Properties

Label 1.12.a.a
Level 11
Weight 1212
Character orbit 1.a
Self dual yes
Analytic conductor 0.7680.768
Analytic rank 00
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

This is the discriminant modular form Δ=τ(n)qn\Delta=\sum \tau(n)q^n, where τ\tau is the Ramanujan tau function [A000594]. It is the minimal weight newform of level 11.

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1,12,Mod(1,1)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1, base_ring=CyclotomicField(1)) chi = DirichletCharacter(H, H._module([])) N = Newforms(chi, 12, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1.1"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Level: N N == 1 1
Weight: k k == 12 12
Character orbit: [χ][\chi] == 1.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 0.7683431805600.768343180560
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q24q2+252q31472q4+4830q56048q616744q7+84480q8113643q9115920q10+534612q11370944q12577738q13+401856q14+1217160q15+60754911516q99+O(q100) q - 24 q^{2} + 252 q^{3} - 1472 q^{4} + 4830 q^{5} - 6048 q^{6} - 16744 q^{7} + 84480 q^{8} - 113643 q^{9} - 115920 q^{10} + 534612 q^{11} - 370944 q^{12} - 577738 q^{13} + 401856 q^{14} + 1217160 q^{15}+ \cdots - 60754911516 q^{99}+O(q^{100}) Copy content Toggle raw display

Expression as an eta quotient

f(z)=η(z)24=qn=1(1qn)24f(z) = \eta(z)^{24}=q\prod_{n=1}^\infty(1 - q^{n})^{24}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
−24.0000 252.000 −1472.00 4830.00 −6048.00 −16744.0 84480.0 −113643. −115920.
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1.12.a.a 1
3.b odd 2 1 9.12.a.b 1
4.b odd 2 1 16.12.a.a 1
5.b even 2 1 25.12.a.b 1
5.c odd 4 2 25.12.b.b 2
7.b odd 2 1 49.12.a.a 1
7.c even 3 2 49.12.c.b 2
7.d odd 6 2 49.12.c.c 2
8.b even 2 1 64.12.a.b 1
8.d odd 2 1 64.12.a.f 1
9.c even 3 2 81.12.c.d 2
9.d odd 6 2 81.12.c.b 2
11.b odd 2 1 121.12.a.b 1
12.b even 2 1 144.12.a.d 1
13.b even 2 1 169.12.a.a 1
15.d odd 2 1 225.12.a.b 1
15.e even 4 2 225.12.b.d 2
16.e even 4 2 256.12.b.e 2
16.f odd 4 2 256.12.b.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1.12.a.a 1 1.a even 1 1 trivial
9.12.a.b 1 3.b odd 2 1
16.12.a.a 1 4.b odd 2 1
25.12.a.b 1 5.b even 2 1
25.12.b.b 2 5.c odd 4 2
49.12.a.a 1 7.b odd 2 1
49.12.c.b 2 7.c even 3 2
49.12.c.c 2 7.d odd 6 2
64.12.a.b 1 8.b even 2 1
64.12.a.f 1 8.d odd 2 1
81.12.c.b 2 9.d odd 6 2
81.12.c.d 2 9.c even 3 2
121.12.a.b 1 11.b odd 2 1
144.12.a.d 1 12.b even 2 1
169.12.a.a 1 13.b even 2 1
225.12.a.b 1 15.d odd 2 1
225.12.b.d 2 15.e even 4 2
256.12.b.c 2 16.f odd 4 2
256.12.b.e 2 16.e even 4 2

Hecke kernels

This newform subspace is the entire newspace S12new(Γ0(1))S_{12}^{\mathrm{new}}(\Gamma_0(1)).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T+24 T + 24 Copy content Toggle raw display
33 T252 T - 252 Copy content Toggle raw display
55 T4830 T - 4830 Copy content Toggle raw display
77 T+16744 T + 16744 Copy content Toggle raw display
1111 T534612 T - 534612 Copy content Toggle raw display
1313 T+577738 T + 577738 Copy content Toggle raw display
1717 T+6905934 T + 6905934 Copy content Toggle raw display
1919 T10661420 T - 10661420 Copy content Toggle raw display
2323 T18643272 T - 18643272 Copy content Toggle raw display
2929 T128406630 T - 128406630 Copy content Toggle raw display
3131 T+52843168 T + 52843168 Copy content Toggle raw display
3737 T+182213314 T + 182213314 Copy content Toggle raw display
4141 T308120442 T - 308120442 Copy content Toggle raw display
4343 T+17125708 T + 17125708 Copy content Toggle raw display
4747 T2687348496 T - 2687348496 Copy content Toggle raw display
5353 T+1596055698 T + 1596055698 Copy content Toggle raw display
5959 T+5189203740 T + 5189203740 Copy content Toggle raw display
6161 T6956478662 T - 6956478662 Copy content Toggle raw display
6767 T+15481826884 T + 15481826884 Copy content Toggle raw display
7171 T9791485272 T - 9791485272 Copy content Toggle raw display
7373 T1463791322 T - 1463791322 Copy content Toggle raw display
7979 T38116845680 T - 38116845680 Copy content Toggle raw display
8383 T+29335099668 T + 29335099668 Copy content Toggle raw display
8989 T+24992917110 T + 24992917110 Copy content Toggle raw display
9797 T75013568546 T - 75013568546 Copy content Toggle raw display
show more
show less

Additional information

qn1(1qn)24\displaystyle q\prod_{n\geq1}(1-q^n)^{24}

η(z)24\eta(z)^{24}