This is the discriminant modular form , where is the Ramanujan tau function [A000594]. It is the minimal weight newform of level .
Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1,12,Mod(1,1)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1, base_ring=CyclotomicField(1))
chi = DirichletCharacter(H, H._module([]))
N = Newforms(chi, 12, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1.1");
S:= CuspForms(chi, 12);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 1.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Expression as an eta quotient
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1.12.a.a | ✓ | 1 |
3.b | odd | 2 | 1 | 9.12.a.b | 1 | ||
4.b | odd | 2 | 1 | 16.12.a.a | 1 | ||
5.b | even | 2 | 1 | 25.12.a.b | 1 | ||
5.c | odd | 4 | 2 | 25.12.b.b | 2 | ||
7.b | odd | 2 | 1 | 49.12.a.a | 1 | ||
7.c | even | 3 | 2 | 49.12.c.b | 2 | ||
7.d | odd | 6 | 2 | 49.12.c.c | 2 | ||
8.b | even | 2 | 1 | 64.12.a.b | 1 | ||
8.d | odd | 2 | 1 | 64.12.a.f | 1 | ||
9.c | even | 3 | 2 | 81.12.c.d | 2 | ||
9.d | odd | 6 | 2 | 81.12.c.b | 2 | ||
11.b | odd | 2 | 1 | 121.12.a.b | 1 | ||
12.b | even | 2 | 1 | 144.12.a.d | 1 | ||
13.b | even | 2 | 1 | 169.12.a.a | 1 | ||
15.d | odd | 2 | 1 | 225.12.a.b | 1 | ||
15.e | even | 4 | 2 | 225.12.b.d | 2 | ||
16.e | even | 4 | 2 | 256.12.b.e | 2 | ||
16.f | odd | 4 | 2 | 256.12.b.c | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1.12.a.a | ✓ | 1 | 1.a | even | 1 | 1 | trivial |
9.12.a.b | 1 | 3.b | odd | 2 | 1 | ||
16.12.a.a | 1 | 4.b | odd | 2 | 1 | ||
25.12.a.b | 1 | 5.b | even | 2 | 1 | ||
25.12.b.b | 2 | 5.c | odd | 4 | 2 | ||
49.12.a.a | 1 | 7.b | odd | 2 | 1 | ||
49.12.c.b | 2 | 7.c | even | 3 | 2 | ||
49.12.c.c | 2 | 7.d | odd | 6 | 2 | ||
64.12.a.b | 1 | 8.b | even | 2 | 1 | ||
64.12.a.f | 1 | 8.d | odd | 2 | 1 | ||
81.12.c.b | 2 | 9.d | odd | 6 | 2 | ||
81.12.c.d | 2 | 9.c | even | 3 | 2 | ||
121.12.a.b | 1 | 11.b | odd | 2 | 1 | ||
144.12.a.d | 1 | 12.b | even | 2 | 1 | ||
169.12.a.a | 1 | 13.b | even | 2 | 1 | ||
225.12.a.b | 1 | 15.d | odd | 2 | 1 | ||
225.12.b.d | 2 | 15.e | even | 4 | 2 | ||
256.12.b.c | 2 | 16.f | odd | 4 | 2 | ||
256.12.b.e | 2 | 16.e | even | 4 | 2 |
Hecke kernels
This newform subspace is the entire newspace .
Hecke characteristic polynomials
Additional information