.33451148 \pm 1 \cdot 10^{-8} \) | \(a_{542}= -0.48900162 \pm 1.0 \cdot 10^{-8} \) | \(a_{543}= +0.05119371 \pm 1.1 \cdot 10^{-8} \) |
\(a_{544}= -0.10444757 \pm 1.0 \cdot 10^{-8} \) | \(a_{545}= +0.20404853 \pm 1 \cdot 10^{-8} \) | \(a_{546}= +0.30725603 \pm 1.1 \cdot 10^{-8} \) |
\(a_{547}= -0.69123769 \pm 1 \cdot 10^{-8} \) | \(a_{548}= -0.39400544 \pm 1.1 \cdot 10^{-8} \) | \(a_{549}= -0.09501344 \pm 1.1 \cdot 10^{-8} \) |
\(a_{550}= -0.95971700 \pm 1.1 \cdot 10^{-8} \) | \(a_{551}= +1.08343253 \pm 1 \cdot 10^{-8} \) | \(a_{552}= +0.23922713 \pm 1.0 \cdot 10^{-8} \) |
\(a_{553}= +0.73363891 \pm 1 \cdot 10^{-8} \) | \(a_{554}= -0.01216832 \pm 1.0 \cdot 10^{-8} \) | \(a_{555}= +0.08364639 \pm 1.2 \cdot 10^{-8} \) |
\(a_{556}= +0.74858634 \pm 1.0 \cdot 10^{-8} \) | \(a_{557}= +0.11437401 \pm 1 \cdot 10^{-8} \) | \(a_{558}= -0.12754608 \pm 1.0 \cdot 10^{-8} \) |
\(a_{559}= -2.12730318 \pm 1 \cdot 10^{-8} \) | \(a_{560}= -0.02424790 \pm 1.1 \cdot 10^{-8} \) | \(a_{561}= +0.47420022 \pm 1.1 \cdot 10^{-8} \) |
\(a_{562}= +0.59876520 \pm 1.1 \cdot 10^{-8} \) | \(a_{563}= +1.32343105 \pm 1 \cdot 10^{-8} \) | \(a_{564}= +0.13826166 \pm 1.0 \cdot 10^{-8} \) |
\(a_{565}= +0.11228821 \pm 1 \cdot 10^{-8} \) | \(a_{566}= -1.17650874 \pm 1.0 \cdot 10^{-8} \) | \(a_{567}= -0.07008916 \pm 1.0 \cdot 10^{-8} \) |
\(a_{568}= -0.43347499 \pm 1.1 \cdot 10^{-8} \) | \(a_{569}= +1.74425475 \pm 1 \cdot 10^{-8} \) | \(a_{570}= +0.08747971 \pm 1.1 \cdot 10^{-8} \) |
\(a_{571}= +1.75340204 \pm 1 \cdot 10^{-8} \) | \(a_{572}= +0.82928101 \pm 1.2 \cdot 10^{-8} \) | \(a_{573}= -1.08105520 \pm 1.1 \cdot 10^{-8} \) |
\(a_{574}= +0.47276859 \pm 1.1 \cdot 10^{-8} \) | \(a_{575}= -1.14426127 \pm 1 \cdot 10^{-8} \) | \(a_{576}= +0.04166667 \pm 1.0 \cdot 10^{-6} \) |
\(a_{577}= -0.89243709 \pm 1 \cdot 10^{-8} \) | \(a_{578}= +0.46025760 \pm 1.1 \cdot 10^{-8} \) | \(a_{579}= +0.55761751 \pm 1.1 \cdot 10^{-8} \) |
\(a_{580}= +0.05976826 \pm 1.2 \cdot 10^{-8} \) | \(a_{581}= +0.04631256 \pm 1 \cdot 10^{-8} \) | \(a_{582}= +0.07304227 \pm 1.1 \cdot 10^{-8} \) |
\(a_{583}= -2.28537449 \pm 1 \cdot 10^{-8} \) | \(a_{584}= +0.35947185 \pm 1.0 \cdot 10^{-8} \) | \(a_{585}= -0.06115082 \pm 1.2 \cdot 10^{-8} \) |
\(a_{586}= -0.26939619 \pm 1.1 \cdot 10^{-8} \) | \(a_{587}= -0.73204455 \pm 1 \cdot 10^{-8} \) | \(a_{588}= +0.17380792 \pm 1.1 \cdot 10^{-8} \) |
\(a_{589}= +0.75412870 \pm 1 \cdot 10^{-8} \) | \(a_{590}= -0.19225258 \pm 1.1 \cdot 10^{-8} \) | \(a_{591}= -0.34483902 \pm 1.0 \cdot 10^{-8} \) |
\(a_{592}= -0.23556294 \pm 1.1 \cdot 10^{-8} \) | \(a_{593}= -1.71525025 \pm 1 \cdot 10^{-8} \) | \(a_{594}= -0.18916995 \pm 1.1 \cdot 10^{-8} \) |
\(a_{595}= -0.05730698 \pm 1 \cdot 10^{-8} \) | \(a_{596}= -0.50601533 \pm 1.1 \cdot 10^{-8} \) | \(a_{597}= -0.25124983 \pm 1.0 \cdot 10^{-8} \) |
\(a_{598}= +0.98874370 \pm 1.1 \cdot 10^{-8} \) | \(a_{599}= -1.12246976 \pm 1 \cdot 10^{-8} \) | \(a_{600}= -0.19929827 \pm 1.0 \cdot 10^{-8} \) |
\(a_{601}= +1.42743977 \pm 1 \cdot 10^{-8} \) | \(a_{602}= +0.79528917 \pm 1.2 \cdot 10^{-8} \) | \(a_{603}= -0.01756341 \pm 1.1 \cdot 10^{-8} \) |
\(a_{604}= +0.09570032 \pm 1.1 \cdot 10^{-8} \) | \(a_{605}= +0.14336570 \pm 1 \cdot 10^{-8} \) | \(a_{606}= -0.27646785 \pm 1.0 \cdot 10^{-8} \) |
\(a_{607}= +0.83423246 \pm 1 \cdot 10^{-8} \) | \(a_{608}= -0.24635825 \pm 1.0 \cdot 10^{-8} \) | \(a_{609}= +0.28313431 \pm 1.1 \cdot 10^{-8} \) |
\(a_{610}= +0.03099075 \pm 1.2 \cdot 10^{-8} \) | \(a_{611}= +0.57144581 \pm 1 \cdot 10^{-8} \) | \(a_{612}= +0.09847412 \pm 1.0 \cdot 10^{-8} \) |
\(a_{613}= -0.15277268 \pm 1 \cdot 10^{-8} \) | \(a_{614}= -0.76638147 \pm 1.0 \cdot 10^{-8} \) | \(a_{615}= -0.09409152 \pm 1.2 \cdot 10^{-8} \) |
\(a_{616}= -0.31002549 \pm 1.1 \cdot 10^{-8} \) | \(a_{617}= +0.96995966 \pm 1 \cdot 10^{-8} \) | \(a_{618}= -0.31343814 \pm 1.0 \cdot 10^{-8} \) |
\(a_{619}= +1.73141815 \pm 1 \cdot 10^{-8} \) | \(a_{620}= +0.04160200 \pm 1.1 \cdot 10^{-8} \) | \(a_{621}= -0.22554550 \pm 1.0 \cdot 10^{-8} \) |
\(a_{622}= +0.15053107 \pm 1.0 \cdot 10^{-8} \) | \(a_{623}= -0.40984350 \pm 1 \cdot 10^{-8} \) | \(a_{624}= +0.17221146 \pm 1.1 \cdot 10^{-8} \) |
\(a_{625}= +0.92963335 \pm 1 \cdot 10^{-8} \) | \(a_{626}= +0.79485060 \pm 1.1 \cdot 10^{-8} \) | \(a_{627}= +1.11848588 \pm 1.1 \cdot 10^{-8} \) |
\(a_{628}= -0.76504043 \pm 1.1 \cdot 10^{-8} \) | \(a_{629}= -0.55672447 \pm 1 \cdot 10^{-8} \) | \(a_{630}= +0.02286114 \pm 1.1 \cdot 10^{-8} \) |
\(a_{631}= -1.44741688 \pm 1 \cdot 10^{-8} \) | \(a_{632}= +0.41119139 \pm 1.1 \cdot 10^{-8} \) | \(a_{633}= -0.43185496 \pm 1.1 \cdot 10^{-8} \) |
\(a_{634}= -0.70525437 \pm 1.0 \cdot 10^{-8} \) | \(a_{635}= +0.09292035 \pm 1 \cdot 10^{-8} \) | \(a_{636}= -0.47458905 \pm 1.1 \cdot 10^{-8} \) |
\(a_{637}= +0.71836120 \pm 1 \cdot 10^{-8} \) | \(a_{638}= +0.76417674 \pm 1.2 \cdot 10^{-8} \) | \(a_{639}= +0.40868414 \pm 1.1 \cdot 10^{-8} \) |
\(a_{640}= -0.01359051 \pm 1.1 \cdot 10^{-8} \) | \(a_{641}= +0.89327822 \pm 1 \cdot 10^{-8} \) | \(a_{642}= -0.32355423 \pm 1.1 \cdot 10^{-8} \) |
\(a_{643}= -1.00710847 \pm 1 \cdot 10^{-8} \) | \(a_{644}= -0.36964038 \pm 1.1 \cdot 10^{-8} \) | \(a_{645}= -0.15828032 \pm 1.2 \cdot 10^{-8} \) |
\(a_{646}= -0.58223786 \pm 1.1 \cdot 10^{-8} \) | \(a_{647}= -0.66879231 \pm 1 \cdot 10^{-8} \) | \(a_{648}= -0.03928371 \pm 1.2 \cdot 10^{-6} \) |
\(a_{649}= -2.45807639 \pm 1 \cdot 10^{-8} \) | \(a_{650}= -0.82371473 \pm 1.1 \cdot 10^{-8} \) | \(a_{651}= +0.19707707 \pm 1.1 \cdot 10^{-8} \) |
\(a_{652}= +0.88461973 \pm 1.1 \cdot 10^{-8} \) | \(a_{653}= -0.31690686 \pm 1 \cdot 10^{-8} \) | \(a_{654}= +0.54177257 \pm 1.1 \cdot 10^{-8} \) |
\(a_{655}= -0.05302944 \pm 1 \cdot 10^{-8} \) | \(a_{656}= +0.26497828 \pm 1.1 \cdot 10^{-8} \) | \(a_{657}= -0.33891331 \pm 1.0 \cdot 10^{-8} \) |
\(a_{658}= -0.21363418 \pm 1.1 \cdot 10^{-8} \) | \(a_{659}= +0.60450506 \pm 1 \cdot 10^{-8} \) | \(a_{660}= +0.06170200 \pm 1.2 \cdot 10^{-8} \) |
\(a_{661}= +0.32863618 \pm 1 \cdot 10^{-8} \) | \(a_{662}= +0.42705622 \pm 1.1 \cdot 10^{-8} \) | \(a_{663}= +0.40700093 \pm 1.1 \cdot 10^{-8} \) |
\(a_{664}= +0.02595735 \pm 1.1 \cdot 10^{-8} \) | \(a_{665}= -0.13516875 \pm 1 \cdot 10^{-8} \) | \(a_{666}= +0.22209087 \pm 1.1 \cdot 10^{-8} \) |
\(a_{667}= +0.91112051 \pm 1 \cdot 10^{-8} \) | \(a_{668}= -0.12746772 \pm 1.0 \cdot 10^{-8} \) | \(a_{669}= +0.09682716 \pm 1.0 \cdot 10^{-8} \) |
\(a_{670}= +0.00572870 \pm 1.2 \cdot 10^{-8} \) | \(a_{671}= +0.39623727 \pm 1 \cdot 10^{-8} \) | \(a_{672}= -0.06438100 \pm 1.0 \cdot 10^{-8} \) |
\(a_{673}= -0.77134220 \pm 1 \cdot 10^{-8} \) | \(a_{674}= +0.57424088 \pm 1.1 \cdot 10^{-8} \) | \(a_{675}= +0.18790021 \pm 1.0 \cdot 10^{-8} \) |
\(a_{676}= +0.21176293 \pm 1.0 \cdot 10^{-8} \) | \(a_{677}= -0.19318326 \pm 1 \cdot 10^{-8} \) | \(a_{678}= +0.29813824 \pm 1.1 \cdot 10^{-8} \) |
\(a_{679}= -0.11286084 \pm 1 \cdot 10^{-8} \) | \(a_{680}= -0.03211953 \pm 1.1 \cdot 10^{-8} \) | \(a_{681}= +0.00844770 \pm 1.0 \cdot 10^{-8} \) |
\(a_{682}= +0.53190909 \pm 1.1 \cdot 10^{-8} \) | \(a_{683}= +1.01592805 \pm 1 \cdot 10^{-8} \) | \(a_{684}= +0.23226878 \pm 1.0 \cdot 10^{-8} \) |
\(a_{685}= -0.12116385 \pm 1 \cdot 10^{-8} \) | \(a_{686}= -0.71460295 \pm 1.1 \cdot 10^{-8} \) | \(a_{687}= -0.93043391 \pm 1.1 \cdot 10^{-8} \) |
\(a_{688}= +0.44574524 \pm 1.1 \cdot 10^{-8} \) | \(a_{689}= -1.96151223 \pm 1 \cdot 10^{-8} \) | \(a_{690}= +0.07356670 \pm 1.1 \cdot 10^{-8} \) |
\(a_{691}= +0.91249483 \pm 1 \cdot 10^{-8} \) | \(a_{692}= +0.00069916 \pm 1.0 \cdot 10^{-8} \) | \(a_{693}= +0.29229483 \pm 1.1 \cdot 10^{-8} \) |
\(a_{694}= +0.08900188 \pm 1.1 \cdot 10^{-8} \) | \(a_{695}= +0.23020393 \pm 1 \cdot 10^{-8} \) | \(a_{696}= +0.15869168 \pm 1.1 \cdot 10^{-8} \) |
\(a_{697}= +0.62624404 \pm 1 \cdot 10^{-8} \) | \(a_{698}= -0.90780567 \pm 1.0 \cdot 10^{-8} \) | \(a_{699}= -0.09148852 \pm 1.0 \cdot 10^{-8} \) |
\(a_{700}= +0.30794454 \pm 1.1 \cdot 10^{-8} \) | \(a_{701}= +1.12749530 \pm 1 \cdot 10^{-8} \) | \(a_{702}= -0.16236253 \pm 1.1 \cdot 10^{-8} \) |
\(a_{703}= -1.31313405 \pm 1 \cdot 10^{-8} \) | \(a_{704}= -0.17376370 \pm 1.1 \cdot 10^{-8} \) | \(a_{705}= +0.04251798 \pm 1.1 \cdot 10^{-8} \) |
\(a_{706}= -0.34595920 \pm 1.0 \cdot 10^{-8} \) | \(a_{707}= +0.42718265 \pm 1 \cdot 10^{-8} \) | \(a_{708}= -0.51045295 \pm 1.0 \cdot 10^{-8} \) |
\(a_{709}= +1.08092788 \pm 1 \cdot 10^{-8} \) | \(a_{710}= -0.13330145 \pm 1.2 \cdot 10^{-8} \) | \(a_{711}= -0.38767496 \pm 1.1 \cdot 10^{-8} \) |
\(a_{712}= -0.22970990 \pm 1.1 \cdot 10^{-8} \) | \(a_{713}= +0.63419005 \pm 1 \cdot 10^{-8} \) | \(a_{714}= -0.15215670 \pm 1.1 \cdot 10^{-8} \) |
\(a_{715}= +0.25501901 \pm 1 \cdot 10^{-8} \) | \(a_{716}= -0.12272682 \pm 1.1 \cdot 10^{-8} \) | \(a_{717}= -1.07636176 \pm 1.1 \cdot 10^{-8} \) |
\(a_{718}= -0.36990565 \pm 1.1 \cdot 10^{-8} \) | \(a_{719}= -0.93406437 \pm 1 \cdot 10^{-8} \) | \(a_{720}= +0.01281326 \pm 1.1 \cdot 10^{-8} \) |
\(a_{721}= +0.48430708 \pm 1 \cdot 10^{-8} \) | \(a_{722}= -0.66620515 \pm 1.1 \cdot 10^{-8} \) | \(a_{723}= -0.17054108 \pm 1.1 \cdot 10^{-8} \) |
\(a_{724}= -0.04433505 \pm 1.1 \cdot 10^{-8} \) | \(a_{725}= -0.75904745 \pm 1 \cdot 10^{-8} \) | \(a_{726}= +0.38065260 \pm 1.1 \cdot 10^{-8} \) |
\(a_{727}= -0.51723913 \pm 1 \cdot 10^{-8} \) | \(a_{728}= -0.26609152 \pm 1.1 \cdot 10^{-8} \) | \(a_{729}= +0.03703704 \pm 1.3 \cdot 10^{-6} \) |
\(a_{730}= +0.11054414 \pm 1.1 \cdot 10^{-8} \) | \(a_{731}= +1.05346487 \pm 1 \cdot 10^{-8} \) | \(a_{732}= +0.08228405 \pm 1.1 \cdot 10^{-8} \) |
\(a_{733}= +0.82287135 \pm 1 \cdot 10^{-8} \) | \(a_{734}= +0.57672117 \pm 1.1 \cdot 10^{-8} \) | \(a_{735}= +0.05344910 \pm 1.2 \cdot 10^{-8} \) |
\(a_{736}= -0.20717677 \pm 1.0 \cdot 10^{-8} \) | \(a_{737}= +0.07324521 \pm 1 \cdot 10^{-8} \) | \(a_{738}= -0.24982391 \pm 1.1 \cdot 10^{-8} \) |
\(a_{739}= -0.87403636 \pm 1 \cdot 10^{-8} \) | \(a_{740}= -0.07243989 \pm 1.2 \cdot 10^{-8} \) | \(a_{741}= +0.95998434 \pm 1.1 \cdot 10^{-8} \) |
\(a_{742}= +0.73330846 \pm 1.1 \cdot 10^{-8} \) | \(a_{743}= -0.06126855 \pm 1 \cdot 10^{-8} \) | \(a_{744}= +0.11045815 \pm 1.0 \cdot 10^{-8} \) |
\(a_{745}= -0.15560893 \pm 1 \cdot 10^{-8} \) | \(a_{746}= +1.26995915 \pm 1.1 \cdot 10^{-8} \) | \(a_{747}= -0.02447283 \pm 1.1 \cdot 10^{-8} \) |
\(a_{748}= -0.41066944 \pm 1.1 \cdot 10^{-8} \) | \(a_{749}= +0.49993790 \pm 1 \cdot 10^{-8} \) | \(a_{750}= -0.12405974 \pm 1.1 \cdot 10^{-8} \) |
\(a_{751}= -0.14183266 \pm 1 \cdot 10^{-8} \) | \(a_{752}= -0.11973811 \pm 1.0 \cdot 10^{-8} \) | \(a_{753}= +0.53934098 \pm 1.1 \cdot 10^{-8} \) |
\(a_{754}= +0.65588464 \pm 1.2 \cdot 10^{-8} \) | \(a_{755}= +0.02942959 \pm 1 \cdot 10^{-8} \) | \(a_{756}= +0.06069899 \pm 1.0 \cdot 10^{-8} \) |
\(a_{757}= +0.33642729 \pm 1 \cdot 10^{-8} \) | \(a_{758}= +0.47772926 \pm 1.1 \cdot 10^{-8} \) | \(a_{759}= +0.94059888 \pm 1.1 \cdot 10^{-8} \) |
\(a_{760}= -0.07575965 \pm 1.1 \cdot 10^{-8} \) | \(a_{761}= -0.66820816 \pm 1 \cdot 10^{-8} \) | \(a_{762}= +0.24671434 \pm 1.1 \cdot 10^{-8} \) |
\(a_{763}= -0.83711667 \pm 1 \cdot 10^{-8} \) | \(a_{764}= +0.93622127 \pm 1.1 \cdot 10^{-8} \) | \(a_{765}= +0.03028258 \pm 1.1 \cdot 10^{-8} \) |
\(a_{766}= -0.98346017 \pm 1.1 \cdot 10^{-8} \) | \(a_{767}= -2.10974040 \pm 1 \cdot 10^{-8} \) | \(a_{768}= -0.03608439 \pm 1.4 \cdot 10^{-6} \) |
\(a_{769}= +0.38782751 \pm 1 \cdot 10^{-8} \) | \(a_{770}= -0.09533848 \pm 1.2 \cdot 10^{-8} \) | \(a_{771}= -0.30128370 \pm 1.1 \cdot 10^{-8} \) |
\(a_{772}= -0.48291093 \pm 1.1 \cdot 10^{-8} \) | \(a_{773}= -0.72775514 \pm 1 \cdot 10^{-8} \) | \(a_{774}= -0.42025265 \pm 1.1 \cdot 10^{-8} \) |
\(a_{775}= -0.52833882 \pm 1 \cdot 10^{-8} \) | \(a_{776}= -0.06325646 \pm 1.1 \cdot 10^{-8} \) | \(a_{777}= -0.34316240 \pm 1.2 \cdot 10^{-8} \) |
\(a_{778}= +0.21622880 \pm 1.1 \cdot 10^{-8} \) | \(a_{779}= +1.47710837 \pm 1 \cdot 10^{-8} \) | \(a_{780}= +0.05295816 \pm 1.2 \cdot 10^{-8} \) |
\(a_{781}= -1.70434722 \pm 1 \cdot 10^{-8} \) | \(a_{782}= -0.48963719 \pm 1.1 \cdot 10^{-8} \) | \(a_{783}= -0.14961595 \pm 1.1 \cdot 10^{-8} \) |
\(a_{784}= -0.15052208 \pm 1.1 \cdot 10^{-8} \) | \(a_{785}= -0.23526386 \pm 1 \cdot 10^{-8} \) | \(a_{786}= -0.14079933 \pm 1.0 \cdot 10^{-8} \) |
\(a_{787}= +1.14186710 \pm 1 \cdot 10^{-8} \) | \(a_{788}= +0.29863935 \pm 1.0 \cdot 10^{-8} \) | \(a_{789}= +0.58194491 \pm 1.1 \cdot 10^{-8} \) |
\(a_{790}= +0.12644884 \pm 1.2 \cdot 10^{-8} \) | \(a_{791}= -0.46066654 \pm 1 \cdot 10^{-8} \) | \(a_{792}= +0.16382598 \pm 1.1 \cdot 10^{-8} \) |
\(a_{793}= +0.34008616 \pm 1 \cdot 10^{-8} \) | \(a_{794}= -0.24518891 \pm 1.0 \cdot 10^{-8} \) | \(a_{795}= -0.14594478 \pm 1.1 \cdot 10^{-8} \) |
\(a_{796}= +0.21758874 \pm 1.0 \cdot 10^{-8} \) | \(a_{797}= +0.55479297 \pm 1 \cdot 10^{-8} \) | \(a_{798}= -0.35888873 \pm 1.1 \cdot 10^{-8} \) |
\(a_{799}= -0.28298650 \pm 1 \cdot 10^{-8} \) | \(a_{800}= +0.17259737 \pm 1.0 \cdot 10^{-8} \) | \(a_{801}= +0.21657257 \pm 1.1 \cdot 10^{-8} \) |
\(a_{802}= -0.12965286 \pm 1.0 \cdot 10^{-8} \) | \(a_{803}= +1.41337993 \pm 1 \cdot 10^{-8} \) | \(a_{804}= +0.01521036 \pm 1.1 \cdot 10^{-8} \) |
\(a_{805}= -0.11367115 \pm 1 \cdot 10^{-8} \) | \(a_{806}= +0.45653182 \pm 1.1 \cdot 10^{-8} \) | \(a_{807}= -0.37691010 \pm 1.1 \cdot 10^{-8} \) |
\(a_{808}= +0.23942818 \pm 1.0 \cdot 10^{-8} \) | \(a_{809}= +0.08254564 \pm 1 \cdot 10^{-8} \) | \(a_{810}= -0.01208046 \pm 1.1 \cdot 10^{-8} \) |
\(a_{811}= +1.12810464 \pm 1 \cdot 10^{-8} \) | \(a_{812}= -0.24520151 \pm 1.1 \cdot 10^{-8} \) | \(a_{813}= -0.39926815 \pm 1.0 \cdot 10^{-8} \) |
\(a_{814}= -0.92619195 \pm 1.2 \cdot 10^{-8} \) | \(a_{815}= +0.27203667 \pm 1 \cdot 10^{-8} \) | \(a_{816}= -0.08528109 \pm 1.0 \cdot 10^{-8} \) |
\(a_{817}= +2.48478494 \pm 1 \cdot 10^{-8} \) | \(a_{818}= -0.88374697 \pm 1.1 \cdot 10^{-8} \) | \(a_{819}= +0.25087349 \pm 1.1 \cdot 10^{-8} \) |
\(a_{820}= +0.08148565 \pm 1.2 \cdot 10^{-8} \) | \(a_{821}= -0.65831789 \pm 1 \cdot 10^{-8} \) | \(a_{822}= -0.32170409 \pm 1.1 \cdot 10^{-8} \) |
\(a_{823}= +0.49825097 \pm 1 \cdot 10^{-8} \) | \(a_{824}= +0.27144539 \pm 1.0 \cdot 10^{-8} \) | \(a_{825}= -0.78360565 \pm 1.1 \cdot 10^{-8} \) |
\(a_{826}= +0.78872335 \pm 1.1 \cdot 10^{-8} \) | \(a_{827}= -0.45333392 \pm 1 \cdot 10^{-8} \) | \(a_{828}= +0.19532813 \pm 1.0 \cdot 10^{-8} \) |
\(a_{829}= -0.99984918 \pm 1 \cdot 10^{-8} \) | \(a_{830}= +0.00798236 \pm 1.2 \cdot 10^{-8} \) | \(a_{831}= -0.00993539 \pm 1.0 \cdot 10^{-8} \) |
\(a_{832}= -0.14913950 \pm 1.1 \cdot 10^{-8} \) | \(a_{833}= -0.35574068 \pm 1 \cdot 10^{-8} \) | \(a_{834}= +0.61121819 \pm 1.0 \cdot 10^{-8} \) |
\(a_{835}= -0.03919865 \pm 1 \cdot 10^{-8} \) | \(a_{836}= -0.96863718 \pm 1.1 \cdot 10^{-8} \) | \(a_{837}= -0.10414094 \pm 1.0 \cdot 10^{-8} \) |
\(a_{838}= +0.41611906 \pm 1.0 \cdot 10^{-8} \) | \(a_{839}= +0.32895614 \pm 1 \cdot 10^{-8} \) | \(a_{840}= -0.01979833 \pm 1.1 \cdot 10^{-8} \) |
\(a_{841}= -0.39560682 \pm 1 \cdot 10^{-8} \) | \(a_{842}= -0.67580267 \pm 1.1 \cdot 10^{-8} \) | \(a_{843}= +0.48888974 \pm 1.1 \cdot 10^{-8} \) |
\(a_{844}= +0.37399737 \pm 1.1 \cdot 10^{-8} \) | \(a_{845}= +0.06512096 \pm 1 \cdot 10^{-8} \) | \(a_{846}= +0.11289017 \pm 1.0 \cdot 10^{-8} \) |
\(a_{847}= -0.58816311 \pm 1 \cdot 10^{-8} \) | \(a_{848}= +0.41100618 \pm 1.1 \cdot 10^{-8} \) | \(a_{849}= -0.96061536 \pm 1.0 \cdot 10^{-8} \) |
\(a_{850}= +0.40791296 \pm 1.1 \cdot 10^{-8} \) | \(a_{851}= -1.10428968 \pm 1 \cdot 10^{-8} \) | \(a_{852}= -0.35393085 \pm 1.1 \cdot 10^{-8} \) |
\(a_{853}= -1.53104907 \pm 1 \cdot 10^{-8} \) | \(a_{854}= -0.12714071 \pm 1.1 \cdot 10^{-8} \) | \(a_{855}= +0.07142688 \pm 1.1 \cdot 10^{-8} \) |
\(a_{856}= +0.28020618 \pm 1.1 \cdot 10^{-8} \) | \(a_{857}= +0.57100777 \pm 1 \cdot 10^{-8} \) | \(a_{858}= +0.67710511 \pm 1.2 \cdot 10^{-8} \) |
\(a_{859}= +0.00317114 \pm 1 \cdot 10^{-8} \) | \(a_{860}= +0.13707478 \pm 1.2 \cdot 10^{-8} \) | \(a_{861}= +0.38601394 \pm 1.1 \cdot 10^{-8} \) |
\(a_{862}= +0.31629105 \pm 1.1 \cdot 10^{-8} \) | \(a_{863}= -0.75484793 \pm 1 \cdot 10^{-8} \) | \(a_{864}= +0.03402069 \pm 1.5 \cdot 10^{-6} \) |
\(a_{865}= +0.00021500 \pm 1 \cdot 10^{-8} \) | \(a_{866}= +0.83571848 \pm 1.0 \cdot 10^{-8} \) | \(a_{867}= +0.37579875 \pm 1.1 \cdot 10^{-8} \) |
\(a_{868}= -0.17067375 \pm 1.1 \cdot 10^{-8} \) | \(a_{869}= +1.61673202 \pm 1 \cdot 10^{-8} \) | \(a_{870}= +0.04880058 \pm 1.2 \cdot 10^{-8} \) |
\(a_{871}= +0.06286557 \pm 1 \cdot 10^{-8} \) | \(a_{872}= -0.46918880 \pm 1.1 \cdot 10^{-8} \) | \(a_{873}= +0.05963877 \pm 1.1 \cdot 10^{-8} \) |
\(a_{874}= -1.15489671 \pm 1.1 \cdot 10^{-8} \) | \(a_{875}= +0.19169017 \pm 1 \cdot 10^{-8} \) | \(a_{876}= +0.29350754 \pm 1.0 \cdot 10^{-8} \) |
\(a_{877}= -1.03381128 \pm 1 \cdot 10^{-8} \) | \(a_{878}= +0.32839763 \pm 1.0 \cdot 10^{-8} \) | \(a_{879}= -0.21996107 \pm 1.1 \cdot 10^{-8} \) |
\(a_{880}= -0.05343550 \pm 1.2 \cdot 10^{-8} \) | \(a_{881}= +0.65822246 \pm 1 \cdot 10^{-8} \) | \(a_{882}= +0.14191357 \pm 1.1 \cdot 10^{-8} \) |
\(a_{883}= +0.21067162 \pm 1 \cdot 10^{-8} \) | \(a_{884}= -0.35247314 \pm 1.1 \cdot 10^{-8} \) | \(a_{885}= -0.15697358 \pm 1.1 \cdot 10^{-8} \) |
\(a_{886}= +0.69375991 \pm 1.0 \cdot 10^{-8} \) | \(a_{887}= +1.72463078 \pm 1 \cdot 10^{-8} \) | \(a_{888}= -0.19233634 \pm 1.1 \cdot 10^{-8} \) |
\(a_{889}= -0.38120919 \pm 1 \cdot 10^{-8} \) | \(a_{890}= -0.07063998 \pm 1.2 \cdot 10^{-8} \) | \(a_{891}= -0.15445662 \pm 1.1 \cdot 10^{-8} \) |
\(a_{892}= -0.08385478 \pm 1.0 \cdot 10^{-8} \) | \(a_{893}= -0.66747418 \pm 1 \cdot 10^{-8} \) | \(a_{894}= -0.41315979 \pm 1.1 \cdot 10^{-8} \) |
\(a_{895}= -0.03774073 \pm 1 \cdot 10^{-8} \) | \(a_{896}= +0.05575558 \pm 1.0 \cdot 10^{-8} \) | \(a_{897}= +0.80730585 \pm 1.1 \cdot 10^{-8} \) |
\(a_{898}= -1.02412082 \pm 1.0 \cdot 10^{-8} \) | \(a_{899}= +0.42069093 \pm 1 \cdot 10^{-8} \) | \(a_{900}= -0.16272636 \pm 1.0 \cdot 10^{-8} \) |
\(a_{901}= +0.97136329 \pm 1 \cdot 10^{-8} \) | \(a_{902}= +1.04184785 \pm 1.2 \cdot 10^{-8} \) | \(a_{903}= +0.64935089 \pm 1.2 \cdot 10^{-8} \) |
\(a_{904}= -0.25819529 \pm 1.1 \cdot 10^{-8} \) | \(a_{905}= -0.01363384 \pm 1 \cdot 10^{-8} \) | \(a_{906}= +0.07813899 \pm 1.1 \cdot 10^{-8} \) |
\(a_{907}= +1.05746831 \pm 1 \cdot 10^{-8} \) | \(a_{908}= -0.00731592 \pm 1.0 \cdot 10^{-8} \) | \(a_{909}= -0.22573505 \pm 1.0 \cdot 10^{-8} \) |
\(a_{910}= -0.08182799 \pm 1.2 \cdot 10^{-8} \) | \(a_{911}= -1.81515410 \pm 1 \cdot 10^{-8} \) | \(a_{912}= -0.20115067 \pm 1.0 \cdot 10^{-8} \) |
\(a_{913}= +0.10205973 \pm 1 \cdot 10^{-8} \) | \(a_{914}= -1.26674984 \pm 1.1 \cdot 10^{-8} \) | \(a_{915}= +0.02530384 \pm 1.2 \cdot 10^{-8} \) |
\(a_{916}= +0.80577940 \pm 1.1 \cdot 10^{-8} \) | \(a_{917}= +0.21755525 \pm 1 \cdot 10^{-8} \) | \(a_{918}= +0.08040378 \pm 1.0 \cdot 10^{-8} \) |
\(a_{919}= -1.59697911 \pm 1 \cdot 10^{-8} \) | \(a_{920}= -0.06371063 \pm 1.1 \cdot 10^{-8} \) | \(a_{921}= -0.62574785 \pm 1.0 \cdot 10^{-8} \) |
\(a_{922}= -0.30870380 \pm 1.0 \cdot 10^{-8} \) | \(a_{923}= -1.46282280 \pm 1 \cdot 10^{-8} \) | \(a_{924}= -0.25313475 \pm 1.1 \cdot 10^{-8} \) |
\(a_{925}= +0.91997519 \pm 1 \cdot 10^{-8} \) | \(a_{926}= +0.24109873 \pm 1.0 \cdot 10^{-8} \) | \(a_{927}= -0.25592117 \pm 1.0 \cdot 10^{-8} \) |
\(a_{928}= -0.13743103 \pm 1.1 \cdot 10^{-8} \) | \(a_{929}= +0.29221541 \pm 1 \cdot 10^{-8} \) | \(a_{930}= +0.03396789 \pm 1.1 \cdot 10^{-8} \) |
\(a_{931}= -0.83907790 \pm 1 \cdot 10^{-8} \) | \(a_{932}= +0.07923138 \pm 1.0 \cdot 10^{-8} \) | \(a_{933}= +0.12290811 \pm 1.0 \cdot 10^{-8} \) |
\(a_{934}= -1.21118500 \pm 1.1 \cdot 10^{-8} \) | \(a_{935}= -0.12628833 \pm 1 \cdot 10^{-8} \) | \(a_{936}= +0.14061007 \pm 1.1 \cdot 10^{-8} \) |
\(a_{937}= +1.05292276 \pm 1 \cdot 10^{-8} \) | \(a_{938}= -0.02350220 \pm 1.1 \cdot 10^{-8} \) | \(a_{939}= +0.64899279 \pm 1.1 \cdot 10^{-8} \) |
\(a_{940}= -0.03682165 \pm 1.1 \cdot 10^{-8} \) | \(a_{941}= -0.73142178 \pm 1 \cdot 10^{-8} \) | \(a_{942}= -0.62465290 \pm 1.1 \cdot 10^{-8} \) |
\(a_{943}= +1.24218508 \pm 1 \cdot 10^{-8} \) | \(a_{944}= +0.44206522 \pm 1.0 \cdot 10^{-8} \) | \(a_{945}= +0.01866605 \pm 1.1 \cdot 10^{-8} \) |
\(a_{946}= +1.75259169 \pm 1.2 \cdot 10^{-8} \) | \(a_{947}= -0.95950898 \pm 1 \cdot 10^{-8} \) | \(a_{948}= +0.33573636 \pm 1.1 \cdot 10^{-8} \) |
\(a_{949}= +1.21308872 \pm 1 \cdot 10^{-8} \) | \(a_{950}= +0.96213552 \pm 1.1 \cdot 10^{-8} \) | \(a_{951}= -0.57583778 \pm 1.0 \cdot 10^{-8} \) |
\(a_{952}= +0.13177157 \pm 1.1 \cdot 10^{-8} \) | \(a_{953}= +0.11021300 \pm 1 \cdot 10^{-8} \) | \(a_{954}= -0.38750034 \pm 1.1 \cdot 10^{-8} \) |
\(a_{955}= +0.28790509 \pm 1 \cdot 10^{-8} \) | \(a_{956}= +0.93215663 \pm 1.1 \cdot 10^{-8} \) | \(a_{957}= +0.62394770 \pm 1.2 \cdot 10^{-8} \) |
\(a_{958}= +0.48429423 \pm 1.1 \cdot 10^{-8} \) | \(a_{959}= +0.49707917 \pm 1 \cdot 10^{-8} \) | \(a_{960}= -0.01109661 \pm 1.1 \cdot 10^{-8} \) |
\(a_{961}= -0.70717595 \pm 1 \cdot 10^{-8} \) | \(a_{962}= -0.79494054 \pm 1.2 \cdot 10^{-8} \) | \(a_{963}= -0.26418092 \pm 1.1 \cdot 10^{-8} \) |
\(a_{964}= +0.14769291 \pm 1.1 \cdot 10^{-8} \) | \(a_{965}= -0.14850390 \pm 1 \cdot 10^{-8} \) | \(a_{966}= -0.30181010 \pm 1.1 \cdot 10^{-8} \) |
\(a_{967}= +0.49985903 \pm 1 \cdot 10^{-8} \) | \(a_{968}= -0.32965482 \pm 1.1 \cdot 10^{-8} \) | \(a_{969}= -0.47539523 \pm 1.1 \cdot 10^{-8} \) |
\(a_{970}= -0.01945251 \pm 1.2 \cdot 10^{-8} \) | \(a_{971}= +1.77696269 \pm 1 \cdot 10^{-8} \) | \(a_{972}= -0.03207501 \pm 1.7 \cdot 10^{-6} \) |
\(a_{973}= -0.94442016 \pm 1 \cdot 10^{-8} \) | \(a_{974}= +0.95125818 \pm 1.1 \cdot 10^{-8} \) | \(a_{975}= -0.67256026 \pm 1.1 \cdot 10^{-8} \) |
\(a_{976}= -0.07126008 \pm 1.1 \cdot 10^{-8} \) | \(a_{977}= -1.54412305 \pm 1 \cdot 10^{-8} \) | \(a_{978}= +0.72228898 \pm 1.1 \cdot 10^{-8} \) |
\(a_{979}= -0.90317880 \pm 1 \cdot 10^{-8} \) | \(a_{980}= -0.04628828 \pm 1.2 \cdot 10^{-8} \) | \(a_{981}= +0.44235545 \pm 1.1 \cdot 10^{-8} \) |
\(a_{982}= -0.80142553 \pm 1.1 \cdot 10^{-8} \) | \(a_{983}= -0.89704899 \pm 1 \cdot 10^{-8} \) | \(a_{984}= +0.21635386 \pm 1.1 \cdot 10^{-8} \) |
\(a_{985}= +0.09183704 \pm 1 \cdot 10^{-8} \) | \(a_{986}= -0.32480157 \pm 1.1 \cdot 10^{-8} \) | \(a_{987}= -0.17443157 \pm 1.1 \cdot 10^{-8} \) |
\(a_{988}= -0.83137082 \pm 1.1 \cdot 10^{-8} \) | \(a_{989}= +2.08959806 \pm 1 \cdot 10^{-8} \) | \(a_{990}= +0.05037947 \pm 1.2 \cdot 10^{-8} \) |
\(a_{991}= -1.77852618 \pm 1 \cdot 10^{-8} \) | \(a_{992}= -0.09565956 \pm 1.0 \cdot 10^{-8} \) | \(a_{993}= +0.34868994 \pm 1.1 \cdot 10^{-8} \) |
\(a_{994}= +0.54687415 \pm 1.2 \cdot 10^{-8} \) | \(a_{995}= +0.06691250 \pm 1 \cdot 10^{-8} \) | \(a_{996}= +0.02119409 \pm 1.1 \cdot 10^{-8} \) |
\(a_{997}= -0.31503319 \pm 1 \cdot 10^{-8} \) | \(a_{998}= -1.16380646 \pm 1.0 \cdot 10^{-8} \) | \(a_{999}= +0.18133644 \pm 1.1 \cdot 10^{-8} \) |
\(a_{1000}= +0.10743889 \pm 1.1 \cdot 10^{-8} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000