Properties

Label 1.18.a.a
Level 11
Weight 1818
Character orbit 1.a
Self dual yes
Analytic conductor 1.8321.832
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1,18,Mod(1,1)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1, base_ring=CyclotomicField(1))
 
chi = DirichletCharacter(H, H._module([]))
 
N = Newforms(chi, 18, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1.1");
 
S:= CuspForms(chi, 18);
 
N := Newforms(S);
 
Level: N N == 1 1
Weight: k k == 18 18
Character orbit: [χ][\chi] == 1.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 1.832220873451.83222087345
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q528q24284q3+147712q41025850q5+2261952q6+3225992q78785920q8110787507q9+541648800q10753618228q11632798208q12+2541064526q13++83 ⁣ ⁣96q99+O(q100) q - 528 q^{2} - 4284 q^{3} + 147712 q^{4} - 1025850 q^{5} + 2261952 q^{6} + 3225992 q^{7} - 8785920 q^{8} - 110787507 q^{9} + 541648800 q^{10} - 753618228 q^{11} - 632798208 q^{12} + 2541064526 q^{13}+ \cdots + 83\!\cdots\!96 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
−528.000 −4284.00 147712. −1.02585e6 2.26195e6 3.22599e6 −8.78592e6 −1.10788e8 5.41649e8
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1.18.a.a 1
3.b odd 2 1 9.18.a.b 1
4.b odd 2 1 16.18.a.b 1
5.b even 2 1 25.18.a.a 1
5.c odd 4 2 25.18.b.a 2
7.b odd 2 1 49.18.a.a 1
8.b even 2 1 64.18.a.d 1
8.d odd 2 1 64.18.a.b 1
11.b odd 2 1 121.18.a.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1.18.a.a 1 1.a even 1 1 trivial
9.18.a.b 1 3.b odd 2 1
16.18.a.b 1 4.b odd 2 1
25.18.a.a 1 5.b even 2 1
25.18.b.a 2 5.c odd 4 2
49.18.a.a 1 7.b odd 2 1
64.18.a.b 1 8.d odd 2 1
64.18.a.d 1 8.b even 2 1
121.18.a.b 1 11.b odd 2 1

Hecke kernels

This newform subspace is the entire newspace S18new(Γ0(1))S_{18}^{\mathrm{new}}(\Gamma_0(1)).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T+528 T + 528 Copy content Toggle raw display
33 T+4284 T + 4284 Copy content Toggle raw display
55 T+1025850 T + 1025850 Copy content Toggle raw display
77 T3225992 T - 3225992 Copy content Toggle raw display
1111 T+753618228 T + 753618228 Copy content Toggle raw display
1313 T2541064526 T - 2541064526 Copy content Toggle raw display
1717 T+5429742318 T + 5429742318 Copy content Toggle raw display
1919 T1487499860 T - 1487499860 Copy content Toggle raw display
2323 T+317091823464 T + 317091823464 Copy content Toggle raw display
2929 T2433410602590 T - 2433410602590 Copy content Toggle raw display
3131 T+8849722053088 T + 8849722053088 Copy content Toggle raw display
3737 T12691652946662 T - 12691652946662 Copy content Toggle raw display
4141 T48864151002282 T - 48864151002282 Copy content Toggle raw display
4343 T+91019974317844 T + 91019974317844 Copy content Toggle raw display
4747 T+49304994276048 T + 49304994276048 Copy content Toggle raw display
5353 T22940453195766 T - 22940453195766 Copy content Toggle raw display
5959 T32695090729980 T - 32695090729980 Copy content Toggle raw display
6161 T+1308285854869378 T + 1308285854869378 Copy content Toggle raw display
6767 T5196143861984132 T - 5196143861984132 Copy content Toggle raw display
7171 T+3709489877412408 T + 3709489877412408 Copy content Toggle raw display
7373 T3402372968272586 T - 3402372968272586 Copy content Toggle raw display
7979 T2366533941308240 T - 2366533941308240 Copy content Toggle raw display
8383 T+29 ⁣ ⁣04 T + 29\!\cdots\!04 Copy content Toggle raw display
8989 T29 ⁣ ⁣70 T - 29\!\cdots\!70 Copy content Toggle raw display
9797 T+63 ⁣ ⁣98 T + 63\!\cdots\!98 Copy content Toggle raw display
show more
show less