Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1,18,Mod(1,1)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1, base_ring=CyclotomicField(1))
chi = DirichletCharacter(H, H._module([]))
N = Newforms(chi, 18, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1.1");
S:= CuspForms(chi, 18);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 1.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | |||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−528.000 | −4284.00 | 147712. | −1.02585e6 | 2.26195e6 | 3.22599e6 | −8.78592e6 | −1.10788e8 | 5.41649e8 | |||||||||||||||||||||
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1.18.a.a | ✓ | 1 |
3.b | odd | 2 | 1 | 9.18.a.b | 1 | ||
4.b | odd | 2 | 1 | 16.18.a.b | 1 | ||
5.b | even | 2 | 1 | 25.18.a.a | 1 | ||
5.c | odd | 4 | 2 | 25.18.b.a | 2 | ||
7.b | odd | 2 | 1 | 49.18.a.a | 1 | ||
8.b | even | 2 | 1 | 64.18.a.d | 1 | ||
8.d | odd | 2 | 1 | 64.18.a.b | 1 | ||
11.b | odd | 2 | 1 | 121.18.a.b | 1 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1.18.a.a | ✓ | 1 | 1.a | even | 1 | 1 | trivial |
9.18.a.b | 1 | 3.b | odd | 2 | 1 | ||
16.18.a.b | 1 | 4.b | odd | 2 | 1 | ||
25.18.a.a | 1 | 5.b | even | 2 | 1 | ||
25.18.b.a | 2 | 5.c | odd | 4 | 2 | ||
49.18.a.a | 1 | 7.b | odd | 2 | 1 | ||
64.18.a.b | 1 | 8.d | odd | 2 | 1 | ||
64.18.a.d | 1 | 8.b | even | 2 | 1 | ||
121.18.a.b | 1 | 11.b | odd | 2 | 1 |
Hecke kernels
This newform subspace is the entire newspace .