Maass form invariants
Level: | \( 6 = 2 \cdot 3 \) |
Weight: | \( 0 \) |
Character: | 6.1 |
Symmetry: | odd |
Fricke sign: | $+1$ |
Spectral parameter: | \(16.0426930590212746595448890985 \pm 3 \cdot 10^{-7}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -0.70710678 \pm 1.0 \cdot 10^{-8} \) | \(a_{3}= -0.57735027 \pm 1.0 \cdot 10^{-8} \) |
\(a_{4}= +0.5 \) | \(a_{5}= +1.36060894 \pm 3.4 \cdot 10^{-4} \) | \(a_{6}= +0.40824829 \pm 1.0 \cdot 10^{-8} \) |
\(a_{7}= -1.80473738 \pm 3.4 \cdot 10^{-4} \) | \(a_{8}= -0.35355339 \pm 4.2 \cdot 10^{-8} \) | \(a_{9}= +0.33333333 \pm 4.2 \cdot 10^{-8} \) |
\(a_{10}= -0.96209580 \pm 3.4 \cdot 10^{-4} \) | \(a_{11}= +0.17474705 \pm 2.7 \cdot 10^{-4} \) | \(a_{12}= -0.28867513 \pm 5.2 \cdot 10^{-8} \) |
\(a_{13}= +0.44448836 \pm 4.5 \cdot 10^{-4} \) | \(a_{14}= +1.27614204 \pm 3.4 \cdot 10^{-4} \) | \(a_{15}= -0.78554793 \pm 3.4 \cdot 10^{-4} \) |
\(a_{16}= +0.25 \) | \(a_{17}= +1.44230049 \pm 2.7 \cdot 10^{-4} \) | \(a_{18}= -0.23570226 \pm 7.3 \cdot 10^{-8} \) |
\(a_{19}= -1.21873231 \pm 6.1 \cdot 10^{-4} \) | \(a_{20}= +0.68030447 \pm 3.4 \cdot 10^{-4} \) | \(a_{21}= +1.04196561 \pm 3.4 \cdot 10^{-4} \) |
\(a_{22}= -0.12356483 \pm 2.7 \cdot 10^{-4} \) | \(a_{23}= +1.28038308 \pm 4.3 \cdot 10^{-4} \) | \(a_{24}= +0.20412415 \pm 9.4 \cdot 10^{-8} \) |
\(a_{25}= +0.85125667 \pm 3.3 \cdot 10^{-4} \) | \(a_{26}= -0.31430073 \pm 4.5 \cdot 10^{-4} \) | \(a_{27}= -0.19245009 \pm 9.4 \cdot 10^{-8} \) |
\(a_{28}= -0.90236869 \pm 3.4 \cdot 10^{-4} \) | \(a_{29}= -0.53200567 \pm 3.2 \cdot 10^{-4} \) | \(a_{30}= +0.55546627 \pm 3.4 \cdot 10^{-4} \) |
\(a_{31}= -0.18049367 \pm 5.6 \cdot 10^{-4} \) | \(a_{32}= -0.17677670 \pm 1.1 \cdot 10^{-7} \) | \(a_{33}= -0.10089026 \pm 2.7 \cdot 10^{-4} \) |
\(a_{34}= -1.01986045 \pm 2.7 \cdot 10^{-4} \) | \(a_{35}= -2.45554180 \pm 2.7 \cdot 10^{-4} \) | \(a_{36}= +0.16666667 \pm 1.0 \cdot 10^{-7} \) |
\(a_{37}= -0.96606237 \pm 4.8 \cdot 10^{-4} \) | \(a_{38}= +0.86177388 \pm 6.1 \cdot 10^{-4} \) | \(a_{39}= -0.25662547 \pm 4.5 \cdot 10^{-4} \) |
\(a_{40}= -0.48104790 \pm 3.4 \cdot 10^{-4} \) | \(a_{41}= +0.14736262 \pm 2.6 \cdot 10^{-4} \) | \(a_{42}= -0.73678095 \pm 3.4 \cdot 10^{-4} \) |
\(a_{43}= -0.22838398 \pm 2.6 \cdot 10^{-4} \) | \(a_{44}= +0.08737353 \pm 2.7 \cdot 10^{-4} \) | \(a_{45}= +0.45353631 \pm 3.4 \cdot 10^{-4} \) |
\(a_{46}= -0.90536756 \pm 4.3 \cdot 10^{-4} \) | \(a_{47}= -1.53413251 \pm 3.9 \cdot 10^{-4} \) | \(a_{48}= -0.14433757 \pm 1.5 \cdot 10^{-7} \) |
\(a_{49}= +2.25707700 \pm 3.8 \cdot 10^{-4} \) | \(a_{50}= -0.60192937 \pm 3.3 \cdot 10^{-4} \) | \(a_{51}= -0.83271257 \pm 2.7 \cdot 10^{-4} \) |
\(a_{52}= +0.22224418 \pm 4.5 \cdot 10^{-4} \) | \(a_{53}= -0.55238004 \pm 6.0 \cdot 10^{-4} \) | \(a_{54}= +0.13608276 \pm 1.6 \cdot 10^{-7} \) |
\(a_{55}= +0.23776240 \pm 2.9 \cdot 10^{-4} \) | \(a_{56}= +0.63807102 \pm 3.4 \cdot 10^{-4} \) | \(a_{57}= +0.70363543 \pm 6.1 \cdot 10^{-4} \) |
\(a_{58}= +0.37618481 \pm 3.2 \cdot 10^{-4} \) | \(a_{59}= -1.42346803 \pm 4.8 \cdot 10^{-4} \) | \(a_{60}= -0.39277397 \pm 3.4 \cdot 10^{-4} \) |
\(a_{61}= -0.31967331 \pm 4.3 \cdot 10^{-4} \) | \(a_{62}= +0.12762830 \pm 5.6 \cdot 10^{-4} \) | \(a_{63}= -0.60157913 \pm 3.4 \cdot 10^{-4} \) |
\(a_{64}= +0.125 \) | \(a_{65}= +0.60477483 \pm 2.0 \cdot 10^{-4} \) | \(a_{66}= +0.07134019 \pm 2.7 \cdot 10^{-4} \) |
\(a_{67}= -0.45912256 \pm 1.9 \cdot 10^{-4} \) | \(a_{68}= +0.72115024 \pm 2.7 \cdot 10^{-4} \) | \(a_{69}= -0.73922952 \pm 4.3 \cdot 10^{-4} \) |
\(a_{70}= +1.73633026 \pm 6.9 \cdot 10^{-4} \) | \(a_{71}= +0.12130323 \pm 4.8 \cdot 10^{-4} \) | \(a_{72}= -0.11785113 \pm 1.9 \cdot 10^{-7} \) |
\(a_{73}= -0.82122650 \pm 5.4 \cdot 10^{-4} \) | \(a_{74}= +0.68310925 \pm 4.8 \cdot 10^{-4} \) | \(a_{75}= -0.49147327 \pm 3.3 \cdot 10^{-4} \) |
\(a_{76}= -0.60936616 \pm 6.1 \cdot 10^{-4} \) | \(a_{77}= -0.31537254 \pm 1.1 \cdot 10^{-4} \) | \(a_{78}= +0.18146161 \pm 4.5 \cdot 10^{-4} \) |
\(a_{79}= -0.95032814 \pm 2.8 \cdot 10^{-4} \) | \(a_{80}= +0.34015223 \pm 3.4 \cdot 10^{-4} \) | \(a_{81}= +0.11111111 \pm 2.3 \cdot 10^{-7} \) |
\(a_{82}= -0.10420111 \pm 2.6 \cdot 10^{-4} \) | \(a_{83}= -0.61252467 \pm 2.7 \cdot 10^{-4} \) | \(a_{84}= +0.52098281 \pm 3.4 \cdot 10^{-4} \) |
\(a_{85}= +1.96240693 \pm 2.8 \cdot 10^{-4} \) | \(a_{86}= +0.16149186 \pm 2.6 \cdot 10^{-4} \) | \(a_{87}= +0.30715361 \pm 3.2 \cdot 10^{-4} \) |
\(a_{88}= -0.06178241 \pm 2.7 \cdot 10^{-4} \) | \(a_{89}= -0.72966771 \pm 6.5 \cdot 10^{-4} \) | \(a_{90}= -0.32069860 \pm 3.4 \cdot 10^{-4} \) |
\(a_{91}= -0.80218476 \pm 2.0 \cdot 10^{-4} \) | \(a_{92}= +0.64019154 \pm 4.3 \cdot 10^{-4} \) | \(a_{93}= +0.10420807 \pm 5.6 \cdot 10^{-4} \) |
\(a_{94}= +1.08479550 \pm 3.9 \cdot 10^{-4} \) | \(a_{95}= -1.65821807 \pm 3.8 \cdot 10^{-4} \) | \(a_{96}= +0.10206207 \pm 2.5 \cdot 10^{-7} \) |
\(a_{97}= +0.09082968 \pm 5.8 \cdot 10^{-4} \) | \(a_{98}= -1.59599445 \pm 3.8 \cdot 10^{-4} \) | \(a_{99}= +0.05824902 \pm 2.7 \cdot 10^{-4} \) |
\(a_{100}= +0.42562834 \pm 3.3 \cdot 10^{-4} \) | \(a_{101}= -0.29570864 \pm 3.4 \cdot 10^{-4} \) | \(a_{102}= +0.58881671 \pm 2.7 \cdot 10^{-4} \) |
\(a_{103}= +1.15884748 \pm 4.3 \cdot 10^{-4} \) | \(a_{104}= -0.15715037 \pm 4.5 \cdot 10^{-4} \) | \(a_{105}= +1.41770772 \pm 6.9 \cdot 10^{-4} \) |
\(a_{106}= +0.39059167 \pm 6.0 \cdot 10^{-4} \) | \(a_{107}= -0.65964317 \pm 4.4 \cdot 10^{-4} \) | \(a_{108}= -0.09622504 \pm 2.8 \cdot 10^{-7} \) |
\(a_{109}= -1.62354970 \pm 4.6 \cdot 10^{-4} \) | \(a_{110}= -0.16812341 \pm 6.2 \cdot 10^{-4} \) | \(a_{111}= +0.55775637 \pm 4.8 \cdot 10^{-4} \) |
\(a_{112}= -0.45118434 \pm 3.4 \cdot 10^{-4} \) | \(a_{113}= +0.37375596 \pm 6.7 \cdot 10^{-4} \) | \(a_{114}= -0.49754538 \pm 6.1 \cdot 10^{-4} \) |
\(a_{115}= +1.74210067 \pm 2.5 \cdot 10^{-4} \) | \(a_{116}= -0.26600283 \pm 3.2 \cdot 10^{-4} \) | \(a_{117}= +0.14816279 \pm 4.5 \cdot 10^{-4} \) |
\(a_{118}= +1.00654389 \pm 4.8 \cdot 10^{-4} \) | \(a_{119}= -2.60297360 \pm 2.6 \cdot 10^{-4} \) | \(a_{120}= +0.27773314 \pm 3.4 \cdot 10^{-4} \) |
\(a_{121}= -0.96946347 \pm 3.8 \cdot 10^{-4} \) | \(a_{122}= +0.22604316 \pm 4.3 \cdot 10^{-4} \) | \(a_{123}= -0.08507985 \pm 2.6 \cdot 10^{-4} \) |
\(a_{124}= -0.09024684 \pm 5.6 \cdot 10^{-4} \) | \(a_{125}= -0.20238150 \pm 3.9 \cdot 10^{-4} \) | \(a_{126}= +0.42538068 \pm 3.4 \cdot 10^{-4} \) |
\(a_{127}= +1.31729144 \pm 1.3 \cdot 10^{-4} \) | \(a_{128}= -0.08838835 \pm 3.2 \cdot 10^{-7} \) | \(a_{129}= +0.13185755 \pm 2.6 \cdot 10^{-4} \) |
\(a_{130}= -0.42764039 \pm 8.0 \cdot 10^{-4} \) | \(a_{131}= -0.25964838 \pm 5.0 \cdot 10^{-4} \) | \(a_{132}= -0.05044513 \pm 2.7 \cdot 10^{-4} \) |
\(a_{133}= +2.19949176 \pm 2.5 \cdot 10^{-4} \) | \(a_{134}= +0.32464867 \pm 1.9 \cdot 10^{-4} \) | \(a_{135}= -0.26184931 \pm 3.4 \cdot 10^{-4} \) |
\(a_{136}= -0.50993023 \pm 2.7 \cdot 10^{-4} \) | \(a_{137}= -0.07415392 \pm 2.8 \cdot 10^{-4} \) | \(a_{138}= +0.52271421 \pm 4.3 \cdot 10^{-4} \) |
\(a_{139}= -1.79348339 \pm 4.9 \cdot 10^{-4} \) | \(a_{140}= -1.22777090 \pm 6.9 \cdot 10^{-4} \) | \(a_{141}= +0.88573182 \pm 3.9 \cdot 10^{-4} \) |
\(a_{142}= -0.08577434 \pm 4.8 \cdot 10^{-4} \) | \(a_{143}= +0.07767303 \pm 2.2 \cdot 10^{-4} \) | \(a_{144}= +0.08333333 \pm 3.4 \cdot 10^{-7} \) |
\(a_{145}= -0.72385166 \pm 1.8 \cdot 10^{-4} \) | \(a_{146}= +0.58069483 \pm 5.4 \cdot 10^{-4} \) | \(a_{147}= -1.30312402 \pm 3.8 \cdot 10^{-4} \) |
\(a_{148}= -0.48303118 \pm 4.8 \cdot 10^{-4} \) | \(a_{149}= +0.13558592 \pm 3.5 \cdot 10^{-4} \) | \(a_{150}= +0.34752408 \pm 3.3 \cdot 10^{-4} \) |
\(a_{151}= +1.46346609 \pm 4.0 \cdot 10^{-4} \) | \(a_{152}= +0.43088694 \pm 6.1 \cdot 10^{-4} \) | \(a_{153}= +0.48076683 \pm 2.7 \cdot 10^{-4} \) |
\(a_{154}= +0.22300206 \pm 6.1 \cdot 10^{-4} \) | \(a_{155}= -0.24558130 \pm 4.5 \cdot 10^{-4} \) | \(a_{156}= -0.12831274 \pm 4.5 \cdot 10^{-4} \) |
\(a_{157}= +0.53514130 \pm 5.5 \cdot 10^{-4} \) | \(a_{158}= +0.67198347 \pm 2.8 \cdot 10^{-4} \) | \(a_{159}= +0.31891676 \pm 6.0 \cdot 10^{-4} \) |
\(a_{160}= -0.24052395 \pm 3.4 \cdot 10^{-4} \) | \(a_{161}= -2.31075521 \pm 2.5 \cdot 10^{-4} \) | \(a_{162}= -0.07856742 \pm 3.8 \cdot 10^{-7} \) |
\(a_{163}= +1.14178998 \pm 4.1 \cdot 10^{-4} \) | \(a_{164}= +0.07368131 \pm 2.6 \cdot 10^{-4} \) | \(a_{165}= -0.13727219 \pm 6.2 \cdot 10^{-4} \) |
\(a_{166}= +0.43312035 \pm 2.7 \cdot 10^{-4} \) | \(a_{167}= +0.21204098 \pm 5.4 \cdot 10^{-4} \) | \(a_{168}= -0.36839047 \pm 3.4 \cdot 10^{-4} \) |
\(a_{169}= -0.80243010 \pm 4.0 \cdot 10^{-4} \) | \(a_{170}= -1.38763125 \pm 6.2 \cdot 10^{-4} \) | \(a_{171}= -0.40624410 \pm 6.1 \cdot 10^{-4} \) |
\(a_{172}= -0.11419199 \pm 2.6 \cdot 10^{-4} \) | \(a_{173}= +1.52117880 \pm 5.3 \cdot 10^{-4} \) | \(a_{174}= -0.21719040 \pm 3.2 \cdot 10^{-4} \) |
\(a_{175}= -1.53629474 \pm 1.4 \cdot 10^{-4} \) | \(a_{176}= +0.04368676 \pm 2.7 \cdot 10^{-4} \) | \(a_{177}= +0.82183965 \pm 4.8 \cdot 10^{-4} \) |
\(a_{178}= +0.51595299 \pm 6.5 \cdot 10^{-4} \) | \(a_{179}= +1.38232609 \pm 5.5 \cdot 10^{-4} \) | \(a_{180}= +0.22676816 \pm 3.4 \cdot 10^{-4} \) |
\(a_{181}= +0.02445777 \pm 6.3 \cdot 10^{-4} \) | \(a_{182}= +0.56723028 \pm 7.9 \cdot 10^{-4} \) | \(a_{183}= +0.18456347 \pm 4.3 \cdot 10^{-4} \) |
\(a_{184}= -0.45268378 \pm 4.3 \cdot 10^{-4} \) | \(a_{185}= -1.31443309 \pm 3.7 \cdot 10^{-4} \) | \(a_{186}= -0.07368623 \pm 5.6 \cdot 10^{-4} \) |
\(a_{187}= +0.25203776 \pm 2.1 \cdot 10^{-4} \) | \(a_{188}= -0.76706625 \pm 3.9 \cdot 10^{-4} \) | \(a_{189}= +0.34732187 \pm 3.4 \cdot 10^{-4} \) |
\(a_{190}= +1.17253724 \pm 9.6 \cdot 10^{-4} \) | \(a_{191}= +1.16642937 \pm 3.4 \cdot 10^{-4} \) | \(a_{192}= -0.07216878 \pm 4.5 \cdot 10^{-7} \) |
\(a_{193}= -1.20170023 \pm 3.1 \cdot 10^{-4} \) | \(a_{194}= -0.06422628 \pm 5.8 \cdot 10^{-4} \) | \(a_{195}= -0.34916691 \pm 8.0 \cdot 10^{-4} \) |
\(a_{196}= +1.12853850 \pm 3.8 \cdot 10^{-4} \) | \(a_{197}= -0.96847118 \pm 5.6 \cdot 10^{-4} \) | \(a_{198}= -0.04118828 \pm 2.7 \cdot 10^{-4} \) |
\(a_{199}= -1.36443251 \pm 1.7 \cdot 10^{-4} \) | \(a_{200}= -0.30096468 \pm 3.3 \cdot 10^{-4} \) | \(a_{201}= +0.26507453 \pm 1.9 \cdot 10^{-4} \) |
\(a_{202}= +0.20909759 \pm 3.4 \cdot 10^{-4} \) | \(a_{203}= +0.96013051 \pm 1.5 \cdot 10^{-4} \) | \(a_{204}= -0.41635629 \pm 2.7 \cdot 10^{-4} \) |
\(a_{205}= +0.20050290 \pm 2.1 \cdot 10^{-4} \) | \(a_{206}= -0.81942891 \pm 4.3 \cdot 10^{-4} \) | \(a_{207}= +0.42679436 \pm 4.3 \cdot 10^{-4} \) |
\(a_{208}= +0.11112209 \pm 4.5 \cdot 10^{-4} \) | \(a_{209}= -0.21296988 \pm 3.6 \cdot 10^{-4} \) | \(a_{210}= -1.00247074 \pm 6.9 \cdot 10^{-4} \) |
\(a_{211}= +1.01109195 \pm 3.6 \cdot 10^{-4} \) | \(a_{212}= -0.27619002 \pm 6.0 \cdot 10^{-4} \) | \(a_{213}= -0.07003445 \pm 4.8 \cdot 10^{-4} \) |
\(a_{214}= +0.46643816 \pm 4.4 \cdot 10^{-4} \) | \(a_{215}= -0.31074129 \pm 1.8 \cdot 10^{-4} \) | \(a_{216}= +0.06804138 \pm 4.8 \cdot 10^{-7} \) |
\(a_{217}= +0.32574367 \pm 6.1 \cdot 10^{-4} \) | \(a_{218}= +1.14802300 \pm 4.6 \cdot 10^{-4} \) | \(a_{219}= +0.47413534 \pm 5.4 \cdot 10^{-4} \) |
\(a_{220}= +0.11888120 \pm 6.2 \cdot 10^{-4} \) | \(a_{221}= +0.64108578 \pm 1.5 \cdot 10^{-4} \) | \(a_{222}= -0.39439331 \pm 4.8 \cdot 10^{-4} \) |
\(a_{223}= -0.94637365 \pm 3.7 \cdot 10^{-4} \) | \(a_{224}= +0.31903551 \pm 3.4 \cdot 10^{-4} \) | \(a_{225}= +0.28375222 \pm 3.3 \cdot 10^{-4} \) |
\(a_{226}= -0.26428537 \pm 6.7 \cdot 10^{-4} \) | \(a_{227}= +1.44011373 \pm 3.9 \cdot 10^{-4} \) | \(a_{228}= +0.35181771 \pm 6.1 \cdot 10^{-4} \) |
\(a_{229}= -1.08846076 \pm 1.8 \cdot 10^{-4} \) | \(a_{230}= -1.23185119 \pm 7.8 \cdot 10^{-4} \) | \(a_{231}= +0.18208042 \pm 6.1 \cdot 10^{-4} \) |
\(a_{232}= +0.18809241 \pm 3.2 \cdot 10^{-4} \) | \(a_{233}= -1.59766936 \pm 7.5 \cdot 10^{-4} \) | \(a_{234}= -0.10476691 \pm 4.5 \cdot 10^{-4} \) |
\(a_{235}= -2.08735440 \pm 2.6 \cdot 10^{-4} \) | \(a_{236}= -0.71173401 \pm 4.8 \cdot 10^{-4} \) | \(a_{237}= +0.54867221 \pm 2.8 \cdot 10^{-4} \) |
\(a_{238}= +1.84058028 \pm 6.2 \cdot 10^{-4} \) | \(a_{239}= -1.13134641 \pm 4.4 \cdot 10^{-4} \) | \(a_{240}= -0.19638698 \pm 3.4 \cdot 10^{-4} \) |
\(a_{241}= +0.74102698 \pm 2.5 \cdot 10^{-4} \) | \(a_{242}= +0.68551419 \pm 3.8 \cdot 10^{-4} \) | \(a_{243}= -0.06415003 \pm 5.5 \cdot 10^{-7} \) |
\(a_{244}= -0.15983665 \pm 4.3 \cdot 10^{-4} \) | \(a_{245}= +3.07099914 \pm 2.6 \cdot 10^{-4} \) | \(a_{246}= +0.06016054 \pm 2.6 \cdot 10^{-4} \) |
\(a_{247}= -0.54171233 \pm 6.9 \cdot 10^{-4} \) | \(a_{248}= +0.06381415 \pm 5.6 \cdot 10^{-4} \) | \(a_{249}= +0.35364128 \pm 2.7 \cdot 10^{-4} \) |
\(a_{250}= +0.14310533 \pm 3.9 \cdot 10^{-4} \) | \(a_{251}= -0.74211452 \pm 5.1 \cdot 10^{-4} \) | \(a_{252}= -0.30078956 \pm 3.4 \cdot 10^{-4} \) |
\(a_{253}= +0.22374317 \pm 2.1 \cdot 10^{-4} \) | \(a_{254}= -0.93146571 \pm 1.3 \cdot 10^{-4} \) | \(a_{255}= -1.13299617 \pm 6.2 \cdot 10^{-4} \) |
\(a_{256}= +0.0625 \) | \(a_{257}= +1.44527678 \pm 2.8 \cdot 10^{-4} \) | \(a_{258}= -0.09323737 \pm 2.6 \cdot 10^{-4} \) |
\(a_{259}= +1.74348886 \pm 5.3 \cdot 10^{-4} \) | \(a_{260}= +0.30238742 \pm 8.0 \cdot 10^{-4} \) | \(a_{261}= -0.17733522 \pm 3.2 \cdot 10^{-4} \) |
\(a_{262}= +0.18359913 \pm 5.0 \cdot 10^{-4} \) | \(a_{263}= -1.19321791 \pm 1.8 \cdot 10^{-4} \) | \(a_{264}= +0.03567009 \pm 2.7 \cdot 10^{-4} \) |
\(a_{265}= -0.75157321 \pm 4.3 \cdot 10^{-4} \) | \(a_{266}= -1.55527554 \pm 9.5 \cdot 10^{-4} \) | \(a_{267}= +0.42127385 \pm 6.5 \cdot 10^{-4} \) |
\(a_{268}= -0.22956128 \pm 1.9 \cdot 10^{-4} \) | \(a_{269}= -0.30530830 \pm 4.7 \cdot 10^{-4} \) | \(a_{270}= +0.18515542 \pm 3.4 \cdot 10^{-4} \) |
\(a_{271}= -1.01732523 \pm 5.3 \cdot 10^{-4} \) | \(a_{272}= +0.36057512 \pm 2.7 \cdot 10^{-4} \) | \(a_{273}= +0.46314159 \pm 7.9 \cdot 10^{-4} \) |
\(a_{274}= +0.05243474 \pm 2.8 \cdot 10^{-4} \) | \(a_{275}= +0.14875459 \pm 2.2 \cdot 10^{-4} \) | \(a_{276}= -0.36961476 \pm 4.3 \cdot 10^{-4} \) |
\(a_{277}= +0.45641988 \pm 3.8 \cdot 10^{-4} \) | \(a_{278}= +1.26818427 \pm 4.9 \cdot 10^{-4} \) | \(a_{279}= -0.06016456 \pm 5.6 \cdot 10^{-4} \) |
\(a_{280}= +0.86816513 \pm 6.9 \cdot 10^{-4} \) | \(a_{281}= -0.69761204 \pm 5.9 \cdot 10^{-4} \) | \(a_{282}= -0.62630697 \pm 3.9 \cdot 10^{-4} \) |
\(a_{283}= -1.00903670 \pm 3.0 \cdot 10^{-4} \) | \(a_{284}= +0.06065162 \pm 4.8 \cdot 10^{-4} \) | \(a_{285}= +0.95737265 \pm 9.6 \cdot 10^{-4} \) |
\(a_{286}= -0.05492313 \pm 7.2 \cdot 10^{-4} \) | \(a_{287}= -0.26595083 \pm 3.1 \cdot 10^{-4} \) | \(a_{288}= -0.05892557 \pm 6.3 \cdot 10^{-7} \) |
\(a_{289}= +1.08023069 \pm 3.5 \cdot 10^{-4} \) | \(a_{290}= +0.51184042 \pm 6.7 \cdot 10^{-4} \) | \(a_{291}= -0.05244054 \pm 5.8 \cdot 10^{-4} \) |
\(a_{292}= -0.41061325 \pm 5.4 \cdot 10^{-4} \) | \(a_{293}= +0.96573464 \pm 4.4 \cdot 10^{-4} \) | \(a_{294}= +0.92144783 \pm 3.8 \cdot 10^{-4} \) |
\(a_{295}= -1.93678332 \pm 4.1 \cdot 10^{-4} \) | \(a_{296}= +0.34155463 \pm 4.8 \cdot 10^{-4} \) | \(a_{297}= -0.03363009 \pm 2.7 \cdot 10^{-4} \) |
\(a_{298}= -0.09587372 \pm 3.5 \cdot 10^{-4} \) | \(a_{299}= +0.56911538 \pm 4.7 \cdot 10^{-4} \) | \(a_{300}= -0.24573664 \pm 3.3 \cdot 10^{-4} \) |
\(a_{301}= +0.41217311 \pm 1.1 \cdot 10^{-4} \) | \(a_{302}= -1.03482679 \pm 4.0 \cdot 10^{-4} \) | \(a_{303}= +0.17072747 \pm 3.4 \cdot 10^{-4} \) |
\(a_{304}= -0.30468308 \pm 6.1 \cdot 10^{-4} \) | \(a_{305}= -0.43495036 \pm 4.2 \cdot 10^{-4} \) | \(a_{306}= -0.33995348 \pm 2.7 \cdot 10^{-4} \) |
\(a_{307}= +0.42216659 \pm 2.3 \cdot 10^{-4} \) | \(a_{308}= -0.15768627 \pm 6.1 \cdot 10^{-4} \) | \(a_{309}= -0.66906091 \pm 4.3 \cdot 10^{-4} \) |
\(a_{310}= +0.17365220 \pm 9.1 \cdot 10^{-4} \) | \(a_{311}= +0.49395478 \pm 5.4 \cdot 10^{-4} \) | \(a_{312}= +0.09073081 \pm 4.5 \cdot 10^{-4} \) |
\(a_{313}= +0.50526566 \pm 5.7 \cdot 10^{-4} \) | \(a_{314}= -0.37840204 \pm 5.5 \cdot 10^{-4} \) | \(a_{315}= -0.81851393 \pm 6.9 \cdot 10^{-4} \) |
\(a_{316}= -0.47516407 \pm 2.8 \cdot 10^{-4} \) | \(a_{317}= -0.29908021 \pm 3.3 \cdot 10^{-4} \) | \(a_{318}= -0.22550821 \pm 6.0 \cdot 10^{-4} \) |
\(a_{319}= -0.09296642 \pm 1.7 \cdot 10^{-4} \) | \(a_{320}= +0.17007612 \pm 3.4 \cdot 10^{-4} \) | \(a_{321}= +0.38084516 \pm 4.4 \cdot 10^{-4} \) |
\(a_{322}= +1.63395068 \pm 7.7 \cdot 10^{-4} \) | \(a_{323}= -1.75777821 \pm 2.6 \cdot 10^{-4} \) | \(a_{324}= +0.05555556 \pm 6.8 \cdot 10^{-7} \) |
\(a_{325}= +0.37837368 \pm 3.7 \cdot 10^{-4} \) | \(a_{326}= -0.80736744 \pm 4.1 \cdot 10^{-4} \) | \(a_{327}= +0.93735686 \pm 4.6 \cdot 10^{-4} \) |
\(a_{328}= -0.05210055 \pm 2.6 \cdot 10^{-4} \) | \(a_{329}= +2.76870628 \pm 3.6 \cdot 10^{-4} \) | \(a_{330}= +0.09706609 \pm 6.2 \cdot 10^{-4} \) |
\(a_{331}= -0.05037288 \pm 7.7 \cdot 10^{-4} \) | \(a_{332}= -0.30626233 \pm 2.7 \cdot 10^{-4} \) | \(a_{333}= -0.32202079 \pm 4.8 \cdot 10^{-4} \) |
\(a_{334}= -0.14993561 \pm 5.4 \cdot 10^{-4} \) | \(a_{335}= -0.62468626 \pm 2.4 \cdot 10^{-4} \) | \(a_{336}= +0.26049140 \pm 3.4 \cdot 10^{-4} \) |
\(a_{337}= +1.27516316 \pm 2.7 \cdot 10^{-4} \) | \(a_{338}= +0.56740376 \pm 4.0 \cdot 10^{-4} \) | \(a_{339}= -0.21578810 \pm 6.7 \cdot 10^{-4} \) |
\(a_{340}= +0.98120346 \pm 6.2 \cdot 10^{-4} \) | \(a_{341}= -0.03154074 \pm 1.9 \cdot 10^{-4} \) | \(a_{342}= +0.28725796 \pm 6.1 \cdot 10^{-4} \) |
\(a_{343}= -2.26869385 \pm 2.6 \cdot 10^{-4} \) | \(a_{344}= +0.08074593 \pm 2.6 \cdot 10^{-4} \) | \(a_{345}= -1.00580229 \pm 7.8 \cdot 10^{-4} \) |
\(a_{346}= -1.07563584 \pm 5.3 \cdot 10^{-4} \) | \(a_{347}= -0.72817847 \pm 5.6 \cdot 10^{-4} \) | \(a_{348}= +0.15357681 \pm 3.2 \cdot 10^{-4} \) |
\(a_{349}= -1.25154169 \pm 4.2 \cdot 10^{-4} \) | \(a_{350}= +1.08632443 \pm 6.8 \cdot 10^{-4} \) | \(a_{351}= -0.08554182 \pm 4.5 \cdot 10^{-4} \) |
\(a_{352}= -0.03089121 \pm 2.7 \cdot 10^{-4} \) | \(a_{353}= +0.24611150 \pm 2.1 \cdot 10^{-4} \) | \(a_{354}= -0.58112839 \pm 4.8 \cdot 10^{-4} \) |
\(a_{355}= +0.16504626 \pm 2.6 \cdot 10^{-4} \) | \(a_{356}= -0.36483386 \pm 6.5 \cdot 10^{-4} \) | \(a_{357}= +1.50282751 \pm 6.2 \cdot 10^{-4} \) |
\(a_{358}= -0.97745215 \pm 5.5 \cdot 10^{-4} \) | \(a_{359}= +0.59669999 \pm 5.5 \cdot 10^{-4} \) | \(a_{360}= -0.16034930 \pm 3.4 \cdot 10^{-4} \) |
\(a_{361}= +0.48530845 \pm 5.6 \cdot 10^{-4} \) | \(a_{362}= -0.01729425 \pm 6.3 \cdot 10^{-4} \) | \(a_{363}= +0.55971999 \pm 3.8 \cdot 10^{-4} \) |
\(a_{364}= -0.40109238 \pm 7.9 \cdot 10^{-4} \) | \(a_{365}= -1.11736811 \pm 5.4 \cdot 10^{-4} \) | \(a_{366}= -0.13050608 \pm 4.3 \cdot 10^{-4} \) |
\(a_{367}= +0.90186468 \pm 2.2 \cdot 10^{-4} \) | \(a_{368}= +0.32009577 \pm 4.3 \cdot 10^{-4} \) | \(a_{369}= +0.04912087 \pm 2.6 \cdot 10^{-4} \) |
\(a_{370}= +0.92944455 \pm 8.3 \cdot 10^{-4} \) | \(a_{371}= +0.99690090 \pm 2.5 \cdot 10^{-4} \) | \(a_{372}= +0.05210403 \pm 5.6 \cdot 10^{-4} \) |
\(a_{373}= +1.18359096 \pm 3.4 \cdot 10^{-4} \) | \(a_{374}= -0.17821761 \pm 5.5 \cdot 10^{-4} \) | \(a_{375}= +0.11684501 \pm 3.9 \cdot 10^{-4} \) |
\(a_{376}= +0.54239775 \pm 3.9 \cdot 10^{-4} \) | \(a_{377}= -0.23647033 \pm 3.7 \cdot 10^{-4} \) | \(a_{378}= -0.24559365 \pm 3.4 \cdot 10^{-4} \) |
\(a_{379}= -1.14441464 \pm 3.0 \cdot 10^{-4} \) | \(a_{380}= -0.82910904 \pm 9.6 \cdot 10^{-4} \) | \(a_{381}= -0.76053857 \pm 1.3 \cdot 10^{-4} \) |
\(a_{382}= -0.82479012 \pm 3.4 \cdot 10^{-4} \) | \(a_{383}= +0.10979825 \pm 5.9 \cdot 10^{-4} \) | \(a_{384}= +0.05103104 \pm 7.9 \cdot 10^{-7} \) |
\(a_{385}= -0.42909869 \pm 1.0 \cdot 10^{-4} \) | \(a_{386}= +0.84973038 \pm 3.1 \cdot 10^{-4} \) | \(a_{387}= -0.07612799 \pm 2.6 \cdot 10^{-4} \) |
\(a_{388}= +0.04541484 \pm 5.8 \cdot 10^{-4} \) | \(a_{389}= -0.31217523 \pm 3.3 \cdot 10^{-4} \) | \(a_{390}= +0.24689829 \pm 8.0 \cdot 10^{-4} \) |
\(a_{391}= +1.84669715 \pm 1.9 \cdot 10^{-4} \) | \(a_{392}= -0.79799723 \pm 3.8 \cdot 10^{-4} \) | \(a_{393}= +0.14990806 \pm 5.0 \cdot 10^{-4} \) |
\(a_{394}= +0.68481254 \pm 5.6 \cdot 10^{-4} \) | \(a_{395}= -1.29302495 \pm 3.3 \cdot 10^{-4} \) | \(a_{396}= +0.02912451 \pm 2.7 \cdot 10^{-4} \) |
\(a_{397}= -0.30257626 \pm 5.3 \cdot 10^{-4} \) | \(a_{398}= +0.96479948 \pm 1.7 \cdot 10^{-4} \) | \(a_{399}= -1.26987716 \pm 9.5 \cdot 10^{-4} \) |
\(a_{400}= +0.21281417 \pm 3.3 \cdot 10^{-4} \) | \(a_{401}= -0.64539394 \pm 6.5 \cdot 10^{-4} \) | \(a_{402}= -0.18743600 \pm 1.9 \cdot 10^{-4} \) |
\(a_{403}= -0.08022734 \pm 2.1 \cdot 10^{-4} \) | \(a_{404}= -0.14785432 \pm 3.4 \cdot 10^{-4} \) | \(a_{405}= +0.15117877 \pm 3.4 \cdot 10^{-4} \) |
\(a_{406}= -0.67891480 \pm 6.7 \cdot 10^{-4} \) | \(a_{407}= -0.16881655 \pm 1.3 \cdot 10^{-4} \) | \(a_{408}= +0.29440835 \pm 2.7 \cdot 10^{-4} \) |
\(a_{409}= -0.68670823 \pm 4.2 \cdot 10^{-4} \) | \(a_{410}= -0.14177696 \pm 6.1 \cdot 10^{-4} \) | \(a_{411}= +0.04281279 \pm 2.8 \cdot 10^{-4} \) |
\(a_{412}= +0.57942374 \pm 4.3 \cdot 10^{-4} \) | \(a_{413}= +2.56898595 \pm 4.4 \cdot 10^{-4} \) | \(a_{414}= -0.30178919 \pm 4.3 \cdot 10^{-4} \) |
\(a_{415}= -0.83340654 \pm 2.1 \cdot 10^{-4} \) | \(a_{416}= -0.07857518 \pm 4.5 \cdot 10^{-4} \) | \(a_{417}= +1.03546812 \pm 4.9 \cdot 10^{-4} \) |
\(a_{418}= +0.15059245 \pm 8.8 \cdot 10^{-4} \) | \(a_{419}= +1.07230010 \pm 3.7 \cdot 10^{-4} \) | \(a_{420}= +0.70885386 \pm 6.9 \cdot 10^{-4} \) |
\(a_{421}= -1.27452153 \pm 5.2 \cdot 10^{-4} \) | \(a_{422}= -0.71494997 \pm 3.6 \cdot 10^{-4} \) | \(a_{423}= -0.51137750 \pm 3.9 \cdot 10^{-4} \) |
\(a_{424}= +0.19529583 \pm 6.0 \cdot 10^{-4} \) | \(a_{425}= +1.22776792 \pm 1.7 \cdot 10^{-4} \) | \(a_{426}= +0.04952184 \pm 4.8 \cdot 10^{-4} \) |
\(a_{427}= +0.57692637 \pm 3.3 \cdot 10^{-4} \) | \(a_{428}= -0.32982158 \pm 4.4 \cdot 10^{-4} \) | \(a_{429}= -0.04484455 \pm 7.2 \cdot 10^{-4} \) |
\(a_{430}= +0.21972727 \pm 6.1 \cdot 10^{-4} \) | \(a_{431}= -1.46546662 \pm 4.7 \cdot 10^{-4} \) | \(a_{432}= -0.04811252 \pm 8.6 \cdot 10^{-7} \) |
\(a_{433}= +1.62246904 \pm 3.6 \cdot 10^{-4} \) | \(a_{434}= -0.23033556 \pm 9.1 \cdot 10^{-4} \) | \(a_{435}= +0.41791595 \pm 6.7 \cdot 10^{-4} \) |
\(a_{436}= -0.81177485 \pm 4.6 \cdot 10^{-4} \) | \(a_{437}= -1.56044424 \pm 6.1 \cdot 10^{-4} \) | \(a_{438}= -0.33526431 \pm 5.4 \cdot 10^{-4} \) |
\(a_{439}= -0.34558739 \pm 4.5 \cdot 10^{-4} \) | \(a_{440}= -0.08406170 \pm 6.2 \cdot 10^{-4} \) | \(a_{441}= +0.75235900 \pm 3.8 \cdot 10^{-4} \) |
\(a_{442}= -0.45331610 \pm 7.3 \cdot 10^{-4} \) | \(a_{443}= +0.92354751 \pm 1.5 \cdot 10^{-4} \) | \(a_{444}= +0.27887818 \pm 4.8 \cdot 10^{-4} \) |
\(a_{445}= -0.99279241 \pm 3.3 \cdot 10^{-4} \) | \(a_{446}= +0.66918723 \pm 3.7 \cdot 10^{-4} \) | \(a_{447}= -0.07828057 \pm 3.5 \cdot 10^{-4} \) |
\(a_{448}= -0.22559217 \pm 3.4 \cdot 10^{-4} \) | \(a_{449}= -0.34764909 \pm 6.4 \cdot 10^{-4} \) | \(a_{450}= -0.20064312 \pm 3.3 \cdot 10^{-4} \) |
\(a_{451}= +0.02575118 \pm 9.2 \cdot 10^{-5} \) | \(a_{452}= +0.18687798 \pm 6.7 \cdot 10^{-4} \) | \(a_{453}= -0.84493254 \pm 4.0 \cdot 10^{-4} \) |
\(a_{454}= -1.01831418 \pm 3.9 \cdot 10^{-4} \) | \(a_{455}= -1.09145975 \pm 1.3 \cdot 10^{-4} \) | \(a_{456}= -0.24877269 \pm 6.1 \cdot 10^{-4} \) |
\(a_{457}= +0.17841211 \pm 5.8 \cdot 10^{-4} \) | \(a_{458}= +0.76965798 \pm 1.8 \cdot 10^{-4} \) | \(a_{459}= -0.27757086 \pm 2.7 \cdot 10^{-4} \) |
\(a_{460}= +0.87105033 \pm 7.8 \cdot 10^{-4} \) | \(a_{461}= +0.52392835 \pm 4.7 \cdot 10^{-4} \) | \(a_{462}= -0.12875030 \pm 6.1 \cdot 10^{-4} \) |
\(a_{463}= +1.29258980 \pm 4.3 \cdot 10^{-4} \) | \(a_{464}= -0.13300142 \pm 3.2 \cdot 10^{-4} \) | \(a_{465}= +0.14178643 \pm 9.1 \cdot 10^{-4} \) |
\(a_{466}= +1.12972284 \pm 7.5 \cdot 10^{-4} \) | \(a_{467}= +0.34674304 \pm 5.2 \cdot 10^{-4} \) | \(a_{468}= +0.07408139 \pm 4.5 \cdot 10^{-4} \) |
\(a_{469}= +0.82859564 \pm 6.2 \cdot 10^{-5} \) | \(a_{470}= +1.47598245 \pm 7.4 \cdot 10^{-4} \) | \(a_{471}= -0.30896397 \pm 5.5 \cdot 10^{-4} \) |
\(a_{472}= +0.50327195 \pm 4.8 \cdot 10^{-4} \) | \(a_{473}= -0.03990943 \pm 1.7 \cdot 10^{-4} \) | \(a_{474}= -0.38796984 \pm 2.8 \cdot 10^{-4} \) |
\(a_{475}= -1.03745401 \pm 4.9 \cdot 10^{-4} \) | \(a_{476}= -1.30148680 \pm 6.2 \cdot 10^{-4} \) | \(a_{477}= -0.18412668 \pm 6.0 \cdot 10^{-4} \) |
\(a_{478}= +0.79998272 \pm 4.4 \cdot 10^{-4} \) | \(a_{479}= -1.01528444 \pm 5.0 \cdot 10^{-4} \) | \(a_{480}= +0.13886657 \pm 3.4 \cdot 10^{-4} \) |
\(a_{481}= -0.42940348 \pm 2.5 \cdot 10^{-4} \) | \(a_{482}= -0.52398520 \pm 2.5 \cdot 10^{-4} \) | \(a_{483}= +1.33411514 \pm 7.7 \cdot 10^{-4} \) |
\(a_{484}= -0.48473173 \pm 3.8 \cdot 10^{-4} \) | \(a_{485}= +0.12358367 \pm 3.9 \cdot 10^{-4} \) | \(a_{486}= +0.04536092 \pm 9.6 \cdot 10^{-7} \) |
\(a_{487}= +1.75752050 \pm 5.9 \cdot 10^{-4} \) | \(a_{488}= +0.11302158 \pm 4.3 \cdot 10^{-4} \) | \(a_{489}= -0.65921275 \pm 4.1 \cdot 10^{-4} \) |
\(a_{490}= -2.17152431 \pm 7.2 \cdot 10^{-4} \) | \(a_{491}= -0.45089745 \pm 5.5 \cdot 10^{-4} \) | \(a_{492}= -0.04253992 \pm 2.6 \cdot 10^{-4} \) |
\(a_{493}= -0.76731203 \pm 1.2 \cdot 10^{-4} \) | \(a_{494}= +0.38304846 \pm 1.0 \cdot 10^{-3} \) | \(a_{495}= +0.07925413 \pm 6.2 \cdot 10^{-4} \) |
\(a_{496}= -0.04512342 \pm 5.6 \cdot 10^{-4} \) | \(a_{497}= -0.21892047 \pm 2.9 \cdot 10^{-4} \) | \(a_{498}= -0.25006215 \pm 2.7 \cdot 10^{-4} \) |
\(a_{499}= -1.29255918 \pm 5.8 \cdot 10^{-4} \) | \(a_{500}= -0.10119075 \pm 3.9 \cdot 10^{-4} \) | \(a_{501}= -0.12242192 \pm 5.4 \cdot 10^{-4} \) |
\(a_{502}= +0.52475421 \pm 5.1 \cdot 10^{-4} \) | \(a_{503}= +0.69369333 \pm 4.2 \cdot 10^{-4} \) | \(a_{504}= +0.21269034 \pm 3.4 \cdot 10^{-4} \) |
\(a_{505}= -0.40234382 \pm 3.3 \cdot 10^{-4} \) | \(a_{506}= -0.15821031 \pm 7.0 \cdot 10^{-4} \) | \(a_{507}= +0.46328323 \pm 4.0 \cdot 10^{-4} \) |
\(a_{508}= +0.65864572 \pm 1.3 \cdot 10^{-4} \) | \(a_{509}= +0.39012500 \pm 3.7 \cdot 10^{-4} \) | \(a_{510}= +0.80114927 \pm 6.2 \cdot 10^{-4} \) |
\(a_{511}= +1.48209816 \pm 5.3 \cdot 10^{-4} \) | \(a_{512}= -0.04419417 \pm 1.0 \cdot 10^{-6} \) | \(a_{513}= +0.23454514 \pm 6.1 \cdot 10^{-4} \) |
\(a_{514}= -1.02196501 \pm 2.8 \cdot 10^{-4} \) | \(a_{515}= +1.57673824 \pm 2.3 \cdot 10^{-4} \) | \(a_{516}= +0.06592878 \pm 2.6 \cdot 10^{-4} \) |
\(a_{517}= -0.26808513 \pm 1.5 \cdot 10^{-4} \) | \(a_{518}= -1.23283280 \pm 8.3 \cdot 10^{-4} \) | \(a_{519}= -0.87825299 \pm 5.3 \cdot 10^{-4} \) |
\(a_{520}= -0.21382019 \pm 8.0 \cdot 10^{-4} \) | \(a_{521}= +0.73416214 \pm 5.4 \cdot 10^{-4} \) | \(a_{522}= +0.12539494 \pm 3.2 \cdot 10^{-4} \) |
\(a_{523}= -1.89522052 \pm 3.8 \cdot 10^{-4} \) | \(a_{524}= -0.12982419 \pm 5.0 \cdot 10^{-4} \) | \(a_{525}= +0.88698018 \pm 6.8 \cdot 10^{-4} \) |
\(a_{526}= +0.84373247 \pm 1.8 \cdot 10^{-4} \) | \(a_{527}= -0.26032611 \pm 4.1 \cdot 10^{-4} \) | \(a_{528}= -0.02522256 \pm 2.7 \cdot 10^{-4} \) |
\(a_{529}= +0.63938084 \pm 1.9 \cdot 10^{-4} \) | \(a_{530}= +0.53144251 \pm 9.5 \cdot 10^{-4} \) | \(a_{531}= -0.47448934 \pm 4.8 \cdot 10^{-4} \) |
\(a_{532}= +1.09974588 \pm 9.5 \cdot 10^{-4} \) | \(a_{533}= +0.06550097 \pm 1.6 \cdot 10^{-4} \) | \(a_{534}= -0.29788560 \pm 6.5 \cdot 10^{-4} \) |
\(a_{535}= -0.89751639 \pm 4.3 \cdot 10^{-4} \) | \(a_{536}= +0.16232434 \pm 1.9 \cdot 10^{-4} \) | \(a_{537}= -0.79808634 \pm 5.5 \cdot 10^{-4} \) |
\(a_{538}= +0.21588557 \pm 4.7 \cdot 10^{-4} \) | \(a_{539}= +0.39441755 \pm 2.5 \cdot 10^{-4} \) | \(a_{540}= -0.13092466 \pm 3.4 \cdot 10^{-4} \) |
\(a_{541}= +1.29010661 \pm 3.9 \cdot 10^{-4} \) | \(a_{542}= +0.71935757 \pm 5.3 \cdot 10^{-4} \) | \(a_{543}= -0.01412070 \pm 6.3 \cdot 10^{-4} \) |
\(a_{544}= -0.25496511 \pm 2.7 \cdot 10^{-4} \) | \(a_{545}= -2.20901623 \pm 2.7 \cdot 10^{-4} \) | \(a_{546}= -0.32749056 \pm 7.9 \cdot 10^{-4} \) |
\(a_{547}= -1.39910822 \pm 6.3 \cdot 10^{-4} \) | \(a_{548}= -0.03707696 \pm 2.8 \cdot 10^{-4} \) | \(a_{549}= -0.10655777 \pm 4.3 \cdot 10^{-4} \) |
\(a_{550}= -0.10518538 \pm 6.1 \cdot 10^{-4} \) | \(a_{551}= +0.64837250 \pm 4.8 \cdot 10^{-4} \) | \(a_{552}= +0.26135710 \pm 4.3 \cdot 10^{-4} \) |
\(a_{553}= +1.71509271 \pm 2.1 \cdot 10^{-4} \) | \(a_{554}= -0.32273759 \pm 3.8 \cdot 10^{-4} \) | \(a_{555}= +0.75888830 \pm 8.3 \cdot 10^{-4} \) |
\(a_{556}= -0.89674170 \pm 4.9 \cdot 10^{-4} \) | \(a_{557}= -1.63637430 \pm 1.8 \cdot 10^{-4} \) | \(a_{558}= +0.04254277 \pm 5.6 \cdot 10^{-4} \) |
\(a_{559}= -0.10151402 \pm 2.8 \cdot 10^{-4} \) | \(a_{560}= -0.61388545 \pm 6.9 \cdot 10^{-4} \) | \(a_{561}= -0.14551407 \pm 5.5 \cdot 10^{-4} \) |
\(a_{562}= +0.49328621 \pm 5.9 \cdot 10^{-4} \) | \(a_{563}= -1.49505122 \pm 2.4 \cdot 10^{-4} \) | \(a_{564}= +0.44286591 \pm 3.9 \cdot 10^{-4} \) |
\(a_{565}= +0.50853569 \pm 3.9 \cdot 10^{-4} \) | \(a_{566}= +0.71349669 \pm 3.0 \cdot 10^{-4} \) | \(a_{567}= -0.20052638 \pm 3.4 \cdot 10^{-4} \) |
\(a_{568}= -0.04288717 \pm 4.8 \cdot 10^{-4} \) | \(a_{569}= +0.97534141 \pm 5.2 \cdot 10^{-4} \) | \(a_{570}= -0.67696469 \pm 9.6 \cdot 10^{-4} \) |
\(a_{571}= +1.33415956 \pm 4.7 \cdot 10^{-4} \) | \(a_{572}= +0.03883652 \pm 7.2 \cdot 10^{-4} \) | \(a_{573}= -0.67343831 \pm 3.4 \cdot 10^{-4} \) |
\(a_{574}= +0.18805564 \pm 6.1 \cdot 10^{-4} \) | \(a_{575}= +1.08993465 \pm 3.2 \cdot 10^{-4} \) | \(a_{576}= +0.04166667 \pm 1.0 \cdot 10^{-6} \) |
\(a_{577}= +0.71184747 \pm 5.0 \cdot 10^{-4} \) | \(a_{578}= -0.76383845 \pm 3.5 \cdot 10^{-4} \) | \(a_{579}= +0.69380195 \pm 3.1 \cdot 10^{-4} \) |
\(a_{580}= -0.36192583 \pm 6.7 \cdot 10^{-4} \) | \(a_{581}= +1.10544617 \pm 3.0 \cdot 10^{-4} \) | \(a_{582}= +0.03708106 \pm 5.8 \cdot 10^{-4} \) |
\(a_{583}= -0.09652678 \pm 4.0 \cdot 10^{-4} \) | \(a_{584}= +0.29034741 \pm 5.4 \cdot 10^{-4} \) | \(a_{585}= +0.20159161 \pm 8.0 \cdot 10^{-4} \) |
\(a_{586}= -0.68287751 \pm 4.4 \cdot 10^{-4} \) | \(a_{587}= +0.28525795 \pm 3.7 \cdot 10^{-4} \) | \(a_{588}= -0.65156201 \pm 3.8 \cdot 10^{-4} \) |
\(a_{589}= +0.21997347 \pm 4.5 \cdot 10^{-4} \) | \(a_{590}= +1.36951262 \pm 8.3 \cdot 10^{-4} \) | \(a_{591}= +0.55914709 \pm 5.6 \cdot 10^{-4} \) |
\(a_{592}= -0.24151559 \pm 4.8 \cdot 10^{-4} \) | \(a_{593}= +0.08901579 \pm 6.6 \cdot 10^{-4} \) | \(a_{594}= +0.02378006 \pm 2.7 \cdot 10^{-4} \) |
\(a_{595}= -3.54162914 \pm 2.0 \cdot 10^{-4} \) | \(a_{596}= +0.06779296 \pm 3.5 \cdot 10^{-4} \) | \(a_{597}= +0.78775548 \pm 1.7 \cdot 10^{-4} \) |
\(a_{598}= -0.40242534 \pm 8.8 \cdot 10^{-4} \) | \(a_{599}= -0.33878451 \pm 4.0 \cdot 10^{-4} \) | \(a_{600}= +0.17376204 \pm 3.3 \cdot 10^{-4} \) |
\(a_{601}= -1.13698979 \pm 5.2 \cdot 10^{-4} \) | \(a_{602}= -0.29145040 \pm 6.0 \cdot 10^{-4} \) | \(a_{603}= -0.15304085 \pm 1.9 \cdot 10^{-4} \) |
\(a_{604}= +0.73173304 \pm 4.0 \cdot 10^{-4} \) | \(a_{605}= -1.31906066 \pm 2.6 \cdot 10^{-4} \) | \(a_{606}= -0.12072255 \pm 3.4 \cdot 10^{-4} \) |
\(a_{607}= +1.15135788 \pm 2.9 \cdot 10^{-4} \) | \(a_{608}= +0.21544347 \pm 6.1 \cdot 10^{-4} \) | \(a_{609}= -0.55433161 \pm 6.7 \cdot 10^{-4} \) |
\(a_{610}= +0.30755635 \pm 7.8 \cdot 10^{-4} \) | \(a_{611}= -0.68190404 \pm 3.5 \cdot 10^{-4} \) | \(a_{612}= +0.24038341 \pm 2.7 \cdot 10^{-4} \) |
\(a_{613}= -0.49024430 \pm 2.1 \cdot 10^{-4} \) | \(a_{614}= -0.29851686 \pm 2.3 \cdot 10^{-4} \) | \(a_{615}= -0.11576040 \pm 6.1 \cdot 10^{-4} \) |
\(a_{616}= +0.11150103 \pm 6.1 \cdot 10^{-4} \) | \(a_{617}= +0.38133070 \pm 4.3 \cdot 10^{-4} \) | \(a_{618}= +0.47309750 \pm 4.3 \cdot 10^{-4} \) |
\(a_{619}= +1.34026143 \pm 4.4 \cdot 10^{-4} \) | \(a_{620}= -0.12279065 \pm 9.1 \cdot 10^{-4} \) | \(a_{621}= -0.24640984 \pm 4.3 \cdot 10^{-4} \) |
\(a_{622}= -0.34927877 \pm 5.4 \cdot 10^{-4} \) | \(a_{623}= +1.31685859 \pm 2.2 \cdot 10^{-4} \) | \(a_{624}= -0.06415637 \pm 4.5 \cdot 10^{-4} \) |
\(a_{625}= -1.12661875 \pm 3.0 \cdot 10^{-4} \) | \(a_{626}= -0.35727677 \pm 5.7 \cdot 10^{-4} \) | \(a_{627}= +0.12295822 \pm 8.8 \cdot 10^{-4} \) |
\(a_{628}= +0.26757065 \pm 5.5 \cdot 10^{-4} \) | \(a_{629}= -1.39335222 \pm 3.5 \cdot 10^{-4} \) | \(a_{630}= +0.57877675 \pm 6.9 \cdot 10^{-4} \) |
\(a_{631}= +0.48599635 \pm 5.8 \cdot 10^{-4} \) | \(a_{632}= +0.33599173 \pm 2.8 \cdot 10^{-4} \) | \(a_{633}= -0.58375421 \pm 3.6 \cdot 10^{-4} \) |
\(a_{634}= +0.21148164 \pm 3.3 \cdot 10^{-4} \) | \(a_{635}= +1.79231850 \pm 1.0 \cdot 10^{-4} \) | \(a_{636}= +0.15945838 \pm 6.0 \cdot 10^{-4} \) |
\(a_{637}= +1.00324446 \pm 4.2 \cdot 10^{-4} \) | \(a_{638}= +0.06573719 \pm 6.0 \cdot 10^{-4} \) | \(a_{639}= +0.04043441 \pm 4.8 \cdot 10^{-4} \) |
\(a_{640}= -0.12026198 \pm 3.4 \cdot 10^{-4} \) | \(a_{641}= +1.72428819 \pm 4.2 \cdot 10^{-4} \) | \(a_{642}= -0.26929820 \pm 4.4 \cdot 10^{-4} \) |
\(a_{643}= +0.68567186 \pm 2.0 \cdot 10^{-4} \) | \(a_{644}= -1.15537761 \pm 7.7 \cdot 10^{-4} \) | \(a_{645}= +0.17940657 \pm 6.1 \cdot 10^{-4} \) |
\(a_{646}= +1.24293689 \pm 8.9 \cdot 10^{-4} \) | \(a_{647}= -1.95789537 \pm 5.8 \cdot 10^{-4} \) | \(a_{648}= -0.03928371 \pm 1.2 \cdot 10^{-6} \) |
\(a_{649}= -0.24874684 \pm 2.7 \cdot 10^{-4} \) | \(a_{650}= -0.26755060 \pm 7.8 \cdot 10^{-4} \) | \(a_{651}= -0.18806820 \pm 9.1 \cdot 10^{-4} \) |
\(a_{652}= +0.57089499 \pm 4.1 \cdot 10^{-4} \) | \(a_{653}= -1.65003688 \pm 5.6 \cdot 10^{-4} \) | \(a_{654}= -0.66281139 \pm 4.6 \cdot 10^{-4} \) |
\(a_{655}= -0.35327990 \pm 4.4 \cdot 10^{-4} \) | \(a_{656}= +0.03684066 \pm 2.6 \cdot 10^{-4} \) | \(a_{657}= -0.27374217 \pm 5.4 \cdot 10^{-4} \) |
\(a_{658}= -1.95777099 \pm 7.4 \cdot 10^{-4} \) | \(a_{659}= -0.73001407 \pm 6.8 \cdot 10^{-4} \) | \(a_{660}= -0.06863609 \pm 6.2 \cdot 10^{-4} \) |
\(a_{661}= +0.86565898 \pm 2.1 \cdot 10^{-4} \) | \(a_{662}= +0.03561900 \pm 7.7 \cdot 10^{-4} \) | \(a_{663}= -0.37013105 \pm 7.3 \cdot 10^{-4} \) |
\(a_{664}= +0.21656017 \pm 2.7 \cdot 10^{-4} \) | \(a_{665}= +2.99264814 \pm 1.9 \cdot 10^{-4} \) | \(a_{666}= +0.22770308 \pm 4.8 \cdot 10^{-4} \) |
\(a_{667}= -0.68117106 \pm 3.3 \cdot 10^{-4} \) | \(a_{668}= +0.10602049 \pm 5.4 \cdot 10^{-4} \) | \(a_{669}= +0.54638908 \pm 3.7 \cdot 10^{-4} \) |
\(a_{670}= +0.44171989 \pm 5.3 \cdot 10^{-4} \) | \(a_{671}= -0.05586197 \pm 3.4 \cdot 10^{-4} \) | \(a_{672}= -0.18419524 \pm 3.4 \cdot 10^{-4} \) |
\(a_{673}= -0.31830421 \pm 2.3 \cdot 10^{-4} \) | \(a_{674}= -0.90167652 \pm 2.7 \cdot 10^{-4} \) | \(a_{675}= -0.16382442 \pm 3.3 \cdot 10^{-4} \) |
\(a_{676}= -0.40121505 \pm 4.0 \cdot 10^{-4} \) | \(a_{677}= +0.47299030 \pm 6.9 \cdot 10^{-4} \) | \(a_{678}= +0.15258523 \pm 6.7 \cdot 10^{-4} \) |
\(a_{679}= -0.16392371 \pm 2.7 \cdot 10^{-4} \) | \(a_{680}= -0.69381562 \pm 6.2 \cdot 10^{-4} \) | \(a_{681}= -0.83145005 \pm 3.9 \cdot 10^{-4} \) |
\(a_{682}= +0.02230267 \pm 8.3 \cdot 10^{-4} \) | \(a_{683}= +0.47140761 \pm 4.1 \cdot 10^{-4} \) | \(a_{684}= -0.20312205 \pm 6.1 \cdot 10^{-4} \) |
\(a_{685}= -0.10089449 \pm 2.7 \cdot 10^{-4} \) | \(a_{686}= +1.60420881 \pm 2.6 \cdot 10^{-4} \) | \(a_{687}= +0.62842311 \pm 1.8 \cdot 10^{-4} \) |
\(a_{688}= -0.05709600 \pm 2.6 \cdot 10^{-4} \) | \(a_{689}= -0.24552650 \pm 6.6 \cdot 10^{-4} \) | \(a_{690}= +0.71120962 \pm 7.8 \cdot 10^{-4} \) |
\(a_{691}= -0.57954338 \pm 2.9 \cdot 10^{-4} \) | \(a_{692}= +0.76058940 \pm 5.3 \cdot 10^{-4} \) | \(a_{693}= -0.10512418 \pm 6.1 \cdot 10^{-4} \) |
\(a_{694}= +0.51489994 \pm 5.6 \cdot 10^{-4} \) | \(a_{695}= -2.44022953 \pm 3.4 \cdot 10^{-4} \) | \(a_{696}= -0.10859520 \pm 3.2 \cdot 10^{-4} \) |
\(a_{697}= +0.21254118 \pm 2.0 \cdot 10^{-4} \) | \(a_{698}= +0.88497361 \pm 4.2 \cdot 10^{-4} \) | \(a_{699}= +0.92241484 \pm 7.5 \cdot 10^{-4} \) |
\(a_{700}= -0.76814737 \pm 6.8 \cdot 10^{-4} \) | \(a_{701}= -0.59086775 \pm 4.4 \cdot 10^{-4} \) | \(a_{702}= +0.06048720 \pm 4.5 \cdot 10^{-4} \) |
\(a_{703}= +1.17737142 \pm 3.9 \cdot 10^{-4} \) | \(a_{704}= +0.02184338 \pm 2.7 \cdot 10^{-4} \) | \(a_{705}= +1.20513462 \pm 7.4 \cdot 10^{-4} \) |
\(a_{706}= -0.17402711 \pm 2.1 \cdot 10^{-4} \) | \(a_{707}= +0.53367644 \pm 3.3 \cdot 10^{-4} \) | \(a_{708}= +0.41091982 \pm 4.8 \cdot 10^{-4} \) |
\(a_{709}= -0.32179060 \pm 6.2 \cdot 10^{-4} \) | \(a_{710}= -0.11670533 \pm 8.3 \cdot 10^{-4} \) | \(a_{711}= -0.31677605 \pm 2.8 \cdot 10^{-4} \) |
\(a_{712}= +0.25797649 \pm 6.5 \cdot 10^{-4} \) | \(a_{713}= -0.23110104 \pm 4.2 \cdot 10^{-4} \) | \(a_{714}= -1.06265952 \pm 6.2 \cdot 10^{-4} \) |
\(a_{715}= +0.10568262 \pm 1.1 \cdot 10^{-4} \) | \(a_{716}= +0.69116304 \pm 5.5 \cdot 10^{-4} \) | \(a_{717}= +0.65318315 \pm 4.4 \cdot 10^{-4} \) |
\(a_{718}= -0.42193061 \pm 5.5 \cdot 10^{-4} \) | \(a_{719}= +1.00042241 \pm 2.8 \cdot 10^{-4} \) | \(a_{720}= +0.11338408 \pm 3.4 \cdot 10^{-4} \) |
\(a_{721}= -2.09141537 \pm 3.1 \cdot 10^{-4} \) | \(a_{722}= -0.34316489 \pm 5.6 \cdot 10^{-4} \) | \(a_{723}= -0.42783212 \pm 2.5 \cdot 10^{-4} \) |
\(a_{724}= +0.01222888 \pm 6.3 \cdot 10^{-4} \) | \(a_{725}= -0.45287337 \pm 2.6 \cdot 10^{-4} \) | \(a_{726}= -0.39578180 \pm 3.8 \cdot 10^{-4} \) |
\(a_{727}= -0.68704841 \pm 7.3 \cdot 10^{-4} \) | \(a_{728}= +0.28361514 \pm 7.9 \cdot 10^{-4} \) | \(a_{729}= +0.03703704 \pm 1.3 \cdot 10^{-6} \) |
\(a_{730}= +0.79009857 \pm 8.9 \cdot 10^{-4} \) | \(a_{731}= -0.32939833 \pm 1.2 \cdot 10^{-4} \) | \(a_{732}= +0.09228174 \pm 4.3 \cdot 10^{-4} \) |
\(a_{733}= +1.29204992 \pm 2.4 \cdot 10^{-4} \) | \(a_{734}= -0.63771463 \pm 2.2 \cdot 10^{-4} \) | \(a_{735}= -1.77304218 \pm 7.2 \cdot 10^{-4} \) |
\(a_{736}= -0.22634189 \pm 4.3 \cdot 10^{-4} \) | \(a_{737}= -0.08023031 \pm 2.2 \cdot 10^{-4} \) | \(a_{738}= -0.03473370 \pm 2.6 \cdot 10^{-4} \) |
\(a_{739}= +0.92224487 \pm 6.8 \cdot 10^{-4} \) | \(a_{740}= -0.65721654 \pm 8.3 \cdot 10^{-4} \) | \(a_{741}= +0.31275776 \pm 1.0 \cdot 10^{-3} \) |
\(a_{742}= -0.70491538 \pm 9.5 \cdot 10^{-4} \) | \(a_{743}= -0.55563557 \pm 2.9 \cdot 10^{-4} \) | \(a_{744}= -0.03684312 \pm 5.6 \cdot 10^{-4} \) |
\(a_{745}= +0.18447941 \pm 2.9 \cdot 10^{-4} \) | \(a_{746}= -0.83692520 \pm 3.4 \cdot 10^{-4} \) | \(a_{747}= -0.20417489 \pm 2.7 \cdot 10^{-4} \) |
\(a_{748}= +0.12601888 \pm 5.5 \cdot 10^{-4} \) | \(a_{749}= +1.19048268 \pm 4.2 \cdot 10^{-4} \) | \(a_{750}= -0.08262190 \pm 3.9 \cdot 10^{-4} \) |
\(a_{751}= +0.69981753 \pm 7.7 \cdot 10^{-4} \) | \(a_{752}= -0.38353313 \pm 3.9 \cdot 10^{-4} \) | \(a_{753}= +0.42846002 \pm 5.1 \cdot 10^{-4} \) |
\(a_{754}= +0.16720977 \pm 7.8 \cdot 10^{-4} \) | \(a_{755}= +1.99120504 \pm 3.4 \cdot 10^{-4} \) | \(a_{756}= +0.17366094 \pm 3.4 \cdot 10^{-4} \) |
\(a_{757}= -0.59373368 \pm 4.9 \cdot 10^{-4} \) | \(a_{758}= +0.80922335 \pm 3.0 \cdot 10^{-4} \) | \(a_{759}= -0.12917818 \pm 7.0 \cdot 10^{-4} \) |
\(a_{760}= +0.58626862 \pm 9.6 \cdot 10^{-4} \) | \(a_{761}= -1.12911885 \pm 5.7 \cdot 10^{-4} \) | \(a_{762}= +0.53778198 \pm 1.3 \cdot 10^{-4} \) |
\(a_{763}= +2.93008083 \pm 2.4 \cdot 10^{-4} \) | \(a_{764}= +0.58321468 \pm 3.4 \cdot 10^{-4} \) | \(a_{765}= +0.65413564 \pm 6.2 \cdot 10^{-4} \) |
\(a_{766}= -0.07763908 \pm 5.9 \cdot 10^{-4} \) | \(a_{767}= -0.63271497 \pm 2.9 \cdot 10^{-4} \) | \(a_{768}= -0.03608439 \pm 1.4 \cdot 10^{-6} \) |
\(a_{769}= -1.48338713 \pm 3.4 \cdot 10^{-4} \) | \(a_{770}= +0.30341860 \pm 9.6 \cdot 10^{-4} \) | \(a_{771}= -0.83443094 \pm 2.8 \cdot 10^{-4} \) |
\(a_{772}= -0.60085012 \pm 3.1 \cdot 10^{-4} \) | \(a_{773}= -0.23672651 \pm 3.8 \cdot 10^{-4} \) | \(a_{774}= +0.05383062 \pm 2.6 \cdot 10^{-4} \) |
\(a_{775}= -0.15364644 \pm 2.5 \cdot 10^{-4} \) | \(a_{776}= -0.03211314 \pm 5.8 \cdot 10^{-4} \) | \(a_{777}= -1.00660376 \pm 8.3 \cdot 10^{-4} \) |
\(a_{778}= +0.22074122 \pm 3.3 \cdot 10^{-4} \) | \(a_{779}= -0.17959559 \pm 1.7 \cdot 10^{-4} \) | \(a_{780}= -0.17458346 \pm 8.0 \cdot 10^{-4} \) |
\(a_{781}= +0.02119738 \pm 2.1 \cdot 10^{-4} \) | \(a_{782}= -1.30581208 \pm 7.1 \cdot 10^{-4} \) | \(a_{783}= +0.10238454 \pm 3.2 \cdot 10^{-4} \) |
\(a_{784}= +0.56426925 \pm 3.8 \cdot 10^{-4} \) | \(a_{785}= +0.72811804 \pm 2.9 \cdot 10^{-4} \) | \(a_{786}= -0.10600101 \pm 5.0 \cdot 10^{-4} \) |
\(a_{787}= -0.37778357 \pm 5.4 \cdot 10^{-4} \) | \(a_{788}= -0.48423559 \pm 5.6 \cdot 10^{-4} \) | \(a_{789}= +0.68890468 \pm 1.8 \cdot 10^{-4} \) |
\(a_{790}= +0.91430671 \pm 6.3 \cdot 10^{-4} \) | \(a_{791}= -0.67453134 \pm 4.6 \cdot 10^{-4} \) | \(a_{792}= -0.02059414 \pm 2.7 \cdot 10^{-4} \) |
\(a_{793}= -0.14209106 \pm 2.7 \cdot 10^{-4} \) | \(a_{794}= +0.21395372 \pm 5.3 \cdot 10^{-4} \) | \(a_{795}= +0.43392100 \pm 9.5 \cdot 10^{-4} \) |
\(a_{796}= -0.68221626 \pm 1.7 \cdot 10^{-4} \) | \(a_{797}= -0.23391041 \pm 6.5 \cdot 10^{-4} \) | \(a_{798}= +0.89793875 \pm 9.5 \cdot 10^{-4} \) |
\(a_{799}= -2.21268007 \pm 2.3 \cdot 10^{-4} \) | \(a_{800}= -0.15048234 \pm 3.3 \cdot 10^{-4} \) | \(a_{801}= -0.24322257 \pm 6.5 \cdot 10^{-4} \) |
\(a_{802}= +0.45636243 \pm 6.5 \cdot 10^{-4} \) | \(a_{803}= -0.14350691 \pm 3.8 \cdot 10^{-4} \) | \(a_{804}= +0.13253727 \pm 1.9 \cdot 10^{-4} \) |
\(a_{805}= -3.14403419 \pm 2.0 \cdot 10^{-4} \) | \(a_{806}= +0.05672929 \pm 1.0 \cdot 10^{-3} \) | \(a_{807}= +0.17626983 \pm 4.7 \cdot 10^{-4} \) |
\(a_{808}= +0.10454879 \pm 3.4 \cdot 10^{-4} \) | \(a_{809}= +1.09688446 \pm 7.2 \cdot 10^{-4} \) | \(a_{810}= -0.10689953 \pm 3.4 \cdot 10^{-4} \) |
\(a_{811}= +1.79784920 \pm 5.5 \cdot 10^{-4} \) | \(a_{812}= +0.48006526 \pm 6.7 \cdot 10^{-4} \) | \(a_{813}= +0.58735300 \pm 5.3 \cdot 10^{-4} \) |
\(a_{814}= +0.11937133 \pm 7.6 \cdot 10^{-4} \) | \(a_{815}= +1.55352965 \pm 2.7 \cdot 10^{-4} \) | \(a_{816}= -0.20817814 \pm 2.7 \cdot 10^{-4} \) |
\(a_{817}= +0.27833894 \pm 3.8 \cdot 10^{-4} \) | \(a_{818}= +0.48557604 \pm 4.2 \cdot 10^{-4} \) | \(a_{819}= -0.26739492 \pm 7.9 \cdot 10^{-4} \) |
\(a_{820}= +0.10025145 \pm 6.1 \cdot 10^{-4} \) | \(a_{821}= -0.32859239 \pm 1.9 \cdot 10^{-4} \) | \(a_{822}= -0.03027321 \pm 2.8 \cdot 10^{-4} \) |
\(a_{823}= +0.92708292 \pm 2.9 \cdot 10^{-4} \) | \(a_{824}= -0.40971446 \pm 4.3 \cdot 10^{-4} \) | \(a_{825}= -0.08588351 \pm 6.1 \cdot 10^{-4} \) |
\(a_{826}= -1.81654739 \pm 8.3 \cdot 10^{-4} \) | \(a_{827}= -1.94641227 \pm 5.3 \cdot 10^{-4} \) | \(a_{828}= +0.21339718 \pm 4.3 \cdot 10^{-4} \) |
\(a_{829}= +1.01446226 \pm 1.8 \cdot 10^{-4} \) | \(a_{830}= +0.58930741 \pm 6.2 \cdot 10^{-4} \) | \(a_{831}= -0.26351414 \pm 3.8 \cdot 10^{-4} \) |
\(a_{832}= +0.05556105 \pm 4.5 \cdot 10^{-4} \) | \(a_{833}= +3.25538326 \pm 1.9 \cdot 10^{-4} \) | \(a_{834}= -0.73218653 \pm 4.9 \cdot 10^{-4} \) |
\(a_{835}= +0.28850485 \pm 2.6 \cdot 10^{-4} \) | \(a_{836}= -0.10648494 \pm 8.8 \cdot 10^{-4} \) | \(a_{837}= +0.03473602 \pm 5.6 \cdot 10^{-4} \) |
\(a_{838}= -0.75823067 \pm 3.7 \cdot 10^{-4} \) | \(a_{839}= -0.35716382 \pm 4.6 \cdot 10^{-4} \) | \(a_{840}= -0.50123537 \pm 6.9 \cdot 10^{-4} \) |
\(a_{841}= -0.71696997 \pm 2.8 \cdot 10^{-4} \) | \(a_{842}= +0.90122282 \pm 5.2 \cdot 10^{-4} \) | \(a_{843}= +0.40276650 \pm 5.9 \cdot 10^{-4} \) |
\(a_{844}= +0.50554597 \pm 3.6 \cdot 10^{-4} \) | \(a_{845}= -1.09179356 \pm 3.3 \cdot 10^{-4} \) | \(a_{846}= +0.36159850 \pm 3.9 \cdot 10^{-4} \) |
\(a_{847}= +1.74962696 \pm 3.1 \cdot 10^{-4} \) | \(a_{848}= -0.13809501 \pm 6.0 \cdot 10^{-4} \) | \(a_{849}= +0.58256761 \pm 3.0 \cdot 10^{-4} \) |
\(a_{850}= -0.86816302 \pm 6.1 \cdot 10^{-4} \) | \(a_{851}= -1.23692991 \pm 3.7 \cdot 10^{-4} \) | \(a_{852}= -0.03501723 \pm 4.8 \cdot 10^{-4} \) |
\(a_{853}= +0.18235679 \pm 2.5 \cdot 10^{-4} \) | \(a_{854}= -0.40794855 \pm 7.8 \cdot 10^{-4} \) | \(a_{855}= -0.55273936 \pm 9.6 \cdot 10^{-4} \) |
\(a_{856}= +0.23321908 \pm 4.4 \cdot 10^{-4} \) | \(a_{857}= -1.14480260 \pm 3.1 \cdot 10^{-4} \) | \(a_{858}= +0.03170988 \pm 7.2 \cdot 10^{-4} \) |
\(a_{859}= -1.13779524 \pm 7.2 \cdot 10^{-4} \) | \(a_{860}= -0.15537064 \pm 6.1 \cdot 10^{-4} \) | \(a_{861}= +0.15354678 \pm 6.1 \cdot 10^{-4} \) |
\(a_{862}= +1.03624139 \pm 4.7 \cdot 10^{-4} \) | \(a_{863}= -0.91828461 \pm 4.4 \cdot 10^{-4} \) | \(a_{864}= +0.03402069 \pm 1.5 \cdot 10^{-6} \) |
\(a_{865}= +2.06972946 \pm 4.2 \cdot 10^{-4} \) | \(a_{866}= -1.14725886 \pm 3.6 \cdot 10^{-4} \) | \(a_{867}= -0.62367148 \pm 3.5 \cdot 10^{-4} \) |
\(a_{868}= +0.16287184 \pm 9.1 \cdot 10^{-4} \) | \(a_{869}= -0.16606704 \pm 2.9 \cdot 10^{-4} \) | \(a_{870}= -0.29551120 \pm 6.7 \cdot 10^{-4} \) |
\(a_{871}= -0.20407463 \pm 7.1 \cdot 10^{-5} \) | \(a_{872}= +0.57401150 \pm 4.6 \cdot 10^{-4} \) | \(a_{873}= +0.03027656 \pm 5.8 \cdot 10^{-4} \) |
\(a_{874}= +1.10340070 \pm 1.0 \cdot 10^{-3} \) | \(a_{875}= +0.36524545 \pm 3.6 \cdot 10^{-4} \) | \(a_{876}= +0.23706767 \pm 5.4 \cdot 10^{-4} \) |
\(a_{877}= -1.59761777 \pm 6.0 \cdot 10^{-4} \) | \(a_{878}= +0.24436719 \pm 4.5 \cdot 10^{-4} \) | \(a_{879}= -0.55756715 \pm 4.4 \cdot 10^{-4} \) |
\(a_{880}= +0.05944060 \pm 6.2 \cdot 10^{-4} \) | \(a_{881}= +0.73471211 \pm 3.1 \cdot 10^{-4} \) | \(a_{882}= -0.53199815 \pm 3.8 \cdot 10^{-4} \) |
\(a_{883}= +1.01441475 \pm 1.4 \cdot 10^{-4} \) | \(a_{884}= +0.32054289 \pm 7.3 \cdot 10^{-4} \) | \(a_{885}= +1.11820237 \pm 8.3 \cdot 10^{-4} \) |
\(a_{886}= -0.65304671 \pm 1.5 \cdot 10^{-4} \) | \(a_{887}= -1.77402066 \pm 4.6 \cdot 10^{-4} \) | \(a_{888}= -0.19719665 \pm 4.8 \cdot 10^{-4} \) |
\(a_{889}= -2.37736510 \pm 1.8 \cdot 10^{-4} \) | \(a_{890}= +0.70201024 \pm 1.0 \cdot 10^{-3} \) | \(a_{891}= +0.01941634 \pm 2.7 \cdot 10^{-4} \) |
\(a_{892}= -0.47318682 \pm 3.7 \cdot 10^{-4} \) | \(a_{893}= +1.86969686 \pm 4.5 \cdot 10^{-4} \) | \(a_{894}= +0.05535272 \pm 3.5 \cdot 10^{-4} \) |
\(a_{895}= +1.88080523 \pm 2.8 \cdot 10^{-4} \) | \(a_{896}= +0.15951775 \pm 3.4 \cdot 10^{-4} \) | \(a_{897}= -0.32857892 \pm 8.8 \cdot 10^{-4} \) |
\(a_{898}= +0.24582503 \pm 6.4 \cdot 10^{-4} \) | \(a_{899}= +0.09602366 \pm 2.7 \cdot 10^{-4} \) | \(a_{900}= +0.14187611 \pm 3.3 \cdot 10^{-4} \) |
\(a_{901}= -0.79669799 \pm 3.0 \cdot 10^{-4} \) | \(a_{902}= -0.01820884 \pm 5.3 \cdot 10^{-4} \) | \(a_{903}= -0.23796826 \pm 6.0 \cdot 10^{-4} \) |
\(a_{904}= -0.13214269 \pm 6.7 \cdot 10^{-4} \) | \(a_{905}= +0.03327745 \pm 4.7 \cdot 10^{-4} \) | \(a_{906}= +0.59745753 \pm 4.0 \cdot 10^{-4} \) |
\(a_{907}= +1.46857531 \pm 5.1 \cdot 10^{-4} \) | \(a_{908}= +0.72005687 \pm 3.9 \cdot 10^{-4} \) | \(a_{909}= -0.09856955 \pm 3.4 \cdot 10^{-4} \) |
\(a_{910}= +0.77177859 \pm 1.1 \cdot 10^{-3} \) | \(a_{911}= +0.21434311 \pm 5.4 \cdot 10^{-4} \) | \(a_{912}= +0.17590886 \pm 6.1 \cdot 10^{-4} \) |
\(a_{913}= -0.10703688 \pm 1.0 \cdot 10^{-4} \) | \(a_{914}= -0.12615641 \pm 5.8 \cdot 10^{-4} \) | \(a_{915}= +0.25111871 \pm 7.8 \cdot 10^{-4} \) |
\(a_{916}= -0.54423038 \pm 1.8 \cdot 10^{-4} \) | \(a_{917}= +0.46859713 \pm 2.7 \cdot 10^{-4} \) | \(a_{918}= +0.19627224 \pm 2.7 \cdot 10^{-4} \) |
\(a_{919}= +0.17824202 \pm 3.3 \cdot 10^{-4} \) | \(a_{920}= -0.61592560 \pm 7.8 \cdot 10^{-4} \) | \(a_{921}= -0.24373800 \pm 2.3 \cdot 10^{-4} \) |
\(a_{922}= -0.37047329 \pm 4.7 \cdot 10^{-4} \) | \(a_{923}= +0.05391787 \pm 5.3 \cdot 10^{-4} \) | \(a_{924}= +0.09104021 \pm 6.1 \cdot 10^{-4} \) |
\(a_{925}= -0.82236704 \pm 2.1 \cdot 10^{-4} \) | \(a_{926}= -0.91399901 \pm 4.3 \cdot 10^{-4} \) | \(a_{927}= +0.38628249 \pm 4.3 \cdot 10^{-4} \) |
\(a_{928}= +0.09404620 \pm 3.2 \cdot 10^{-4} \) | \(a_{929}= +0.48677525 \pm 5.7 \cdot 10^{-4} \) | \(a_{930}= -0.10025815 \pm 9.1 \cdot 10^{-4} \) |
\(a_{931}= -2.75077267 \pm 5.6 \cdot 10^{-4} \) | \(a_{932}= -0.79883468 \pm 7.5 \cdot 10^{-4} \) | \(a_{933}= -0.28518492 \pm 5.4 \cdot 10^{-4} \) |
\(a_{934}= -0.24518435 \pm 5.2 \cdot 10^{-4} \) | \(a_{935}= +0.34292483 \pm 2.8 \cdot 10^{-4} \) | \(a_{936}= -0.05238346 \pm 4.5 \cdot 10^{-4} \) |
\(a_{937}= -0.48837794 \pm 3.4 \cdot 10^{-4} \) | \(a_{938}= -0.58590560 \pm 5.3 \cdot 10^{-4} \) | \(a_{939}= -0.29171526 \pm 5.7 \cdot 10^{-4} \) |
\(a_{940}= -1.04367720 \pm 7.4 \cdot 10^{-4} \) | \(a_{941}= +0.40843741 \pm 3.9 \cdot 10^{-4} \) | \(a_{942}= +0.21847052 \pm 5.5 \cdot 10^{-4} \) |
\(a_{943}= +0.18868061 \pm 1.8 \cdot 10^{-4} \) | \(a_{944}= -0.35586701 \pm 4.8 \cdot 10^{-4} \) | \(a_{945}= +0.47256924 \pm 6.9 \cdot 10^{-4} \) |
\(a_{946}= +0.02822023 \pm 5.3 \cdot 10^{-4} \) | \(a_{947}= +1.26375831 \pm 4.5 \cdot 10^{-4} \) | \(a_{948}= +0.27433610 \pm 2.8 \cdot 10^{-4} \) |
\(a_{949}= -0.36502562 \pm 1.4 \cdot 10^{-4} \) | \(a_{950}= +0.73359077 \pm 9.4 \cdot 10^{-4} \) | \(a_{951}= +0.17267404 \pm 3.3 \cdot 10^{-4} \) |
\(a_{952}= +0.92029014 \pm 6.2 \cdot 10^{-4} \) | \(a_{953}= -0.46608536 \pm 4.4 \cdot 10^{-4} \) | \(a_{954}= +0.13019722 \pm 6.0 \cdot 10^{-4} \) |
\(a_{955}= +1.58705422 \pm 1.8 \cdot 10^{-4} \) | \(a_{956}= -0.56567320 \pm 4.4 \cdot 10^{-4} \) | \(a_{957}= +0.05367419 \pm 6.0 \cdot 10^{-4} \) |
\(a_{958}= +0.71791451 \pm 5.0 \cdot 10^{-4} \) | \(a_{959}= +0.13382835 \pm 2.0 \cdot 10^{-4} \) | \(a_{960}= -0.09819349 \pm 3.4 \cdot 10^{-4} \) |
\(a_{961}= -0.96742203 \pm 7.9 \cdot 10^{-4} \) | \(a_{962}= +0.30363411 \pm 9.4 \cdot 10^{-4} \) | \(a_{963}= -0.21988106 \pm 4.4 \cdot 10^{-4} \) |
\(a_{964}= +0.37051349 \pm 2.5 \cdot 10^{-4} \) | \(a_{965}= -1.63504408 \pm 2.6 \cdot 10^{-4} \) | \(a_{966}= -0.94336186 \pm 7.7 \cdot 10^{-4} \) |
\(a_{967}= +1.09843389 \pm 5.4 \cdot 10^{-4} \) | \(a_{968}= +0.34275710 \pm 3.8 \cdot 10^{-4} \) | \(a_{969}= +1.01485372 \pm 8.9 \cdot 10^{-4} \) |
\(a_{970}= -0.08738685 \pm 9.3 \cdot 10^{-4} \) | \(a_{971}= -0.16494407 \pm 2.4 \cdot 10^{-4} \) | \(a_{972}= -0.03207501 \pm 1.7 \cdot 10^{-6} \) |
\(a_{973}= +3.23676651 \pm 2.4 \cdot 10^{-4} \) | \(a_{974}= -1.24275466 \pm 5.9 \cdot 10^{-4} \) | \(a_{975}= -0.21845415 \pm 7.8 \cdot 10^{-4} \) |
\(a_{976}= -0.07991833 \pm 4.3 \cdot 10^{-4} \) | \(a_{977}= -0.94823881 \pm 3.4 \cdot 10^{-4} \) | \(a_{978}= +0.46613381 \pm 4.1 \cdot 10^{-4} \) |
\(a_{979}= -0.12750728 \pm 3.5 \cdot 10^{-4} \) | \(a_{980}= +1.53549957 \pm 7.2 \cdot 10^{-4} \) | \(a_{981}= -0.54118323 \pm 4.6 \cdot 10^{-4} \) |
\(a_{982}= +0.31883265 \pm 5.5 \cdot 10^{-4} \) | \(a_{983}= +1.59088624 \pm 5.5 \cdot 10^{-4} \) | \(a_{984}= +0.03008027 \pm 2.6 \cdot 10^{-4} \) |
\(a_{985}= -1.31771053 \pm 5.2 \cdot 10^{-4} \) | \(a_{986}= +0.54257154 \pm 6.0 \cdot 10^{-4} \) | \(a_{987}= -1.59851332 \pm 7.4 \cdot 10^{-4} \) |
\(a_{988}= -0.27085616 \pm 1.0 \cdot 10^{-3} \) | \(a_{989}= -0.29241899 \pm 2.5 \cdot 10^{-4} \) | \(a_{990}= -0.05604114 \pm 6.2 \cdot 10^{-4} \) |
\(a_{991}= +0.64110417 \pm 3.0 \cdot 10^{-4} \) | \(a_{992}= +0.03190707 \pm 5.6 \cdot 10^{-4} \) | \(a_{993}= +0.02908279 \pm 7.7 \cdot 10^{-4} \) |
\(a_{994}= +0.15480015 \pm 8.3 \cdot 10^{-4} \) | \(a_{995}= -1.85645907 \pm 1.9 \cdot 10^{-4} \) | \(a_{996}= +0.17682064 \pm 2.7 \cdot 10^{-4} \) |
\(a_{997}= -1.60633835 \pm 5.6 \cdot 10^{-4} \) | \(a_{998}= +0.91397736 \pm 5.8 \cdot 10^{-4} \) | \(a_{999}= +0.18591879 \pm 4.8 \cdot 10^{-4} \) |
\(a_{1000}= +0.07155266 \pm 3.9 \cdot 10^{-4} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000